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1 Preface

I tried to include material, and also to order the material, as in the Hebrew
book ”Alegbraic Structures” by de Shalit, Lubozky and Puder (as it is a book
often-times used for this course at the Hebrew university). But there are some
changes.

2 The very basic notions of group theory

2.1 Isomorphisms of mathematical objects

Common objects in mathematics are sets with extra structure. We don’t
want to formalize this here, but rather give some examples:

1. A field is a set K with the extra structure of two operations + : K×K →
K and · : K ×K → K satisfying various conditions.

2. Given a fieldK, a vector space over K is a set V with the extra structure
of two operations + : V × V → V and · : K × V → V satisfying various
conditions.

3. A real inner product space is a R-vector space V with the additional
extra structure of a positive definite symmetric R-bilinear pairing ⟨−,−⟩ :
V × V → R.

4. A metric space is a set X with the extra structure of a map d : X ×
X → R≥0 satisfying, for all x1, x2, x3 ∈ X: (1) d(x1, x3) ≤ d(x1, x2) +
d(x2, x3), (2) d(x1, x2) = 0 ⇐⇒ x1 = x2, (3) d(x1, x2) = d(x2, x1).
Concrete examples can be gotten as follows. Given a subset X ⊂ Rn, it
has naturally the structure of a metric space by considering the distance
function d(x1, x2) := ||x2 − x1||.

Given sets X and Y with extra structure of the same kind, we can usually
talk about isomorphism between them - a bijection ϕ : X → Y which preserves
the extra structure. One can think of an isomorphism as exhibiting how the
two objects are “two instances of the same idea”. In the examples above:
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1. Given fields K and L, an isomorphism of fields from K to L is a
bijection ϕ : K → L such that ϕ(a+b) = ϕ(a)+ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b)
for all a, b ∈ K.

2. Given a field K and vector spaces V and W over K, an isomorphism
of K-vector spaces from V to W is a bijection ϕ : V → W such that
ϕ(v1 + v2) = ϕ(v1) + ϕ(v2) for all v1, v2 ∈ V and ϕ(cv) = cϕ(v) for all
v ∈ V and c ∈ K.

3. Given real inner product spaces V andW , an isomorphism of real inner
product spaces from V to W is a bijection ϕ : V → W which is an iso-
morphism of R-vector spaces and, additionally, such that ⟨ϕ(v1), ϕ(v2)⟩ =
⟨v1, v2⟩ for all v1, v2 ∈ V .

4. Given metric spaces X and Y , an isomorphism of metric spaces from
X to Y is a bijection ϕ : X → Y such that d(ϕ(x1), ϕ(x2)) = d(x1, x2) for
all x1, x2 ∈ X.

Notice that we, as a rule, have the following features of isomorphisms: The
identity map is an isomorphism from an object to itself, the composition of
isomorphisms is an isomorphism, and the inverse of an isomorphism is an iso-
morphism.

2.2 Automorphisms (“symmetries”) of mathematical ob-
jects

Given an object, an isomorphism from it to itself is usually called an automor-
phism, we will also call it a symmetry of that object. We can think of it as
a “reversible process of self-identification”. A bit confusingly perhaps, we can
think of it as exhibiting how an object is the instance of an idea in two different1

ways.

Definition 2.1. Let X be a set. We denote by S(X) the set of bijections from
X to itself.

Thus, given a set X with extra structure, the set of automorphisms of X is
a subset of S(X).

Example 2.2. Let us abbreviate

e(q) :=

(
cos(2πq)
sin(2πq)

)
∈ R2

(i.e. e(q) is the vector of length 1 forming an angle of 2πq radians with the
positive x-axis). Fix n ∈ Z≥3 and consider

Xn := {e(m/n) : m ∈ Z, 0 ≤ m < n− 1} ⊂ R2.

Let us denote by Dn ⊂ S(Xn) the set of automorphisms of Xn as a metric space.
It turns out that |Dn| = 2n. Namely, Dn consists of the following elements:

1That is, different unless the automorphism is the identity automorphism.
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• Given k ∈ Z, 0 ≤ k < n, the rotation by 2π k
n , provides an element in Dn.

• Given k ∈ Z , 0 ≤ k < n, the reflection in the axis spanned by e(k/n) if n
is odd and by e(k/2n) if n is even, provides an element in Dn.

2.3 Forgetting what the extra structure was: Subgroups

Let X be a set with extra structure, and let H ⊂ S(X) be the subset of auto-
morphisms of X. What properties of H we can write down, without knowing
what the extra structure in question is?

Definition 2.3. Let X be a set. A subset H ⊂ S(X) is called a subgroup if
the following are satisfied:

1. idX ∈ H.

2. Given g1, g2 ∈ H we have g1 ◦ g2 ∈ H.

3. Given g ∈ H we have g−1 ∈ H.

A very bold step is the following reversal: We can, in some sense, think of
the extra structure on X as the thing which is preserved by the elements in H
(without knowing what it “really” is)2.

Example 2.4. We can consider the subgroup H ⊂ S(R2) consisting of R-linear
automorphisms with positive determinant (check that this is indeed a subgroup!).
It describes the extra structure of orientation on R2.

The idea is that notions that survive under the symmetries are “correct”,
do not depend on the arbitrariness of our current description. For example, if
we consider R2 as an R-vector space, the property of a vector having one of its
coordinates equal to 0 is “not correct”, because after applying an automorphism
(of R-vector spaces) of R2 this can change. In contrast, the property of a vector
of not being the zero vector is “correct”, it is preserved under automorphisms of
R-vector spaces. Similarly, the property of a subset of R2 of being an ellipse is
“correct” while the property of a subset of R2 of being a circle is “not correct”.
However, if we now consider R2 not only as an R-vector space but also as
equipped with the standard inner product, automorphisms become orthogonal
R-linear bijective maps R2 → R2, and the property of a subset of R2 of being
a circle is now “correct”. A vague summary is that a pair (X,H) where X is
a set and H ⊂ S(X) is a subgroup describes a “reality”, or that H describes a
“geometry” in X.

2As far as I understand, this is very much related to the “Erlangen program” of Felix Klein,
from 1872.
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2.4 Forgetting what the set was: Groups

Given a set X with extra structure, we considered the subset H ⊂ S(X) of
its symmetries. We formulated what is still possible to say generally about
the subset H ⊂ S(X) if we “forget” what the extra structure is (that it is a
subgroup). Now one has a much more radical turn - we want to ask what is H
if we forget about X itself! Then we can’t anymore think of H as a subset of
S(X), since we don’t know what is X. In particular, we can’t anymore freely
talk about composition of elements in H (which was the main operation we
used). To overcome this, one comes to the idea of book-keeping the result of
composition, forgetting about the process which led to the result. We then
approach the main definition of this course3:

Definition 2.5. A group is a pair (G, ⋆) consisting of a set G and a function
⋆ : G×G → G (it is customary to write g1 ⋆ g2 instead of ⋆(g1, g2)), such that
the following properties are satisfied:

1. Let g1, g2, g2 ∈ G. We have4 g1 ⋆ (g2 ⋆ g3) = (g1 ⋆ g2) ⋆ g3.

2. There exists an element 1G ∈ G such that for every g ∈ G we have
1G ⋆g = g and g ⋆1G = g. The element 1G is called the identity element
of G.

(such an element 1G is unique, if exists - indeed given another element
1′G ∈ G with the same property, we obtain 1G = 1G ⋆ 1

′
G = 1′G).

3. Let g ∈ G. There exists an element g−1 ∈ G such that g ⋆ g−1 = e and
g−1 ⋆ g = 1G. The element g−1 is called the inverse to g in G.

(such an element g−1 is unique, if exists - indeed given another element
(g−1)′ ∈ G with the same property, we obtain g−1 = g−1 ⋆ 1G = g−1 ⋆ (g ⋆
(g−1)′) = (g−1 ⋆ g) ⋆ (g−1)′ = 1G ⋆ (g

−1)′ = (g−1)′).

Exercise 2.1. Let (G, ⋆) be a group. We have:

1. Given a, b ∈ G there exists a unique x ∈ G such that a ⋆ x = b, and a
unique y ∈ G such that y ⋆ a = b. In other words, given a ∈ G the map
G → G given by x 7→ a ⋆ x is bijective, and the map G → G given by
x 7→ x ⋆ a is bijective.

2. Given a, b ∈ G we have (a ⋆ b)−1 = b−1 ⋆ a−1.

Remark 2.6. Eventually one abbreviates notation as follows (usually this does
not cause confusion). We will write 1 instead of 1G. We will write g1g2, or g1 ·g2,
instead of g1 ⋆ g2. The notation ⋆ itself will be eliminated, or kept implicit, so
that we speak of a group G (in the same way as we speak of a vector space V ,
but of course formally it is a triple (V,+, ·) etc.).

3Is it correct, that the first appearance of the abstract concept of a group was in an 1882
paper by Dyck?

4In the usual functional-theoretic notation one would write this ⋆(g1, ⋆(g2, g3)) =
⋆(⋆(g1, g2), g3).
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Remark 2.7. The cardinality |G| is usually called the order of the group G,
especially when G is finite.

Example 2.8. Let X be a set. Then (S(X), ◦) is a group (here ◦ : S(X) ×
S(X) → S(X) is the composition of maps). In line with Remark 2.6, we write
S(X) instead of (S(X), ◦), and given g1, g2 ∈ S(X) we sometimes write g1 ◦ g2
simply g1g2, or g1 · g2. Especially, one writes Sn := S({1, 2, . . . , n}), this is
called the symmetric group on n elements, or the permutation group on
n elements.

Definition 2.3 naturally generalizes:

Definition 2.9. Let G be a group. A subset H ⊂ G is called a subgroup (of
G) if the following conditions are satisfied:

1. Let g1, g2 ∈ H. Then g1g2 ∈ H.

2. Let g ∈ H. Then g−1 ∈ H.

3. We have 1G ∈ H.

Notice that a subgroup H ⊂ G can (and always will) be considered as a group
itself, restricting the group operation G×G→ G to a group operation H×H →
H.

Example 2.10. We obtain examples of groups as subgroups of groups of the
form S(X), those preserving some extra structure, as discussed above. Given a
vector space V over a field k, we denote by GLk(V ) the group of automorphisms
of V as a k-vector space (the general linear group). We denote by SLk(V )
the group of automorphisms of V as a k-vector space which have determinant 1
(the special linear group). We have the group Dn of Example 2.2, called the
dihedral group. Recall, that the order of Dn is 2n.

A very interesting feature of the abstraction of the concept of a group is that
it applies to some basic and natural mathematical structures of which we don’t
think a-priori as collections of symmetries:

Example 2.11. Let k be a field. There are two standard groups associated to
k. One is the additive group, which as a set is k and in which the group
operation is addition in k. The other is the multiplicative group, which as a
set is k× := k ∖ {0} and in which the group operation is multiplication in k.

Example 2.12. Let k be a field and let V be a vector space over k. Then V ,
together with the operation of addition it has as a vector space, is a group.

Example 2.13. The set Z of integers together with the operation of addition is
a group.

Definition 2.14. A group G is called abelian, or commutative, if for all
g1, g2 ∈ G one has g1g2 = g2g1.
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Notice that the groups in Example 2.11, Example 2.12 and Example 2.13
are abelian.

Remark 2.15. Often, given an abelian group A we use the notation a1+a2 for
the group operation in A. We use the notation 0A, or 0, for the identity element
in A. We use the notation −a for the inverse to a in A. This is called additive
notation, as opposed to the multiplicative notation of above. But, we don’t
always use additive notation when dealing with an abelian group. For example,
in the example of the multiplicative group of a field above, one always uses
multiplicative notation.

Recall the following definition and notation:

Definition 2.16. Given m,n ∈ Z, we say that m divides n, or n is divisible
by m, if there exists q ∈ Z such that n = qm. We write in such a case m|n.
Remark 2.17. Let us do a refresher on equivalence relations. A relation
R on a set X is a subset R ⊂ X × X. One then usually has the following
notation: Given x, y ∈ X, one writes xRy if (x, y) ∈ R (and one writes x�Ry if
(x, y) /∈ R). A relation ∼ on a set X is called an equivalence relation if the
following conditions are satisfied:

1. Given x ∈ X we have x ∼ x.

2. Given x, y ∈ X, if x ∼ y then y ∼ x.

3. Given x, y, z ∈ X, if x ∼ y and y ∼ z then x ∼ z.

Let ∼ be an equivalence relation on a set X. Given x ∈ X, let us denote
E∼

x := {y ∈ X | x ∼ y}. One checks that given x, y ∈ X, if x ∼ y then
E∼

x = E∼
y , while if x ̸∼ y then E∼

x ∩ E∼
y = ∅. A subset E ⊂ X is called an

equivalence class with respect to the equivalence relation ∼ if E = E∼
x for

some x ∈ X. Recall that a partition of a set X is a a set S of subsets of X, such
that for every x ∈ X there is precisely one E ∈ S such that x ∈ E. Notice then
that our equivalence relation ∼ yields a partition of X - the set of equivalence
classes with respect to the equivalence relation ∼ is a partition of X. We denote
by X/∼ the set of equivalence classes with respect to the equivalence relation
∼, and call it the quotient set (of X by the equivalence relation ∼). We have
a “canonical projection”, or “quotient map” map π : E → E/∼ given by
sending x to E∼

x . This map is surjective. For x, y ∈ X, one has π(x) = π(y) if
and only if x ∼ y. For ξ ∈ E/∼ and x ∈ X, if x ∈ π−1(ξ) then π−1(ξ) = E∼

x .

Example 2.18. Let n ∈ Z≥1. We will define an abelian group Zn; we use
additive notation. Let us define an equivalence relation ≡n on Z, by writing
m1 ≡n m2 if n|m2 −m1. We let Zn be the set of equivalence classes. Let us
denote by [−]n : Z → Zn the corresponding surjective quotient map. To define
the addition, given µ1, µ2 ∈ Zn let us choose m1,m2 ∈ Z such that µ1 = [m1]n
and µ2 = [m2]n, and define µ1 + µ2 := [m1 + m2]n. As an exercise (it is
important to do it!) check that this definition does not depend on the choices.
As a further exercise, this provides Zn with the structure of a (commutative)
group. We call Zn the group of integers modulo n.
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Example 2.19. The group Z12 is often called the clock arithmetic group.
We have, for example [11]n + [3]n = [14]n = [2]n, and we can imagine this
calculation on a clock (I will illustrate in person).

2.5 From old groups to new - the example of a product of
groups

One of the powers of the abstraction of the concept of a group is that now we
can produce “industrially” new groups of old groups (without the need to care
what are they symmetries of). Let us illustrate this on a simple example.

Definition 2.20. Let G and H be groups. The product group G × H is
defined as follows. As a set, it is the Cartesian product G × H (consisting of
ordered pairs (g, h), where g ∈ G and h ∈ H). The group operation is given by:
(g1, h1)(g2, h2) := (g1g2, h1h2).

Exercise 2.2. Check that the thus-defined operation indeed satisfies all the ax-
ioms, and gives G×H the structure of a group.

2.6 Homomorphisms of groups

Definition 2.21. Let G and H be groups. A homomorphism from G to H
is a map ϕ : G→ H satisfying ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G.

Exercise 2.3. Let G and H be groups and let ϕ : G→ H be a group homomor-
phism. Then ϕ(1G) = 1H and ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

Example 2.22. Let n ∈ Z≥1. We have a homomorphism of groups Z → Zn

given by sending m to [m]n.

Example 2.23. Let V be a finite-dimensional vector space over a field k. We
have a homomorphism det : GLk(V ) → k× given by sending a k-linear auto-
morphism of V to its determinant.

Example 2.24. Let G be a group and let H ⊂ G be a subgroup. Then the
tautological inclusion map i : H → G is a group homomorphism.

Exercise 2.4. Let G , H and K be groups. Let ϕ : G → H be a group
homomorphism and let ψ : H → K be a group homomorphism. Then ψ ◦ ϕ :
G→ K is a group homomorphism.

Remark 2.25. We will discuss group homomorphisms much more extensively
later on.

2.7 Group actions

We now want to reconcile the abstract concept of a group, to which we arrived,
with the concrete concept of a subgroup of symmetries, from which we started.
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Definition 2.26. Let G be a group and X a set. An (left) action of G on X
is a group homomorphism ρ : G→ S(X).

Remark 2.27. It might seem that one would like the homomorphism ρ to be
injective, but the flexibility of not requiring that turns out to be “correct”.

Example 2.28. Let X be a set and let H ⊂ S(X) be a subgroup. Then the
tautological inclusion homomorphism H → S(X) gives an action of H on X.
In other words, our general definition generalizes the concrete situation we had
in the beginning.

Remark 2.29. We will discuss group actions much more extensively later on.

2.8 Isomorphism of groups

Notice that a group is a set with extra structure. Thus we can be interested in
isomorphism of groups.

Definition 2.30. Let G and H be groups. An isomorphism of G and H (or
from G to H) is a bijection ϕ : G → H which satisfies the following condition.
Let g1, g2 ∈ G. We have ϕ(g1g2) = ϕ(g1)ϕ(g2). In other words, an isomorphism
is a bijective homomorphism.

Exercise 2.5. Let G, H and K be groups.

1. Show that the identity map idG : G→ G is an isomorphism of groups.

2. Let ϕ : G → H and ψ : H → K be isomorphism of groups. Show that
ψ ◦ ϕ is an isomorphism of groups.

3. Let ϕ : G → H be an isomorphism of groups. Show that the inverse map
ϕ−1 : H → G is an isomorphism of groups.

Definition 2.31. Let G and H be groups. One says that G is isomorphic to
H if there exists an isomorphism from G to H. If G is isomorphic to H, one
often5 writes G ∼= H.

Exercise 2.6. Let G, H and K be groups.

1. Show that G is isomorphic to G.

2. Show that if G is isomorphic to H then H is isomorphic to G.

3. Show that if G is isomorphic to H and H is isomorphic to K then G is
isomorphic to K.

Example 2.32. A “boring”, or straight-forward, example is as follows. Let
X and Y be sets and let ψ : X → Y be a bijection. Then we can construct
an isomorphism of groups ϕ : S(X) → S(Y ) as follows. We set ϕ(σ)(y) :=
ψ(σ(ψ−1(y))).

5Although some people prefer to write G ∼= H only if there is a canonical isomorphism
from G to H at hand.
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Example 2.33. Let k be a field and let n ∈ Z≥0. Denote by GLn(k) the
following group. As a set, GLn(k) is the set of invertible matrices in Mn(k) (the
set of n × n-matrices over the field k). The group operation is multiplication
of matrices. Check, as an exercise, that this is indeed a group. Now, let V be
an n-dimensional vector space over k. Let e1, . . . , en be a basis for V . We then
obtain an isomorphism ϕ : GLk(V ) → GLn(k) as follows. Given g ∈ GLk(V ),
there exists a unique A = (Aij) ∈ GLn(k) such that gei =

∑
j Ajiej for all i.

We then let ϕ(g) be this A.

Example 2.34. Let us show that the groups S3 and GL2(F2) are isomorphic.
Here F2 denotes the field with two elements. First, let V be a two-dimensional
F2-vector space. By choosing a basis of V we obtain an isomorphism of GL2(F2)
with GLF2(V ). Let us denote X := V ∖ {0}. By choosing a bijection between
{1, 2, 3} and X we obtain an isomorphism of S3 and S(X). Therefore, it is
enough to establish an isomorphism of S(X) and GLF2

(V ). We construct a map
ϕ : GLF2

(V ) → S(X) by restricting g ∈ GLF2
(V ), which is a bijection V → V ,

to a bijection X → X (since 0 maps to 0 under g). It is easy to see that ϕ is
injective and that ϕ satisfies ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ GLF2(V ). It
is left to see that ϕ is surjective. Since ϕ is injective, it is enough to see that
|GLF2

(V )| = |S(X)|. Both cardinalities are easily seen to be equal to 6.

Example 2.35. The groups Z4 and Z2 ×Z2 are not isomorphic. Indeed, using
multiplicative notation, notice that the latter group G has the property that every
g ∈ G satisfies gg = 1G. While for the former group G there exists g ∈ G
such that gg ̸= 1G. Understand why this shows that these groups can not be
isomorphic.

Somewhat self-referentially, we have the group of symmetries of a group:

Definition 2.36. Let G be a group. We denote by Aut(G) the set of au-
tomorphisms of G. Composition gives it a group structure. It is called the
automorphism group of G.

2.9 The powers of an element in a group

Let G be a group. Given g ∈ G and n ∈ Z we define gn ∈ G as follows. For
n ∈ Z≥1 we define gn inductively: We define g1 := g and gn+1 := ggn. Next,
we define g0 := 1G. Finally, if n ∈ Z≤−1 we define gn := (g−1)−n. Notice that
g−1 now has seemingly two interpretations, but they coincide, so everything is
fine. One can see that the following holds:

Claim 2.37. Let G be a group. We have:

1. Let g ∈ G and let n,m ∈ Z. We have gn+m = gngm.

2. Let g ∈ G and let n,m ∈ Z. We have (gn)m = gnm.

3. Suppose that G is abelian. Let g, h ∈ G and let n ∈ Z. Then (gh)n = gnhn.

11



Exercise 2.7. Show that the last property in the claim does not necessarily hold
if G is not abelian.

Remark 2.38. Let A be an abelian group, and use additive notation. Then
given a ∈ A and n ∈ Z one write na instead of what we denoted generally an.

Remark 2.39. Given m, k ∈ Z, notice that the two possible interpretations of
mk ∈ Z - one as multiplication of integers and one as the m-th power of k in
the group of integers with the operation of addition - coincide. As regarding
the group Zn, we have m[k]n = [mk]n for all m, k ∈ Z.

Exercise 2.8. Let H and G be groups and let ϕ : H → G be a group homomor-
phism. Show (using induction) that ϕ(hn) = ϕ(h)n for h ∈ H and n ∈ Z.

Remark 2.40. A particular case of Exercise 2.8 is when we are given a group
G and a subgroup H ⊂ G. To prevent confusion, let us denote by power(G, g, n)
the n-th power of g in the group G. Then we get that, for h ∈ H and n ∈ Z,
we have power(G, h, n) ∈ H and in fact power(G, h, n) = power(H,h, n). Thus,
in particular, there is no ambiguity in such a setting when using our more
ambiguous notation for powers (the notation gn in which we don’t specify in
which group we take the power).

2.10 Basic constructions of subgroups

Lemma 2.41. Let G be a group.

1. Let H1, H2 ⊂ G be subgroups. Then H1 ∩H2 ⊂ G is a subgroup.

2. More generally, let (Hi)i∈I be a family of subgroups of G. Then ∩i∈IHi

is a subgroup of G.

Proof. Left as an exercise.

Lemma-Definition 2.42. Let G be a group. Let S ⊂ G be a subset. There
exists a unique subgroup H ⊂ G with the following properties:

1. S ⊂ H.

2. Let K ⊂ G be a subgroup such that S ⊂ K. Then H ⊂ K.

We call this H the subgroup of G generated by S, and we denote it by ⟨S⟩.
Given g ∈ G, we also abbreviate ⟨g⟩ := ⟨{g}⟩, and more generally ⟨g1, . . . , gn⟩ :=
⟨{g1, . . . , gn}⟩.

Proof. Let us consider the set F of all subgroups K in G which contain S. Let
us consider then the intersection of them all

H :=
⋂

K∈F

K

(which is a subgroup of G by Lemma 2.41). We claim that this H is as desired
- we leave it as an easy exercise.
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Lemma 2.43. Let G be a group. Let g ∈ G. Then ⟨g⟩ = {gn : n ∈ Z}.

Proof. It is immediate to check that {gn : n ∈ Z} is a subgroup of G, it
contains g, and by Remark 2.40 it is contained in any subgroup of G which
contains g. Hence it is equal to ⟨g⟩ by the definition of ⟨g⟩.

Exercise 2.9. Given a group G and a subset S ⊂ G, let us provide another
description of ⟨S⟩. Namely, consider the subset H ⊂ G consisting of elements
g ∈ G for which we can find r ∈ Z≥0 and (g1, . . . , gr) ∈ Gr such that for each
1 ≤ i ≤ r we have either gi ∈ S or g−1

i ∈ S, and g = g1 · g2 . . . · gr. In other
words, H is the subset of G consisting of elements which can be written as a
product of elements in S or their inverses. We allow r = 0, corresponding to
taking the empty product of elements in G, which is equal to the identity element
of G. Show that in fact H = ⟨S⟩.

Lemma 2.44. Let A be an abelian group, and use additive notation in it. Let
B,C ⊂ A be two subgroups. Then

⟨B ∪ C⟩ = B + C := {b+ c : b ∈ B, c ∈ C}.

In particular, ⟨b, c⟩ = ⟨b⟩+ ⟨c⟩ for b, c ∈ A.

Proof. The proof of the lemma is left as an exercise: Check that B + C is a
subgroup of A, that it contains B ∪ C, and that every subgroup of A which
contains B ∪ C also contains B + C.

2.11 Subgroups of the group of integers, the lcm and gcd

We will now discuss subgroups of Z. Notice that, given n ∈ Z, the subgroup
⟨n⟩ of Z consists of integers which are divisible by n (I will draw how these look
like in person).

Remark 2.45. For the subgroup ⟨n⟩ of Z, one also uses the notation nZ.

Theorem 2.46. Let us consider the group Z.

1. Given n1, n2 ∈ Z≥0, if n1 ̸= n2 then ⟨n1⟩ ≠ ⟨n2⟩.

2. Every subgroup of Z is equal to ⟨n⟩ for some n ∈ Z≥0. More precisely, if
A ∩ Z≥1 is empty then A = ⟨0⟩. Otherwise, denoting by n the smallest
element6 in A ∩ Z≥1, we have A = ⟨n⟩.

Proof.

1. Suppose, without loss of generality, that n1 < n2. If n1 = 0, then ⟨n1⟩ =
{0} while ⟨n2⟩ contains n2 ̸= 0, and therefore we certainly have ⟨n1⟩ ≠
⟨n2⟩. So let us assume that n1 ̸= 0. We claim that n1 /∈ ⟨n2⟩. Since
n1 ∈ ⟨n1⟩, this will then show that ⟨n1⟩ ≠ ⟨n2⟩, as desired. To that end,

6Such an element exists by a basic principle, equivalent to the principle of mathematical
induction.
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let us see what n1 ∈ ⟨n2⟩ would mean. It means that there exists m ∈ Z
such that n1 = mn2. Since n1, n2 ∈ Z>0, we must have m ∈ Z>0. But
then n1 < n2 ≤ mn2, which is incompatible with the equality n1 = mn2.

2. Let A ⊂ Z be a subgroup. Suppose first that A∩Z≥1 is empty. Then also
A ∩ Z≤−1 is empty, because if n ∈ A then also −n ∈ A. Hence we must
have A = {0} = ⟨0⟩. Suppose now that A ∩ Z≥1 is not empty. Let n be
the smallest element in A ∩ Z≥1. We want to show that A = ⟨n⟩. Clearly
⟨n⟩ ⊂ A, and therefore it remains to see that A ⊂ ⟨n⟩. To that end, let
k ∈ A. By division with reminder, we can write k = qn+ r where q, r ∈ Z
and 0 ≤ r < n. Notice that r = k − qn ∈ A. Therefore we can not have
r ̸= 0 because this would contradict the minimality of n. Hence r = 0 and
k = qn. This shows that k ∈ ⟨n⟩ and thus we have shown that A ⊂ ⟨n⟩,
as desired.

Definition 2.47. Let n1, n2 ∈ Z. Consider the subgroup A := ⟨n1⟩ ∩ ⟨n2⟩ of
Z. By Theorem 2.46, there exists a unique n ∈ Z≥0 such that A = ⟨n⟩. This n
is called the least common multiple of n1 and n2, denoted lcm(n1, n2).

Remark 2.48 (The “characterizing property”, or “universal property”, of the
least common multiple). Let n1, n2 ∈ Z. Let us abbreviate n := lcm(n1, n2).
Notice that for every m ∈ Z we have:

n1|m and n2|m ⇐⇒ m ∈ ⟨n1⟩ ∩ ⟨n2⟩ ⇐⇒ m ∈ ⟨n⟩ ⇐⇒ n|m.

In words, we got that the least common multiple of two integers is divisible by
them both, and divides any other integer which is divisible by them both.

Definition 2.49. Let n1, n2 ∈ Z. Consider the subgroup A := ⟨n1, n2⟩ =
⟨n1⟩ + ⟨n2⟩ of Z. By Theorem 2.46, there exists a unique n ∈ Z≥0 such that
A = ⟨n⟩. This n is called the greatest common divisor of n1 and n2, denoted
gcd(n1, n2).

Remark 2.50 (The “characterizing property”, or “universal property”, of the
greatest common divisor). Let n1, n2 ∈ Z. Let us abbreviate n := gcd(n1, n2).
Notice that n1 ∈ ⟨n1⟩ ⊂ ⟨n1, n2⟩ = ⟨n⟩, and therefore n divides n1. Analogously,
n divides n2. If now we are given m ∈ Z which divides both n1 and n2, then we
have n1 ∈ ⟨m⟩ and n2 ∈ ⟨m⟩ and so ⟨n⟩ = ⟨n1, n2⟩ ⊂ ⟨m⟩, and thus n ∈ ⟨m⟩,
meaning that m divides n. In words, we got that the greatest common divisor
of two integers divides them both, and is divisible by any other integer which
divides them both.

Remark 2.51 (very important property of the gcd). Let n1, n2 ∈ Z. Let
us abbreviate n := gcd(n1, n2). Since ⟨n⟩ = ⟨n1, n2⟩ = ⟨n1⟩ + ⟨n2⟩, we have
n ∈ ⟨n1⟩+⟨n2⟩, which means that there existm1 ∈ ⟨n1⟩ andm2 ∈ ⟨n2⟩ such that
n = m1+m2. Furthermore, there exist k1 ∈ Z and k2 ∈ Z such that m1 = k1n1
and m2 = k2n2, and we then obtain n = k1n1 + k2n2. In words, the greatest

14



common divisor of two integers can be expressed as a “linear combination with
integer coefficients” of these two integers.

Remark 2.52. Given n,m ∈ Z, we have n|m and m|n if and only if m = n or
m = −n. In particular, given n,m ∈ Z≥0, if we have n|m and m|n then m = n.
This supports the naming above, of the properties being “characterizing”. For
example, given n1, n2 ∈ Z, a number m ∈ Z≥0 having the following property -
m divides n1 and n2 and is divisible by any other number m′ ∈ Z which divides
n1 and n2 - must be equal to gcd(n1, n2). Indeed, we know that gcd(n1, n2) has
this property, so it is enough to show that there exists at most one m ∈ Z≥0

having this property. And indeed, if we have m,m′ ∈ Z≥0 which both have this
property, then m|m′ by the property of m′ and m′|m by the property of m and
therefore by our current remark we have m = m′.

2.12 An example of an isomorphism of groups - the Chi-
nese remainder theorem

Claim 2.53. Let n,m ∈ Z. If gcd(n,m) = 1 then, given k ∈ Z, n|k and m|k
imply nm|k.

Proof. By Remark 2.51 we can find a, b ∈ Z such that an+ bm = 1. Since n|k
and m|k, we can find p, q ∈ Z such that k = mp and k = nq. Then we obtain

k = 1 · k = (an+ bm)k = ank + bmk = anmp+ bmnq = (ap+ bq)mn,

and so mn|k.

Exercise 2.10. Show the following generalization of Claim 2.53: Given n,m ∈
Z≥1,

lcm(m,n) =
mn

gcd(m,n)
.

Lemma-Definition 2.54. Let n,m ∈ Z≥1. Suppose that m|n. Then the fol-
lowing is a well-defined group homomorphism:

frgtnm : Zn
[k]n 7→[k]m−−−−−−−→ Zm.

Proof. We need to check independence on choice of representative. In other
words, we need to check that if k1, k2 ∈ Z satisfy [k1]n = [k2]n, then [k1]m =
[k2]m. By definition, the former means that n|k1 − k2. Since m|n, we then
obtain m|k1 − k2, i.e. [k1]m = [k2]m, as desired. The homomorphism property
is then immediate to verify.

Theorem 2.55 (Chinese remainder theorem). Let n,m ∈ Z≥1. Suppose that
gcd(n,m) = 1. Then the group homomorphism

Zmn
α 7→(frgtmn

m (α),frgtmn
n (α))−−−−−−−−−−−−−−−−→ Zm × Zn

is an isomorphism.
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Proof. We need to check that this homomorphism is bijective. Since the source
and target have the same order (nm), it is enough to check that this homo-
morphism is injective. For this, we need to check that given k1, k2 ∈ Z, if
[k1]m = [k2]m and [k1]n = [k2]n then [k1]mn = [k2]mn. By definition, we have
m|k1−k2 and n|k1−k2. Then Claim 2.53 givesmn|k1−k2, i.e. [k1]mn = [k2]mn,
as desired.

Corollary 2.56. Let n,m ∈ Z≥1. Suppose that gcd(n,m) = 1. Then the group
homomorphism

Z k 7→([k]m,[k]n)−−−−−−−−−→ Zm × Zn

is surjective.

Proof. Notice that this factors as

Z k 7→[k]mn−−−−−−→ Zmn
α 7→(frgtmn

m (α),frgtmn
n (α))−−−−−−−−−−−−−−−−→ Zm × Zn,

and the second map here is surjective by Theorem 2.55.

Remark 2.57. Let us also prove the surjectivity above directly, because this
is instructive. Thus, we are given k1, k2 ∈ Z, and we want to show that there
exists k ∈ Z such that [k]m = [k1]m and [k]n = [k2]n. Let us find p1, p2 ∈ Z
such that p1m+ p2n = 1. Consider now

k := k2p1m+ k1p2n.

Then

k = k2p1m+ k1p2n = k2p1m+ k1(1− p1m) = k1 + (k2p1 − k1p1)m

and so [k]m = [k1]m. Analogously, [k]n = [k2]n, as desired.

Remark 2.58. This means that if we want an amount of apples such that when
divided among 3 children it leaves 2 apples with us, while when divided among
10 children it leaves 7 with us - such an amount can be found.

2.13 Subgroups of the group of integers modulo n and
Euler’s function

Exercise 2.11. Let G and H be groups and let ϕ : G → H be a group homo-
morphism. Let K ⊂ H be a subgroup of H. Then

ϕ−1(K) := {g ∈ G | ϕ(g) ∈ K} ⊂ G

is a subgroup of G.

Let us, in this subsection, denote by prn : Z → Zn the group homomorphism
sending k to [k]n.
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Lemma 2.59. Let n ∈ Z≥1. Let m ∈ Z. Then

pr−1
n (⟨[m]n⟩) = ⟨gcd(m,n)⟩.

Proof. We have k ∈ pr−1
n (⟨[m]n⟩) if and only if [k]n ∈ ⟨[m]n⟩, if and only if

[k]n = d[m]n = [dm]n for some d ∈ Z, if and only if k−dm = en for some d, e ∈
Z, i.e. if and only if k ∈ ⟨m⟩+ ⟨n⟩. Since ⟨m⟩+ ⟨n⟩ = ⟨gcd(m,n)⟩, we get that
k ∈ pr−1

n (⟨[m]n⟩) if and only if k ∈ ⟨gcd(m,n)⟩, i.e. pr−1
n (⟨[m]n⟩) = ⟨gcd(m,n)⟩,

as desired.

Claim 2.60. Let n ∈ Z≥1.

1. Given m ∈ Z, we have ⟨[m]n⟩ = ⟨[gcd(n,m)]n⟩.

2. Given d1, d2 ∈ Z≥1 such that d1|n and d2|n, if d1 ̸= d2 then ⟨[d1]n⟩ ≠
⟨[d2]n⟩.

3. Every subgroup of Zn is equal to ⟨[d]n⟩ for some d ∈ Z≥1 satisfying d|n.

Proof.

1. Let us abbreviate d := gcd(m,n). Since prn is surjective, we have ⟨[m]n⟩ =
⟨[d]n⟩ if and only if pr−1

n (⟨[m]n⟩) = pr−1
n (⟨[d]n⟩). By Lemma 2.59 we

therefore need to check that

⟨gcd(m,n)⟩ = ⟨gcd(d, n)⟩.

By definition gcd(m,n) = d, while gcd(d, n) = d also, since d|n (check, as
an exercise, that you understand this). Thus the equality holds.

2. Suppose that ⟨[d1]n⟩ = ⟨[d2]n⟩; we want to show that d1 = d2. We
have pr−1(⟨[d1]n⟩) = pr−1(⟨[d2]n⟩) and by Lemma 2.59 we thus have
⟨gcd(d1, n)⟩ = ⟨gcd(d2, n)⟩. However, since di|n, we have gcd(di, n) = di,
for i ∈ {1, 2}. Thus we obtain ⟨d1⟩ = ⟨d2⟩. By Theorem 2.46 we obtain
d1 = d2.

3. Let A ⊂ Zn be a subgroup. Consider B := pr−1
n (A) ⊂ Z. Then, by

Theorem 2.46, there exists m ∈ Z such that B = ⟨m⟩. Thus

A = prn(pr
−1
n (A)) = prn(B) = prn ({qm : q ∈ Z}) = {[qm]n : q ∈ Z} =

= {q[m]n : q ∈ Z} = ⟨[m]n⟩.

By part 1 of the current claim, denoting d := gcd(m,n) we have A =
⟨[m]n⟩ = ⟨[d]n⟩. Notice that d ∈ Z≥1 and satisfies d|n.

Exercise 2.12. Let n ∈ Z≥1. Let d ∈ Z≥1 be such that d|n. Show that |⟨[d]n⟩| =
n/d. Let d1, d2 ∈ Z≥1 be such that d1|n and d2|n. Show that ⟨[d1]n⟩ ⊂ ⟨[d2]n⟩
if and only if d2|d1.
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Corollary 2.61. Let n ∈ Z≥1. Let m ∈ Z. Then Zn = ⟨[m]n⟩ if and only if
gcd(m,n) = 1.

Proof. Let us abbreviate r := gcd(m,n) (so r ∈ Z≥1 and r|n). By part 1 of
Claim 2.60 we have ⟨[m]n⟩ = ⟨[r]n⟩. Clearly, if r = 1 then ⟨[m]n⟩ = Zn as
desired. So we are left to show the converse - assume ⟨[m]n⟩ = Zn. Since also
⟨[1]n⟩ = Zn, by part 2 of Claim 2.60 we have [r]n = [1]n. Since 1 ≤ 1, r ≤ n,
this equality implies r = 1, as desired.

Remark 2.62. Let us repeat the proof of Corollary 2.61 independently (in
case we want to skip the more general material above). Our condition Zn =
⟨[m]n⟩ is satisfied if and only if Z = pr−1

n (⟨[m]n⟩). However, we see easily
that pr−1

n (⟨[m]n⟩) = ⟨m,n⟩. Therefore our condition is satisfied if and only if
⟨m,n⟩ = Z = ⟨1⟩, which means by definition gcd(m,n) = 1.

Definition 2.63. Let n ∈ Z≥1. The number

|{r ∈ Z, 1 ≤ r ≤ n | gcd(r, n) = 1}| = |{α ∈ Zn | ⟨α⟩ = Zn}|

is denoted by ϕ(n). The function n 7→ ϕ(n) is called Euler’s function.

Remark 2.64. Given a group G and an element g ∈ G, we say that g is a
generator of G if G = ⟨g⟩. We say that G is cyclic if it admits a generator
(we will discuss cyclic groups later).

Example 2.65. Let p ∈ Z≥1 be a prime number. Then given r ∈ Z we have
gcd(r, p) = 1 if and only if p��|r. Indeed, abbreviating d := gcd(r, p), we have d|p
and therefore d = 1 or d = p. But d = p would mean p|r. So, in particular, we
see that for 1 ≤ r < p we have gcd(r, p) = 1 and therefore ϕ(p) = p− 1.

2.14 The group Z×
n

Let us fix n ∈ Z≥1 throughout this subsection.

Let us notice that Zn has another natural operation Zn×Zn → Zn, multipli-
cation (in addition to the operation already discussed, addition). To define it,
given α, β ∈ Zn we choose a, b ∈ Z such that [a]n = α and [b]n = β, and define
α · β := [ab]n (one checks then that this is well-defined, i.e. does not depend
on the choice of representatives). This operation does not provide Zn with a
group structure (unless we are in the trivial case n = 1) - the multiplication is
associative, and there exists an identity element (namely [1]n), but the element
[0]n, for example, does not have an inverse with respect to this multiplication.
Here, an element β ∈ Zn is said to be an inverse to an element α ∈ Zn if
βα = [1]n (and αβ = [1]n, which is the same since the multiplication is commu-
tative). If α ∈ Zn has an inverse then we say it is invertible. So, when talking
about inverses and invertible elements in Zn we always mean with respect to
the multiplication - with respect to addition we use additive language, so we
talk about the negative instead of the inverse.
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Remark 2.66. The set Zn with the operations of addition and multiplication
forms what is known as a commutative ring - it satisfies all the axioms of a
field except from, possibly, the axiom that every non-zero element has an inverse.
There are various simple consequences which we don’t specify in full detail. For
example (we will use this in a moment), the distributive law (β+γ)α = βα+γα
for α, β, γ ∈ Zn implies that for α, β ∈ Zn and m ∈ Z we have (mβ)α = m(βα).

Lemma 2.67. Let α ∈ Zn. Then α admits an inverse if and only if ⟨α⟩ = Zn.
Equivalently, if when writing α = [a]n for a ∈ Z we have gcd(a, n) = 1.

Proof. We saw that ⟨α⟩ = Zn is equivalent to gcd(a, n) = 1 (in the notations in
the formulation of the lemma) in Corollary 2.61.

We have ⟨α⟩ = Zn if and only if [1]n ∈ ⟨α⟩. This happens if and only if
[1]n = mα for some m ∈ Z. But mα = m([1]nα) = (m[1]n)α = [m]nα. Thus
this happens if and only if βα = [1]n for some β ∈ Zn, i.e. if and only if α
admits an inverse.

We denote by Z×
n ⊂ Zn the subset consisting of α for which α admits an

inverse. By Lemma 2.67 the subset Z×
n of Zn consists precisely of all the gen-

erators of Zn (as an additive group). We have |Z×
n | = ϕ(n). Notice that Z×

n is
closed under multiplication in Zn (because it is clear that if two elements have
an inverse, then their product also has an inverse). If we restrict the multiplica-
tion on Zn to Z×

n , we obtain a group structure on Z×
n (because now, in addition

to the multiplication being associative and admitting an identity element [1]n,
every element has an inverse). We always consider Z×

n with this group structure,
and call it the multiplicative group of integers modulo n.

2.15 The order of an element in a group, cyclic groups

Definition 2.68. Let G be a group and let g ∈ G. If there exists n ∈ Z≥1 such
that gn = 1G, the minimal such n will be denoted og and called the order of
g. If there is no such n, we will write og := ∞ and say that the order of g is
infinite.

Remark 2.69. Let G be a group. Clearly, for g ∈ G we have og = 1 if and
only if g = 1G.

Exercise 2.13. Show that A ∈ GLn(C) has finite order if and only if A is
diagonalizable and all the eigenvalues of A are roots of unity.

Proposition 2.70. Let G be a group and let g ∈ G.

1. Suppose that og ̸= ∞. Then we have a unique isomorphism of groups
Zog → ⟨g⟩ which sends [1]og to g.

2. Suppose that og = ∞. Then we have a unique isomorphism of groups
Z → ⟨g⟩ which sends 1 to g.
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In particular, we have7 |⟨g⟩| = og.

Proof.

1. Let us consider
Ag := {m ∈ Z | gm = 1G} ⊂ Z.

It is easy to check that Ag is a subgroup of Z. By definition, og is the
minimal element in Ag ∩ Z≥1 and therefore by Theorem 2.46 we have
Ag = ⟨og⟩. Let us now notice that the uniqueness of an isomorphism as
desired is clear - given m ∈ Z, since [m]og = m[1]og , such an isomorphism
must send [m]og to gm, and thus its values on all elements in Zog are
determined. To show existence, let us define a map ϕ : Zog → ⟨g⟩ by
sending [m]og to gm, for any m ∈ Z. First we need to check that this map
is well-defined. To that end, given m1,m2 ∈ Z such that [m1]og = [m2]og ,
we need to check that gm1 = gm2 . But [m1]og = [m2]og amounts to
m1 −m2 being divisible by og, i.e. to m1 −m2 ∈ ⟨og⟩ = Ag, and so we
get gm1−m2 = 1G, and from here gm1 = gm2 , as desired. Now we want
to check that ϕ is bijective. It is surjective since every element of ⟨g⟩ has
the form gm for some m ∈ Z, and ϕ([m]og ) = gm. It is injective since,
given m1,m2 ∈ Z, ϕ([m1]og ) = ϕ([m2]og ) means gm1 = gm2 , which gives
gm1−m2 = 1G, meaning m1 −m2 ∈ Ag = ⟨og⟩, and so [m1]og = [m2]og .
Finally, we check that ϕ is a homomorphism of groups:

ϕ([m1]og+[m2]og ) = ϕ([m1+m2]og ) = gm1+m2 = gm1gm2 = ϕ([m1]og )ϕ([m2]og ).

2. This is left to the reader (one proceeds similarly to the previous item, but
perhaps easier).

Corollary 2.71. Let G be a finite group. Then the order of every element in
G is finite.

Corollary 2.72. Let G be a group and let g ∈ G. Suppose that the order of g
is finite. Then, given m ∈ Z, we have gm = 1G if and only if og divides m.

Definition 2.73. A group G is called cyclic if it is generated by one element,
i.e. there exists g ∈ G such that G = ⟨g⟩.

Corollary 2.74 (of Proposition 2.70). An infinite cyclic group is isomorphic
to Z, while a finite cyclic group is isomorphic to Zn, where n is its order.

Exercise 2.14. See that you understand the following summary. Let G be a
cyclic group of order n. Let g ∈ G be a generator of G. Given m ∈ Z, the
element gm is a generator of G if and only if gcd(m,n) = 1. We have ϕ(n)
generators of G, we can parametrize them as the elements gm, where m runs

7To interpret this equality optimally when og = ∞, we should think of this infinite value
as ℵ0.
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over integers satisfying 1 ≤ m ≤ n and gcd(m,n) = 1. More generally, given
an integer 1 ≤ d ≤ n satisfying d|n, there is a unique subgroup Gd of G of
order d, and for an integer m, the element gm is a generator of Gd if and only
if gcd(m,n) = n/d (while the element gm lies in Gd if and only if n/d divides
gcd(m,n)).

Remark 2.75. An interesting example of a cyclic group is Z×
p for a prime

number p ∈ Z≥1. It is not immediate that this group is cyclic (maybe we will
prove it later). Let α ∈ Z×

p be a generator. Then by Proposition 2.70 there exists
a unique isomorphism Exp : Zp−1 → Z×

p sending [1]p−1 to α. It sends [m]p−1

to αm for every m ∈ Z. Given 0 ≤ m < p − 1, one can compute Exp([m]p−1)
with computational complexity O(log p), so reasonably. However, let us denote
by Log : Z×

p → Zp−1 the map inverse to Exp. For the computation of Log
there is no known efficient classical algorithm8. This is called the discrete
logarithm problem. A function such as Exp, which is “easy” to compute but
whose inverse is “hard” to compute is called a one-way function (we don’t
want to formalize this now). This stuff is the basis for public-key cryptography,
among other things.

Example 2.76. Let n ∈ Z≥1. We claim that we have an isomorphism of

groups ϕ : Aut(Zn)
∼−→ Z×

n given by sending σ to σ([1]n). Clearly ϕ is well-
defined, as an isomorphism of groups must send a generator to a generator, and
Z×
n consists of the generators of Zn. In fact, ϕ is bijective - given α ∈ Z×

n , by
part (1) Proposition 2.70 there exists a unique automorphism of Zn which sends
[1]n to α. Finally, one would like to check that ϕ is a homomorphism of groups.
Given σ, τ ∈ Aut(Zn), let us choose m, k ∈ Z such that σ([1]n) = [m]n and
τ([1]n) = [k]n. Then

ϕ(σ ◦ τ) = (σ ◦ τ)([1]n) = σ(τ([1]n)) = σ([k]n) = σ(k[1]n) = kσ([1]n) = k[m]n =

= k([1]n[m]n) = (k[1]n)[m]n = [k]n[m]n = [m]n[k]n = ϕ(σ)ϕ(τ).

2.16 Cosets

Recall how we constructed Zn. We defined an equivalence relation on Z, by
declaring m1 ∼ m2 if m1 − m2 ∈ ⟨n⟩. We can think of it as saying that the
difference between m1 and m2 is “neglegible”, if we decide that to belong to
⟨n⟩ is neglegible. Generalizing this, let G be a group and let H ⊂ G be a
subgroup. We can define an equivalence relation on G, by setting g1 ∼ g2 if
g−1
2 g1 ∈ H. As a small exercise, check that indeed this is an equivalence relation.
The equivalence classes are called left cosets of H in G. Similarly, we can
consider the equivalence relation on G given by g1 ∼ g2 if g1g

−1
2 ∈ H, and the

equivalence classes for that equivalence relation are called right cosets of H
in G. Notice that if G is abelian (as we had in the case of Z) then there is no

8Wikipedia says that there is an efficient quantum algorithm due to P. Shor.
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difference between those, so that we can simply talk about cosets. How does a
left coset look like? Given g ∈ G, the unique left coset which contains g is

{g′ ∈ G | g−1g′ ∈ H} = {g′ ∈ G | ∃h ∈ H : g−1g′ = h} =

= {g′ ∈ G | ∃h ∈ H : g′ = gh} = {gh : h ∈ H} =: gH.

In other words, the left coset that contains g is the set of elements in G which
can be obtained from g by multiplying by some element in H on the right. Or,
“dually”, it is the left shift by g of the subset H. We denote by G/H the set of
left cosets of H in G, and we denote by H\G the set of right cosets of H in G.

Example 2.77. Probably the most pictorially-satisfying example is as follows.
Let us consider the abelian group R2 (with the addition of vectors as group
operation). Let us consider L ⊂ R2 given by

L := {(x, y) ∈ R2 | x+ 2y = 0}.

Then L is an R-vector subspace of R2, and in particular a subgroup of R2. I will
draw in person the illustration of what cosets of L in R2 look like. In formulas,
those are given by

Ca := {(x, y) ∈ R2 | x+ 2y = a} = (a, 0) + L

for a ∈ R, i.e. those are the lines in R2 which are parallel to the line L.

Example 2.78. Of course, generalizing the previous example one can imagine
the example of a vector space V over a field k, a k-vector subspace W ⊂ V , and
the set of cosets V/W consists of subsets in V of the form

v +W := {v + w : w ∈W}.

Example 2.79. Let us consider the group Sn. Consider the subgroup H ⊂ Sn

given by
H := {σ ∈ Sn | σ(1) = 1}.

Then a left coset of H is of the form

Lr := {σ ∈ Sn | σ(1) = r}

(where r ∈ {1, . . . , n}) and a right coset of H is of the form

Rr := {σ ∈ Sn | σ(r) = 1}.

2.17 The index and Lagrange’s theorem

Given a group G and a subset S ⊂ G, we denote S−1 := {g−1 : g ∈ S}.

Exercise 2.15. Let G be a group and let H ⊂ G be a subgroup. Then we have
a bijection between G/H and H\G, given by sending S to S−1.

22



Definition 2.80. Let G be a group and let H ⊂ G be a subgroup. We define
the index of H in G, denoted [G : H], as |G/H|, which is the same as |H\G|
by the exercise above.

Claim 2.81 (Lagrange’s theorem). Let G be a group and let H ⊂ G be a
subgroup. Then

|G| = |H| · [G : H].

Proof. Notice first that for every S ∈ G/H we have |S| = |H|. Indeed, let
g ∈ S. Then we obtain a bijection H → S by sending h 7→ gh. Thus, we can
now compute:

|G| =

∣∣∣∣∣∣
∐

S∈G/H

S

∣∣∣∣∣∣ =
∑

S∈G/H

|S| =
∑

S∈G/H

|H| = |H| · [G : H].

Corollary 2.82 (also called Lagrange’s theorem). Let G be a finite group and
let H ⊂ G be a subgroup. Then |H| divides |G|.

Corollary 2.83. Let G be a finite group and let g ∈ G. Then og (which is finite
by Corollary 2.71) divides |G|.

Proof. By Proposition 2.70 we have og = |⟨g⟩| and, by Corollary 2.82, |⟨g⟩|
divides |G|.

Corollary 2.84. Let G be a finite group and let g ∈ G. Then g|G| = 1.

Example 2.85. Let n ∈ Z≥1. Given α ∈ Z×
n , we have αϕ(n) = [1]n. This is

called Euler’s theorem. Put differently, given a ∈ Z such that gcd(a, n) = 1
we have aϕ(n) ≡n 1. As a special case, given a prime number p ∈ Z≥1 and given
α ∈ Z×

p we have αp−1 = [1]p. This is called Fermat’s little theorem. Put

differently, given a ∈ Z such that p��|n we have ap ≡p 1.

Exercise 2.16. Let G be a group, let H,K ⊂ G be subgroups and assume that
H ⊂ K. Show that [G : H] = [G : K] · [K : H]. Hint: In general, given a group
G and a subgroup H ⊂ G, a family of representatives in G for left cosets
of H is a family {gi}i∈I of elements in G such that for every C ∈ G/H there
exists a unique i ∈ I satisfying giH = C (sometimes it is convenient to take the
indexing set I to be equal to G/H and require gCH = C, but sometimes it is
convenient to allow it to be more abstract). Of course we then have |I| = |G/H|.
Back to our exercise, choose a family of representatives {gi}i∈I in G for the left
cosets of K. Choose a family of representatives {kj}j∈J in K for the left cosets
of H. Show then that {gikj}(i,j)∈I×J is a family of representatives in G for the
left cosets of H.
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2.18 Groups of prime order

Claim 2.86. Every group of prime order is cyclic, and so isomorphic to Zp,
where p is its order.

Proof. Let G be a finite group such that p := |G| is prime. Let g ∈ G be any
element such that g ̸= 1G. Since, by Corollary 2.83, we have og|p, we must
have either og = 1 or og = p. Since g ̸= 1G, we have og ̸= 1, and so og = p.
By Proposition 2.70 we get |⟨g⟩| = og = p = |G| and so ⟨g⟩ = G. Thus G is
cyclic.

3 Group action

3.1 The definition of action again

Recall that, given a group G and a set X, an action of G on X is a group
homomorphism ρ : G→ S(X), which we can call an action homomorphism.
There is a standard second way of thinking about the same.

Definition 3.1. Let (G, ⋆) be a group and letX be a set. A map • : G×X → X
(it is customary to write g • x instead of •(g, x)) is called an action map if:

1. Let g1, g2 ∈ G and x ∈ X. We have g1 • (g2 • x) = (g1 ⋆ g2) • x.

2. Let x ∈ X. We have 1G • x = x.

We think of g • x as the result of applying g to x.

Exercise 3.1. Let (G, ⋆) be a group and let X be a set. We have a bijection
between the sets

{action homomorphisms ρ : G→ S(X)}

and
{action maps • : G×X → X}

given as follows. Given ρ belonging to the upper set, we construct • in the lower
set by defining g • x := ρ(g)(x). Given • in the lower set, we construct ρ in
the upper set by defining ρ(g)(x) := g • x. One should now check that these two
maps between the two sets are well-defined and mutually inverse.

Therefore, we can think of an action of a group G on a set X either as
given by an group homomorphism ρ : G→ S(X) or as given by an action map
a : G×X → X. We get used to this, and use these as convenient.

Remark 3.2. Similarly to notational conventions before, given a group G and
a set X, given an action of G on X, encoded by a group homomorphism ρ :
G→ S(X) and an action map • : G×X → X, we usually keep ρ and a implicit,
and write gx instead of g • x.

Let us give some basic examples of group actions.
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Example 3.3. Given a set X, we have an action of S(X) on X given by
σ • x := σ(x).

Example 3.4. Given a vector space V over a field k, we have an action of
GLk(V ) on V given by T • v := T (v).

Example 3.5. Let G be a group and let H ⊂ G be a subgroup. There is a
G-action on G/H, given by g • g′H := gg′H.

Example 3.6. Let G be a group. There are three standard actions of G on G.
The left regular action is given by g •g′ := gg′. The right regular action is
given by g • g′ := g′g−1. The conjugation action is given by g • g′ := gg′g−1.

Example 3.7. An important example of a group action in mathematics is as
follows. Let G := SL2(R) and let H := {z ∈ C | Im(z) > 0} (the upper half
plane). Then we have an action of G on H given by(

a b
c d

)
• z := az + b

cz + d
.

3.2 The idea of “induced” symmetry

Roughly speaking, if we have a symmetry of a situation and this situation gives
rise to another situation, the new situation has the same symmetry. A bit more
precisely, let G be a group acting on a set X which has some extra structure,
and the group action preserves the extra structure in a natural sense. Then
if from the set X with its extra structure we construct a new set with extra
structure, we should expect the new set to also carry an action of the group G,
preserving the extra structure. Some examples:

1. Let X be a set equipped with an action of a group G. Let us consider
X ×X. Then it has an action of G given by g · (x1, x2) := (g · x1, g · x2).

2. Let X be a set equipped with an action of a group G. Let us consider a
set S, and the set Fun(S,X) of functions from S to X. Then it has an
action of G given by (g · f)(s) := g · f(s).

3. Let X be a set equipped with an action of a group G. Let us consider a
set S, and the set Fun(X,S) of functions from X to S. Then it has an
action of G given by (g · f)(x) := f(g−1 · s). Notice the inverse here! A
formal justification of it is that without it, we don’t get an action (we get
a right action, but our convention is that we only consider left actions).
One can also understand this by imagining an element f ∈ Fun(X,S) as
a collection of things sticking out of X, and then imagine what happens
to it when we rotate X - I will explain in person.

4. Let V be a vector space over a field k. Let L denote the set of 1-
dimensional k-vector subspaces in V . Then GLk(V ) naturally acts on
L, by g · L := {g(v) : v ∈ L}.
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5. Let G be group, and let SgrpG be the set of subgroups of G. The con-
jugation action of G on itself induces an action of G on SgrpG, explicitly
given as follows:

g •H := gHg−1 := {ghg−1 : h ∈ H}.

3.3 Stabilizers, transporters, orbits

Definition 3.8. Let G be a group, X a set, and let us be given an action of G
on X.

1. Given x, y ∈ X, we define the transporter

TransG(x, y) := {g ∈ G | gx = y}.

2. Given x ∈ X, we define the stabilizer

StabG(x) := TransG(x, x) = {g ∈ G | gx = x}.

Exercise 3.2. Let G be a group, X a set, and let us be given an action of G
on X.

1. Let x ∈ X. Then StabG(x) is a subgroup of G.

2. Let x, y ∈ X. Then TransG(x, y) is either empty, or it is a left coset of
StabG(x) and a right coset of StabG(y).

Example 3.9. Let us consider the action of G on itself by conjugation. Given
g ∈ G, its stabilizer under this action is denoted by CG(g) and called the cen-
tralizer of g in G. Explicitly:

CG(g) := {g′ ∈ G | g′g = gg′}.

Similarly, if we consider the action of G on the set SgrpG of subgroups of G by
conjugation, given a subgroup H ⊂ G, its stabilizer under this action is denoted
by NG(H) and called the normalizer of H in G. Explicitly:

NG(H) := {g ∈ G | gHg−1 = H}

where the notation gHg−1 is as in example 5 of §3.2.

Example 3.10. Let T ⊂ GLn(k) be the subgroup of diagonal matrices. Show
that the normalizer of T in GLn(k) is the subgroup of invertible matrices A for
which each column has precisely one non-zero entry (i.e. “permutation matri-
ces”).

Example 3.11. Usually, one can interpret groups of symmetries that pre-
serve some extra structure as stabilizers. For example, Let (E,Φ) be a finite-
dimensional inner product space over R (Φ denotes the inner product we have on
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E). We have the group GLR(E) and the subgorup O(E,Φ) ⊂ GLR(E) consist-
ing of transformations T which are orthogonal with respect to the inner product
Φ, i.e. satisfying ⟨T (v), T (w)⟩ = ⟨v, w⟩ for all v, w ∈ E. How to interpret
O(E,Φ) as a stabilizer? Let us consider the set IP(E) of inner products on
E. Then Φ ∈ IP(E). We have an action of GLR(E) on IP(E), given by
(T • Ψ)(v, w) := Ψ(T−1(v), T−1(w)) for all v, w ∈ E. Then O(E,Φ) is the
stabilizer of Φ under this action of GLR(E) on IP(E).

Lemma-Definition 3.12. Let G be a group, X a set, and let us be given an
action of G on X. The relation on X given by setting x ∼ y if there exists
g ∈ G such that gx = y, i.e. if TransG(x, y) ̸= ∅, is an equivalence relation.
The equivalence classes are called the G-orbits in X. Given x ∈ X, we denote
by OrbG(x) ⊂ X the orbit which contains x, i.e.

OrbG(x) := {y ∈ X | ∃g ∈ G s.t. gx = y}.

Let us also denote by OrbG(X) the sets of G-orbits in X.

Remark 3.13. Let G be a group, X a set, and let us be given an action of G
on X. A subset Y ⊂ X is said to be G-invariant, or invariant under the
G-action, if gy ∈ Y for all g ∈ G and y ∈ Y . Thus, G-orbits in X can be
thought of as minimal (non-empty) G-invariant subsets of X. Notice that on a
G-invariant subset we naturally have an action of G, simply by restricting the
action on X.

Example 3.14. Let G be a group and let H ⊂ G be a subgroup. By restricting
to H the right regular action of G on itself, we obtain an action of H on G,
given by h • g := gh−1. Then, notice, that the H-orbits on G for that action are
precisely the left H-cosets in G. Notice then that OrbG(X) is precisely G/H.

Example 3.15. Let G be a group and let us consider the conjugation action
of G on itself. The orbits of this action are called conjugacy classes in G.
Explicitly, given g ∈ G the conjugacy class containing g is given by {hgh−1 :
h ∈ G}. The center of G, denoted Z(G), is the defined as the subset

Z(G) := {g ∈ G | gh = hg ∀h ∈ G} ⊂ G.

Notice that Z(G) consists precisely of those g ∈ G whose centralizer is the
whole G or, equivalently, for which the orbit under the conjugation action is the
singleton {g}. Check that Z(G) is a subgroup of G.

Example 3.16. Let us consider the subgroup SO(2) ⊂ GL2(R) consisting of
orthogonal matrices of determinant 1 (i.e. the group of linear rotations of the

plane). The orbits of the action of SO(2) on R2 ∖
{(

0
0

)}
given by multipli-

cation of a vector by a matrix are circles whose center is

(
0
0

)
.
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3.4 Free and transitive actions

Lemma-Definition 3.17. Let G be a group, X a set, and let us be given an
action of G on X. The following are equivalent:

1. For every x ∈ X, StabG(x) = {1G}.

2. For every x, y ∈ X, |TransG(x, y)| ∈ {0, 1}.

If these equivalent conditions are satisfied, we say that the given action of G on
X is free.

Example 3.18. The actions we considered in Example 3.14 and Example 3.16
are free.

Lemma-Definition 3.19. Let G be a group, X a set, and let us be given an
action of G on X. The following are equivalent:

1. X is non-empty and for every x, y ∈ X the set TransG(x, y) is non-empty.

2. |OrbG(X)| = 1.

If these equivalent conditions are satisfied, we say that the given action of G on
X is transitive.

Example 3.20. Given a group G and a subgroup H ⊂ G, the action of G on
G/H from Example 3.5 is transitive. The action of SL2(R) on H from Example
3.7 is also transitive.

Remark 3.21. Given a group G, a set X and an action a : G×X → X of G on
X, we can consider the map ã : G×X → X×X given by ã(g, x) := (x, a(g, x)).
Check that given x, y ∈ X we have a natural bijection between ã−1(x, y) and
TransG(x, y). Deduce that the action a is free if and only if the map ã is
injective, while the action a is transitive if and only if the map ã is surjective.

3.5 The orbit-stabilizer formula

Proposition 3.22. Let G be a group, X a set, and let us be given an action of
G on X. Let x0 ∈ X and denote H := StabG(x0). Then the following map is
well-defined, and is a bijection:

G/H
gH 7→gx0−−−−−−→ OrbG(x0).

Proof. First, one needs to check that the map is well-defined. Namely, given
g1, g2 ∈ G such that g1H = g2H, we want to check that g1x0 = g2x0. However,
the former means that g2 = g1h for some h ∈ H, and then g2x0 = g1hx0 = g1x0,
as desired. Let us check that the map is injective. Given g1, g2 ∈ G, we want
to check that g1x0 = g2x0 implies g1H = g2H. Indeed, the former implies that
g−1
1 g2x0 = x0, i.e. g−1

1 g2 ∈ H, and thus g1H = g2H, as we know from our
discussion about cosets. Next, notice that the map is surjective - this is clear
by the definition of a G-orbit.
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Corollary 3.23 (Orbit-Stabilizer formula). Let G be a group, X a set, and let
us be given an action of G on X. Suppose that G is finite. Let x0 ∈ X. We
have:

|OrbG(x0)| =
|G|

|StabG(x0)|
.

Proof. We use Proposition 3.22 and Lagrange’s theorem.

Corollary 3.24. Let G be a group, X a set, and let us be given an action of G
on X. Suppose that G is finite. Let x0 ∈ X. Then |OrbG(x)| divides |G|.

Example 3.25. Let G be a finite group and let C ⊂ G be a conjugacy class.
Then |C| divides |G|.

3.6 Digression: G-sets

A natural point of view on actions is to fix a group G and consider sets equipped
with a G-action, as our objects-with-extra-structure to study.

Definition 3.26. Let G be a group.

1. A G-set is a pair consisting of a set X and a action map G × X → X.
Again, in terms of notation, one usually speaks of a G-set X, without
making the notation of the action map implicit.

2. Let X and Y be G-sets. A homomorphism of G-sets from X to Y is
a map ϕ : X → Y satisfying ϕ(gx) = gϕ(x) for all x ∈ X and g ∈ G.
An isomorphism of G-sets is a homomorphism of G-sets ϕ : X → Y
which is invertible, i.e. for which there exists a homomorphism of G-sets
ψ : Y → X such that ϕ ◦ ψ = idY and ψ ◦ ϕ = idX .

Exercise 3.3. Let G be group and let X and Y be G-sets. Show that a map ϕ :
X → Y is a isomorphism of G-sets if and only if it is a bijective homomorphism
of G-sets.

Remark 3.27. We could also define a G-set as consisting of a set X and
an action group homomorphism G → S(X). As we said, we get used to the
equivalence between the action homomorphism and action map and will not see
a difference between the datum of one or the other.

Remark 3.28. One can precise slightly Proposition 3.22, by saying that the
map considered there is not only a bijection, but in fact an isomorphism of
G-sets, where G/H is considered a G-set using the action of Example 3.5. One
deduces that every transitive G-set is isomorphic to a G-set of the form G/H,
for some subgroup H ⊂ G. This relates “how G can act there in the world” (its
“foreign affairs”) with “what is G built form” (its “domestic affairs”).
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3.7 Digression: G-torsors

Definition 3.29. Let G be a group. A G-set is called a G-torsor if it is free
and transitive.

Example 3.30. Let V be an n-dimensional vector space over a field k. Let
us consider the set B of ordered bases of V . We have an action of GLk(V ) on
B, given by T · (e1, . . . , en) := (T (e1), . . . , T (en)). Then B becomes a GLk(V )-
torsor.

Example 3.31. Let G be a group and let H ⊂ G be a subgroup. Let C ⊂ G be
a right H-coset in G. Then we can consider C as an H-set via h • c := hc. It
is an H-torsor.

Remark 3.32. Let G be a group and let X be a G-torsor. Given x0 ∈ X,
we get a bijection G → X given by g 7→ gx0. So in some sense X “looks like”
G. However, this bijection is not canonical, since varying x0 will change it. So
one sometimes thinks of a G-torsor as “G with the origin 1G forgotten”. For
example, one can formalize in this way what an affine space is - given a field
k, an affine space over k can be defined as a pair (V,A) consisting of a vector
space V over k and a V -torsor A, where V is considered as a group for vector
addition.

3.8 Burnside’s lemma

Claim 3.33 (Burnside’s lemma). 9 Let G be a group, X a set, and let us be
given an action of G on X. Suppose that G and X are finite. For g ∈ G, let us
denote

FixX(g) := {x ∈ X | gx = x}.
Then

|OrbG(X)| = 1

|G|
∑
g∈G

|FixX(g)|.

Proof. As usual, let us denote by δa,b the number 1 if a = b and the number 0
if a ̸= b. We have∑

g∈G

|FixX(g)| =
∑
g∈G

|{x ∈ X | gx = x}| =
∑
g∈G

∑
x∈X

δgx,x =
∑
x∈X

∑
g∈G

δgx,x =

=
∑
x∈X

|{g ∈ G | gx = x}| =
∑
x∈X

|StabG(x)| =
∑
x∈X

|G|
|OrbG(x)|

=

= |G|
∑

G-orbit O in X

∑
x∈O

1

|OrbG(x)|
= |G|

∑
G-orbit O in X

1

|O|
∑
x∈O

1 =

= |G|
∑

G-orbit O in X

1 = |G| · |OrbG(X)|,

and this is clearly as desired.

9Also known as “the lemma that is not Burnside’s”.
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Let us illustrate the use of Burnside’s lemma. Imagine that we have a jewelry
in the form of a regular hexagon, thus with six vertices, and we want to color
the vertices in k ∈ Z≥1 colors. Here, the jewelry is symmetric, so that colorings
are considered the same if we can move our jewelry in space to make them the
same (should illustrate in person). How many different colorings are there? We
can imagine the jewelry’s vertices as X6 from Example 2.2. Recall the action
of the group D6 on X6. If we denote by C the set of k colors, we can think of
Fun(X6, C) (the set of functions from X6 to C) as the set of colorings. Recall
the action of D6 on Fun(X6, C), as in §3.2. Then, in fact, we are interested in

|OrbD6
(Fun(X6, C))|,

the reader should understand this. We want to use Burnside’s lemma in order
to compute this. We count fixed points:

1. The identity element: k6.

2. Rotation by 2π · (1/6) radians and by 2π · (5/6) radians: k.

3. Rotation by 2π · (2/6) radians and rotation by 2π · (4/6) radians: k2.

4. Rotation by 2π · (3/6) radians: k3.

5. Reflection via an axis passing through a vertex: k4.

6. Reflection via an axis not passing through a vertex: k3.

Overall, we obtain by Burnside’s lemma:

|OrbD6
(Fun(X6, C))| =

1

12

(
k6 + 2 · k + 2 · k2 + 4 · k3 + 3 · k4

)
.

In particular, we learn that the right hand side is an integer for all k ∈ Z≥1!

3.9 Application: Cauchy’s theorem

Theorem 3.34 (Cauchy’s theorem). Let G be a finite group. Let p ∈ Z≥1 be a
prime number dividing |G|. Then there exists g ∈ G such that og = p.

Proof. Let us consider an auxiliary cyclic group H of order p (we can think of
it as Zp, but I will use for convenience multiplicative notation), and let h ∈ H
be a generator, i.e. H = ⟨h⟩. Let us consider the set X of functions from H to
G. We consider the action of H on X given by

(k · f)(ℓ) := f(k−1ℓ).

Now, let us consider the subset X1 ⊂ X consisting of those f for which

f(1) · f(h) · f(h2) · . . . · f(hp−1) = 1.

Notice that |X1| = |G|p−1.
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We claim thatX1 is invariant under our action ofH. Indeed, first notice that
it is enough to check that h ·X1 ⊂ X1. This is because {k ∈ H | k ·X1 ⊂ X1}
is clearly closed under the group operation and therefore if it contains h then it
contains h ·h = h2, and h ·h2 = h3, and so on; by induction it will contain hn for
every n ∈ Z≥1, and thus all elements in H. Let us thus show that h ·X1 ⊂ X1.
Let f ∈ X1. Recall that, in a group, if ab = 1 then also ba = 1. Therefore, we
have:

(h·f)(1)·(h·f)(h)·(h·f)(h2)·. . .·(h·f)(hp−1) = f(hp−1)·f(1)·f(h)·. . .·f(hp−2) = 1,

as desired.

Thus, we have an action of H on X1. Notice that each H-orbit in X1 has
either 1 or p elements, by the orbit-stabilizer formula. We thus get:

|G|p−1 = |X1| =
∑

O∈OrbH(X1)

|O| =
∑

O∈OrbH(X)
|O|=1

|O|+
∑

O∈OrbH(X1)
|O|=p

|O| =

= |{f ∈ X1 | StabH(f) = H}|+ (a number divisible by p) .

Since |G| is divisible by p, we obtain from this equation that, denoting X2 :=
{f ∈ X1 | StabH(f) = H}, p divides |X2|. Notice that the constant function
with value 1 belongs to X2, and therefore we must have |X2| ≥ p, so X2 contains
some function f which is not the constant function with value 1. Now, notice
that in fact X2 consists precisely of the constant functions with value g ∈ G
satisfying gp = 1 (let us leave this as a very easy exercise). Hence, there exists
g ∈ G such that g ̸= 1 and gp = 1, implying og = p, as desired.

4 Isomorphism theorems etc.

4.1 Kernel and image

Definition 4.1. Let G andH be groups and let ϕ : G→ H be a homomorphism
of groups. The kernel of ϕ is the subgroup of G defined as follows:

Ker(ϕ) := ϕ−1(1) = {g ∈ G | ϕ(g) = 1} ⊂ G.

The image of ϕ is the subgroup of H defined as follows:

Im(ϕ) := {ϕ(g) : g ∈ G} = {h ∈ H | ∃g ∈ G s.t. ϕ(g) = h} ⊂ H.

Exercise 4.1. Check that indeed the kernel and image as defined above are
subgroups as claimed.

Definition 4.2. An injective homomoprhism is called a monomorphism and
a surjective homomorphism is called an epimorphism.
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Lemma 4.3. Let G and H be groups and let ϕ : G → H be a homomorphism
of groups.

1. ϕ is surjective if and only if Im(ϕ) = H.

2. ϕ is injective if and only if Ker(ϕ) = {1}.

Proof. Property 1 is a general property of the image of a map between sets.
Let us show property 2. If ϕ is injective then by definition |ϕ−1(1)| ≤ 1 and
since 1 ∈ ϕ−1(1) we obtain ϕ−1(1) = {1}. Notice now that Ker(ϕ) = ϕ−1(1).
In the other direction, suppose that Ker(ϕ) = {1}. Let g1, g2 ∈ G be such that
ϕ(g1) = ϕ(g2); we want to see that g1 = g2). We have

ϕ(g1g
−1
2 ) = ϕ(g1)ϕ(g2)

−1 = 1

i.e. g1g
−1
2 ∈ Ker(ϕ) and so g1g

−1
2 = 1, i.e. g1 = g2.

4.2 Quotient groups

Given a mathematical structure, one can try to study substructures of it, as
well as quotient structures of it. There are different ways of talking about these
things. Roughly, we can say that there is an internal way and an external
way. For example, let us consider the simplest mathematical structures - sets.
A substructure of a set S, in the internal interpretation, is a subset of S. In the
external interpretation, it is a pair (T, i) consisting of a set T and an injective
map i : T → S. One can explain the precise relation between these two ap-
proaches. What about quotient structures for sets? In the internal approach, it
will be an equivalence relation on S. In the external approach, it will be a pair
(T, p) consisting of a set T and a surjective map p : S → T . Again, one can
explain the precise relation between these two approaches.

Remark 4.4. So what is the precise relation alluded to above? For the example
of substructures of sets, given (T, i) as above, we can consider the image of i,
which is a subset of S. In the opposite direction, given a subset T of S we can
consider (T, i) where i : T → S is simply the inclusion of the subset T in the
set S. To understand in what sense these two procedures are inverse to each
other, we need to understand the following: Given two pairs (T, i), (T ′, i′) as
above, we need to identify those pairs if there exists a bijection α : T → T ′ such
that i′ ◦ α = i. Then the two procedures which were described indeed become
inverse to each other. Regarding the example of quotient structures of sets,
given (T, p) as above, we can consider the equivalence relation on S given by
defining s1 ∼ s2 if p(s1) = p(s2). Conversely, given an equivalence relation ∼ on
S, we can consider the pair (S/ ∼, p) where p is the quotient map, associating to
an element of S its equivalence class. Again, in order to have these procedures
inverse to each other, we have to identify two pairs (T, p), (T ′, p′) if there exists
a bijection α : T → T ′ satisfying p′ ◦ α = p.

Substructures for groups are simple to talk about - those are subgroups (that
is, in the internal approach; injective group homomorphisms in the external
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approach), which we have already considered. We want now to talk about
quotient structures.

Proposition 4.5. Let G and H be groups and let ϕ : G→ H be an epimorphism
of groups. Let K be another group and let ψ : G → K be a homomorphism of
groups. If Ker(ϕ) ⊂ Ker(ψ) then there exists a unique homomorphism of groups
ψ′ : H → K such that ψ = ψ′ ◦ ϕ.

Proof. It is clear that ψ′ is unique, if exists, because ϕ is surjective. To show
existence of ψ′, we do the only thing we can do. Namely, given h ∈ H let us
define ψ′(h) by choosing g ∈ G such that ϕ(g) = h and setting ψ′(h) := ψ(g).
We need to check that this is well-defined, i.e. the construction does not depend
on the choices made within. Thus, given h ∈ H, suppose that g, g′ ∈ G are such
that ϕ(g) = h and ϕ(g′) = h. We want to check that ψ(g) = ψ(g′) in such
a case. But since ϕ(g) = ϕ(g′) we have ϕ(g−1g′) = 1 so g−1g′ ∈ Ker(ϕ) and
so g−1g′ ∈ Ker(ψ). Thus ψ(g−1g′) = 1 so ψ(g)−1ψ(g′) = ψ(g−1g′) = 1 so
ψ(g) = ψ(g′), as desired. Now, clearly ψ = ψ′ ◦ ϕ by construction, and it is
left to check that ψ′ is a homomorphism of groups. Let h1, h2 ∈ H; we want to
check that ψ′(h1h2) = ψ′(h1)ψ

′(h2). Choose g1, g2 ∈ G such that ϕ(g1) = h1
and ϕ(g2) = h2. Then ψ′(h1) = ψ(g1) and ψ′(h2) = ψ(g2). Moreover, since
ϕ(g1g2) = h1h2, we have also ψ′(h1h2) = ψ(g1g2). Hence

ψ′(h1h2) = ψ(g1g2) = ψ(g1)ψ(g2) = ψ′(h1)ψ
′(h2),

as desired.

Corollary 4.6. Let G, H and K be groups and let ϕ : G→ H and ψ : G→ K
be epimorphism of groups. Suppose that Ker(ϕ) = Ker(ψ). Then there exists a
unique isomorphism of groups α : H → K such that ψ = α ◦ ϕ.

Proof. By Proposition 4.5, there exists a unique homomorphism of groups α :
H → K such that ψ = α ◦ ϕ. The question is whether this α is an isomorphism
of groups. Notice, however, that by reversing the roles of H and K, we also
obtain that there exists a unique homomorphism of groups β : K → H such
that ϕ = β ◦ ψ. We claim that α and β are mutually inverse, which will show
that α is an isomorphism of groups. To that end, notice that (α ◦ β) ◦ ψ = ψ.
Since ψ is surjective, this implies α◦β = idK . Completely analogously we obtain
β ◦ α = idH , as desired.

Corollary 4.6 explains that if we study groups equipped with epimorphisms
from G, those with the same kernel are “the same”, in the sense that there
exists a unique isomorphism between them which is compatible with the epi-
morphisms. It is natural now to ask whether given a subgroup of G, there exists
an epimorphism from G whose kernel is that subgroup. The answer, in general,
is no, because we notice the following:

Lemma 4.7. Let G and H be groups, and let ϕ : G → H be a homomorphism
of groups. Then given g ∈ G and k ∈ Ker(ϕ), we have gkg−1 ∈ Ker(ϕ).
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Proof. We have ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g)−1 = ϕ(g)1ϕ(g)−1 = ϕ(g)ϕ(g)−1 =
1.

Definition 4.8. Let G be a group and let K ⊂ G be a subgroup. We say that
K is a normal subgroup in G if for all g ∈ G and k ∈ K we have gkg−1 ∈ K.

Exercise 4.2. Let G be a group and let K ⊂ G be a subgroup. Show that K is
a normal subgroup in G if and only if gKg−1 = K for all g ∈ G.

Exercise 4.3. Let G be a group and let K ⊂ G be a subgroup. Show that K is
a normal subgroup in G if and only if gK = Kg for all g ∈ G.

Remark 4.9. One should be a little careful. For example, we can have situa-
tions when gKg−1 ⊂ K but gKg−1 ̸= K. An example is given as follows. Let
G := S(Z) and let K := {g ∈ G | g(x) = x ∀x ∈ Z≥0}. Let g ∈ G be given by
g(x) := x− 1. Then gKg−1 ⊂ K and gKg−1 ̸= K.

Remark 4.10. In an abelian group, all subgroups are normal.

Example 4.11. If in Sn we consider the subgroups Hi := {σ ∈ Sn | σ(i) = i}.
Given τ ∈ Sn, notice that τHiτ

−1 = Hτ(i). In particular, each Hi is not normal
in G.

Let now G be a group and let K ⊂ G be a normal subgroup. We ask whether
there exists a surjective homomorphism of groups from G whose kernel is K.
The answer this time is yes. To understand what should be the target group, let
us imagine we have such a epimorphism ϕ : G→ H. If we define an equivalence
relation on G by g1 ∼ g2 if ϕ(g1) = ϕ(g2), then we have a bijection G/ ∼→ H
given by sending the equivalence class of g to ϕ(g). Now, notice that g1 ∼ g2,
i.e. ϕ(g1) = ϕ(g2), happens if and only if ϕ(g−1

2 g1) = 1, i.e. g−1
2 g1 ∈ K, or

g1K = g2K. Therefore, the equivalence classes of ∼ are in fact left cosets of K
in G (or right cosets of K in G - these are the same as K is a normal subgroup
in G). Therefore, we have a bijection between G/K and H, given by sending
gK to ϕ(g). If we use this bijection to construct a binary operation on G/K
using that on H, we see that this binary operation is simply the one sending
(g1K, g2K) to g1g2K. We come to the following definition:

Definition 4.12. Let G be a group and let K ⊂ G be a normal subgroup.
Define an operation G/K ×G/K → G/K by sending (g1K, g2K) 7→ g1g2K for
g1, g2 ∈ G. Notice that this is well-defined; if for g′1, g

′
2 ∈ G we have g′1K = g1K

and g′2K = g2K, then

g′1g
′
2K = g′1g2K = g′1Kg2 = g1Kg2 = g1g2K.

One checks easily that G/K together with this operation forms a group. This
group is called the quotient group of G by K. We have an epimorphism
G→ G/K given by g 7→ gK, called the canonical quotient map. The kernel
of this epimorphism is equal to K.
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Remark 4.13. Thus, given a group G and a subgroup H ⊂ G, we have the set
G/H, and if H is normal in G then this set has in addition a natural structure
of a group.

Remark 4.14. Given a group G and subsets S, T ⊂ G, let us denote by S ·T ⊂
G the subset

S · T := {st : s ∈ S, t ∈ T}.

Then if K ⊂ G is a normal subgroup, we easily see that (g1K) · (g2K) = g1g2K.
In other words, the multiplication of cosets in the definition of the quotient group
can be thought of using this operation of term-wise multiplication of subsets.

Example 4.15. In fact, one of our first examples of a group, Zn, was precisely
constructed as a quotient group! Namely, we have the subgroup ⟨n⟩ ⊂ Z (which
is normal since all subgroups in an abelian group are normal), and - go over the
definitions and verify! - Zn was defined as the quotient group Z/⟨n⟩.

Example 4.16. Another simple example of a quotient group is R/Z. It is the
group of “real numbers modulo 1”. Namely, informally, we identify two real
numbers if their difference is an integer.

Remark 4.17. Let us repeat yet differently. Let G be a group, let X be a set
and let ϕ : G → X be a surjective map. Then (a very easy exercise!) there
exists at most one structure of a group on X (i.e. a binary operation satisfying
the group axioms) for which ϕ is a group homomorphism. Let us temporarily
say that ϕ is good if such a structure exists. Let now H ⊂ G be a subgroup.
Then (an exercise) the map ϕ : G→ G/H given by g 7→ gH is good if and only
if H is normal in G.

Theorem 4.18 (The first isomorphism theorem). Let G and H be groups and
let ϕ : G→ H be a homomorphism of groups. Then we have an isomorphism of
groups

G/Ker(ϕ)
∼−→ Im(ϕ)

given by sending gKer(ϕ) 7→ ϕ(g).

Proof. We consider the surjective homomorphism of groups ϕ′ : G → Im(ϕ)
which is simply gotten from ϕ by restricting the codomain. The kernel of this
homomorphism is Ker(ϕ). On other hand, we have the surjective homomor-
phism of groups p : G → G/Ker(ϕ) which is the canonical projection. The
kernel of p is also Ker(ϕ). By Corollary 4.6 there exists a unique isomorphism
of groups α : G/Ker(ϕ)

∼−→ Im(ϕ) satisfying α◦p = ϕ′. In other words, for every
g ∈ G we have α(gKer(ϕ)) = (α ◦ p)(g) = ϕ′(g) = ϕ(g), as claimed.

Example 4.19. We can reformulate the proof of the main proposition on cyclic
groups. Let G be a cyclic group, and let g ∈ G be a generator, i.e. G =
⟨g⟩. We have a homomorphism ϕ : Z → G given by n 7→ gn. Notice that
ϕ is surjective since g is a generator of G. There exists a unique m ∈ Z≥0

such that Ker(ϕ) = ⟨m⟩. Then by the first isomorphism theorem we obtain an
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isomorphism Z/⟨m⟩ ∼−→ G, given by sending n + ⟨m⟩ to gn. One can notice
now that m = 0 means that g has infinite order, and then, composing with
the isomorphism Z ∼−→ Z/⟨0⟩ given by sending n 7→ n + ⟨0⟩, we obtain an
isomorphism Z ∼−→ G given by sending n 7→ gn. If m ̸= 0, then m is the order
of g.

Example 4.20. Next, we can define the “angle isomorphism”. We have a
homomorphism R → SO(2) given by sending

x 7→
(

cosx − sinx
sinx cosx

)
.

This homomorphism is surjective, and its kernel is 2πZ. Hence, we obtain an
isomorphism

R/2πZ ∼−→ SO(2)

given by sending

x+ 2πZ 7→
(

cosx − sinx
sinx cosx

)
.

In other words, rotations in the plane can be identified, as a group, with real
numbers up to addition of an integer multiple of 2π.

Example 4.21. Let G be a group. Given g ∈ G, let us denote by αg : G → G
the map given by αg(g

′) := gg′g−1. Check that αg is an automorphism of G,
i.e. αg ∈ Aut(G). Then, check that the map inn : G→ Aut(G) given by g 7→ αg

is a homomorphism. Let us denote by Inn(G) ⊂ Aut(G) the image of inn.
Automorphisms of G which lie in Inn(G) are called inner automorphisms
of G. Show that the kernel of inn is Z(G), the center of G. We obtain an
isomorphism G/Z(G)

∼−→ Inn(G), sending gZ(G) to αg.

4.3 The correspondence theorem

Informally, all the information about a quotient group is contained inside the
original group - of course, as it was constructed from it. Thus, we should be
able to answer questions such as “what subgroups does our quotient group has”
in terms of the original group. We will now formalize a claim along those lines.

Recall that given sets X,Y and a map ϕ : X → Y we have two operations.
Given a subset S ⊂ X, we define a subset ϕ(S) ⊂ Y by ϕ(S) := {ϕ(x) : x ∈ S}.
Given a susbet T ⊂ Y we define a subset ϕ−1(T ) ⊂ X by ϕ−1(T ) := {x ∈
X | ϕ(x) ∈ Y }. Given groups G,H and a homomorphism of groups ϕ : G→ H,
a very simple exercise shows that if L ⊂ G is a subgroup then ϕ(L) ⊂ H is a
subgroup and if M ⊂ H is a subgroup then ϕ−1(M) ⊂ G is a subgroup.

Given a group G, let us denote by SgrpG the set of subgroups of G.

Theorem 4.22 (The correspondence thoerem). Let G and H be groups and let
ϕ : G→ H be an epimorphism.
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1. We have mutually inverse bijections

ϕ−1(−) : SgrpH ⇄ {L ∈ SgrpG | Ker(ϕ) ⊂ L} : ϕ(−).

2. Given M1,M2 ∈ SgrpH , we have ϕ−1(M1) ⊂ ϕ−1(M2) if and only if
M1 ⊂M2.

3. Given M ∈ SgrpH , we have a bijection

γM : G/ϕ−1(M) → H/M

given by sending gϕ−1(M) 7→ ϕ(g)M . In particular,

[G : ϕ−1(M)] = [H :M ].

4. Given M ∈ SgrpH , M is a normal subgroup in H if and only if ϕ−1(M)
is a normal subgroup in G.

5. (Third isomorphism theorem) Given M ∈ SgrpH , and assuming that M is
normal in H, the bijection γM of the previous item is in fact an isomor-
phism of groups.

Proof.

1. Notice that clearly, given M ∈ SgrpH , we have Ker(ϕ) = ϕ−1(1) ⊂
ϕ−1(M). Therefore the map from left to right is well-defined. Now we
want to check that the two maps are mutually inverse. GivenM ∈ SgrpH ,
we want to check that ϕ(ϕ−1(M)) = M . This is immediate from ϕ be-
ing surjective. Also, given L ∈ SgrpG satisfying Ker(ϕ) ⊂ L, we want
to check that ϕ−1(ϕ(L)) = L. Clearly L ⊂ ϕ−1(ϕ(L)). Let us see that
ϕ−1(ϕ(L)) ⊂ L. Let g ∈ ϕ−1(ϕ(L)). Then ϕ(g) = ϕ(l) for some l ∈ L.
Hence ϕ(gl−1) = 1, i.e. gl−1 ∈ Ker(ϕ) and hence g ∈ Ker(ϕ)l ⊂ L.

2. This is clear since ϕ is surjective.

3. First, we need to check that the map γM is well-defined. In other words,
given g1, g2 ∈ G such that g1ϕ

−1(M) = g2ϕ
−1(M), we want to check

that ϕ(g1)M = ϕ(g2)M . The former is equivalent to g−1
2 g1 ∈ ϕ−1(M),

implying ϕ(g−1
2 g1) ∈ M , i.e. ϕ(g2)

−1ϕ(g1) ∈ M , which is equivalent to
the latter. Next, we want to check that γM is injective; given g1, g2 ∈ G
such that ϕ(g1)M = ϕ(g2)M , we want to see that g1ϕ

−1(M) = g2ϕ
−1(M).

Again, the former is equivalent to ϕ(g−1
2 g1) ∈ M , which is the same as

g−1
2 g1 ∈ ϕ−1(M), which is equivalent to the latter. Finally, we want to
see that γM is surjective; this is immediate.

4. Suppose that M is normal in H. Let g ∈ G and l ∈ ϕ−1(M). Then

ϕ(glg−1) = ϕ(g)ϕ(l)ϕ(g)−1 ∈ ϕ(g)Mϕ(g)−1 =M
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so glg−1 ∈ ϕ−1(m), showing that ϕ−1(M) is normal in G. Conversely,
suppose that ϕ−1(M) is normal in G. Let h ∈ H and m ∈ M . Fix
g ∈ G such that ϕ(g) = h and fix l ∈ ϕ−1(M) such that ϕ(l) = m (which
are possible since ϕ is surjective). Then hmh−1 = ϕ(g)ϕ(l)ϕ(g)−1 =
ϕ(glg−1) ∈ ϕ(ϕ−1(M)) =M , showing that M is normal in H.

5. We just need to see that γM is a homomorphism of groups. Given g1, g2 ∈
G, we want to check that

γM (g1ϕ
−1(M) · g2ϕ−1(M)) = γM (g1ϕ

−1(M)) · γM (g2ϕ
−1(M)).

The left hand side is equal to γM (g1g2ϕ
−1(M)) = ϕ(g1g2)M and the right

hand side is ϕ(g1)M · ϕ(g2)M = ϕ(g1)ϕ(g2)M , so these are indeed equal.

Remark 4.23. Usually one formulates the previous theorem taking H to be
G/K for some normal subgroup K ⊂ G (and ϕ : G → G/K the canonical
quotient map). Then, denoting by ϕ : G → G/K the canonical quotient map,
given a subgroup L ⊂ G, we have ϕ(L) = L/K. Then, if L is normal in G, item
5 gets the suggestive form

G/L ∼= (G/K)/(L/K)

(i.e. K “cancels out”).

Example 4.24. Given n ∈ Z≥1, we found previously what subgroups Zn has.
Let us re-establish it using the correspondence theorem (by recalling that Zn =
Z/⟨n⟩). We obtain that there is a bijection between the set of subgroups of Zn

and the set of subgroups of Z containing ⟨n⟩. Given m ∈ Z≥0, we notice that
⟨n⟩ ⊂ ⟨m⟩ if and only if m|n. Thus, the subgroups of Zn are in correspondence
with number m ∈ Z≥1 which divide n. Given such m, the subgroup of Zn

corresponding to m is prn(⟨m⟩) = ⟨prn(m)⟩ = ⟨[m]n⟩, where we again denote
by prn : Z → Zn the canonical quotient map.

4.4 The second isomorphism theorem

Let us recall that given a group G and subset S, T ⊂ G, we denote

ST := {st : s ∈ S, t ∈ T} ⊂ G.

Claim 4.25 (Second isomorphism theorem). Let G be a group, let K ⊂ G be a
normal subgroup and let H ⊂ G be a subgroup. Then HK = KH, and HK is
a subgroup in G, K is normal in HK, K ∩H is normal in H, and we have an
isomorphism of groups

H/(K ∩H) → HK/K

given by h(K ∩H) 7→ hK.

Proof. Left as an exercise.
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Example 4.26. Let us denote by En ⊂ GLn(C) the subgroup of scalar matrices.
We have an isomorphism

C× ∼−→ En,

given by sending c to the diagonal matrix all of whose entries are equal to c.
One sets

PGLn(C) := GLn(C)/En

(it is called the projective general linear group). We have the normal sub-
group SLn(C) ⊂ GLn(C) (it is the kernel of the determinant homomorphism).
Notice that EnSLn(C) = GLn(C) (i.e. every invertible matrix can be written as
a matrix with determinant 1 multiplied by a scalar matrix (here it is essential
that C is algebraically closed). Therefore, by the second isomorphism theorem
we obtain an isomorphism of groups

SLn(C)/(En ∩ SLn(C))
∼−→ PGLn(C).

Notice also that, denoting by µn ⊂ C× the subgroup consisting of n-th roots of
unity, i.e. of c ∈ C× satisfying cn = 1, we have an isomorphism

µn
∼−→ En ∩ SLn(C),

given by sending c to the diagonal matrix all of whose entries are equal to c.

4.5 The strategy of classifying groups

How to find all possible groups? One approach is “divide and conquer”. Namely,
let us say that a group G is “glued” from a pair of groups (H,K) if there exist
a normal subgroup K ′ ⊂ G and isomorphisms of K ′ with K and of G/K ′ with
H. One can then hope to break the question of what groups are there into two
questions: What groups are there that can not be “glued” non-trivially, and
given a pair of groups (H,K), what ways are there to “glue” them.

The precise formulation of the first question is as follows. We say that a
group is trivial if it consists of only one element. Of course, there is a unique
isomorphism between any two trivial groups, so that one can effectively talk
about the trivial group. Notice that, in the above notation, if H is the trivial
group, then K ′ = G so that G is isomorphic to K, while if K is the trivial
group then K = {1} so that G is isomorphic to H. Hence, a “non-trivial”
gluing should mean that neither H nor K are the trivial group. We come to
the following basic definition:

Definition 4.27. A group G is called simple if G is not the trivial group and
there are no normal subgroups in G except {1} and G.

Thus, informally, simple groups are the groups which can not be “glued”
non-trivially from smaller groups.

Question 4.28. Can we classify all simple finite groups?
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According to Wikipedia, the classification of simple finite groups was ob-
tained by more than 100 authors, across tens of thousands of pages, mostly
between the years 1955 and 2004.

Example 4.29. Given a prime p ∈ Z≥1, the cyclic group of order p (i.e., up
to isomorphism, Zp) is simple.

Example 4.30. We will later learn that Sn, for n ∈ Z≥5, has a unique subgroup
of index 2, denoted An (the alternating group), and An is simple.

Example 4.31. Let q ∈ Z≥4 be the power of a prime number. Let F be a
field with q elements. Let n ∈ Z≥2. We have the group SLn(F ) of n by n
matrices over F with determinant 1 (where the group operation is multiplication
of matrices). It is called the special linear group. One can see that Z(SLn(F ))
consists of scalar matrices with entry α ∈ F×, with αn = 1. One defines
PSLn(F ) := SLn(F )/Z(SLn(F )). This is called the projective special linear
group. One can see that PSLn(F ) is simple.

Example 4.32. There are other finite simple groups which come in families,
similarly to the previous example, i.e. as, roughly, groups of matrices over finite
fields satisfying various conditions (such groups are called finite groups of Lie
type).

Example 4.33. Except the above (roughly) mentioned examples, there are 26
more finite simple groups, known as the sproadic groups. The one with the
highest order is known as the monster group. It has order

808017424794512875886459904961710757005754368000000000.

4.6 Semi-direct products

Let us now provide a way of gluing a group from two smaller groups, i.e. trying
to say something in the direction of the second question above. So let K and
H be two groups.

First, the simplest option for “gluing” is that of the direct product. Con-
sider G := K ×H. We can denote

K ′ := {(k, 1) : k ∈ K} ⊂ K ×H.

Then of course we have an isomorphism K
∼−→ K ′ given by k 7→ (k, 1). And we

have an epimorphism K × H → H given by (k, h) 7→ h which has kernel K ′,
and therefore we obtain an isomorphism (K × H)/K ′ ∼−→ H. In other words,
indeed K × H is “glued” from (H,K). That was an “outer” construction of
direct products. There is also an “inner” description of what direct products
are:
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Lemma-Definition 4.34. Let G be a group. Let H,K ⊂ G be two subgroups.
We say that G is the direct product of H and K if (here conditions 3 and 3’
are equivalent, given conditions 1 and 2):

1. H ∩K = {1}.

2. KH = G.

3. hk = kh for all h ∈ H and k ∈ K.

3’ H is normal in G and K is normal in G.

In such a case, we have an isomorphism of groups K × H
∼−→ G given by

(k, h) 7→ kh.

Proof. Given 1 and 2, let us suppose that 3 holds and show that 3’ holds. Let
h ∈ H and g ∈ G; we want to show that ghg−1 ∈ H - this will show that H is
normal in G, and the proof that K is normal in G is analogous. Since G = KH
we can write g = kh′ for some k ∈ K and h′ ∈ H. Then

ghg−1 = (kh′)h(kh′)−1 = kh′h(h′)−1k−1 = h′h(h′)−1kk−1 = h′h(h′)−1 ∈ H.

Conversely, given 1 and 2, let us suppose that 3’ holds and show that 3 holds.
Let h ∈ H and k ∈ K. The equality hk = kh is equivalent to the equality
h−1k−1hk = 1. Notice that k−1hk ∈ H and therefore h−1k−1hk ∈ H. On the
other hand, we also have h−1k−1h ∈ K and therefore h−1k−1hk ∈ K. Therefore
h−1k−1hk ∈ H ∩K = {1} i.e. h−1k−1hk = 1, as desired. Finally, that the map
K ×H → G described is an isomorphism is straight-forward, we leave it to the
reader.

However, there is a more sophisticated way of “gluing”, the semi-direct
product (it is more sophisticated than the direct product, but still it does not
describe the general case). Its “inner” description is as follows:

Lemma-Definition 4.35. Let G be a group. Let H,K ⊂ G be two subgroups.
We say that G is the semi-direct product of H and K if:

1. H ∩K = {1}.

2. KH = G.

3. K is normal in G.

In such a case, the composite homomorphism H
i−→ G

p−→ G/K is an isomor-
phism, where i is the inclusion of H in G and p is the canonical projection map.
So, G is “glued” from (H,K).

Proof. It is straight-forward to see that condition 1 shows that p ◦ i is injective,
while condition 2 shows that p◦i is surjective, and so p◦i is an isomorphism.

42



Example 4.36. Let us consider Dn, denoting by r ∈ Dn an element generating
the subgroup of rotations and by s ∈ Dn an element not in ⟨r⟩. Then Dn is the
semi-direct product of ⟨s⟩ = {1, s} and ⟨r⟩ = {1, r, . . . , rn−1}.

What will be an “outer” description of semi-direct products? Given G which
is the semi-direct product of its two subgroups H and K, notice that every
element in G can be written uniquely as kh for k ∈ K and h ∈ H. What
happens if we want to multiply two such elements? We have

(k1h1)(k2h2) = (k1h1k2h
−1
1 )(h1h2)

(recall that h1k2h
−1
1 ∈ K as K is normal in G). Thus, if we want some “outer”

description, we need to artificially introduce the information of α : H ×K → K
given by (h, k) 7→ hkh−1. In fact, one checks that this map has the following
properties: It is an action of H on K and, moreover, for every h ∈ H, the map
K → K given by k 7→ α(h, k) is a group automorphism of K.

Definition 4.37. Let H and K be groups. An action α : H ×K → K of H on
K is said to be an action by group automorphisms if for every h ∈ H, the
map K → K given by k 7→ α(h, k) is a group automorphism of K.

Now we can describe the “outer” notion of semi-direct products:

Lemma-Definition 4.38. Let H and K be groups and let α : H ×K → K be
an action of H on K by group automorphisms. We define a group K ⋊α H as
follows. As a set, it is K ×H. The group operation is:

(k1, h1)(k2, h2) := (k1α(h1, k2), h1h2).

If we denote by K ′ ⊂ K ⋊α H the subgroup given by

K ′ := {(k, 1) : k ∈ K}

then we have an isomorphism K
∼−→ K ′ given by k 7→ (k, 1), the map p : K ⋊α

H → H given by (k, h) 7→ h is an epimorphism, the map H → K ⋊α H given
by h 7→ (1, h) is a monomorphism, and the composite p ◦ i : H → (K ⋊αH)/K ′

is an isomrophism, so that K ⋊α H is “glued” from (H,K).

Example 4.39. Let k be a field. There is an action α of k× on k by group
automorphisms, given by a ∗ b := ab. The corresponding semi-direct product
k⋊α k

× is called the affine group, or ax+b group. Why the latter name? Let
us associate to (b, a) ∈ k⋊α k

× the function f(b,a) : k → k given by x 7→ ax+ b.
Then given another pair (b′, a′) ∈ k ⋊α k

× we have

(b, a)(b′, a′) = (b+ ab′, aa′)

and so we have

(f(b,a) ◦ f(b′,a′))(x) = f(b,a)(f(b′,a′)(x)) = f(b,a)(a
′x+ b′) = a(a′x+ b′) + b =
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= aa′x+ ab′ + b = f(b+ab′,aa′)(x) = f(b,a)(b′,a′)(x),

i.e. k ⋊α k
× is an abstract incarnation of the totality of affine-linear maps

k → k. There is another realization of this group. Let us consider

Hk :=

{(
a b
0 1

)
: a ∈ k×, b ∈ k

}
⊂ GL2(k).

Then the map
k ⋊α k

×

given by

(b, a) 7→
(
a b
0 1

)
is in fact a group isomorphism.

Example 4.40. Let us denote by C2 := {1, s} a group with two elements. Given
an abelian group K (we use multiplicative notation in K), we can consider the
action α of C2 on K by group automorphisms, determined by α(s, k) := k−1.
Let us (just for the sake of this example) denote by D(H) the semi-direct product
K ⋊α C2. Then, see if you understand, that we have an isomorphism of D(Zn)
with the dihedral group Dn.

Remark 4.41. Given an action of a group G on a set X, recall that it is
encoded as a map a : G × X → X satisfying some properties, but it can also
be encoded as a group homomorphism ρ : G → S(X). Given groups G and
H, we notice that given an action a : G × H → H of G on H, and denoting
by ρ : G → S(H) the corresponding group homomorphism, the action is by
group automorphisms if and only if ρ(g) ∈ Aut(H) for all g ∈ G, i.e. if and
only if the image of ρ lies in the subgorup Aut(H) ⊂ S(H). In other words, we
have a bijection between actions of G on H by group automorphisms and group
homomorphisms G→ Aut(H).

5 The symmetric group

Throughout this section, n ∈ Z≥1 is a fixed number. Let us also denote [n] :=
{1, . . . , n}. There is the following notation for permutations: Given σ ∈ Sn, one
denotes

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

5.1 Cycles

Definition 5.1. Given 1 ≤ p ≤ n and (i1, . . . , ip) ∈ [n]p such that ir ̸= is
whenever r ̸= s. One denotes by

(i1, i2, · · · , ip) ∈ Sn
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the permutation which sends ir to ir+1 for 1 ≤ r ≤ p − 1, sends ip to i1, and
sends j to j for every j ∈ [n] such that j ̸= ir for all 1 ≤ r ≤ p. Such a
permutation is called a cycle (of length p).

Exercise 5.1. Show that the order of a cycle of length p is p.

Definition 5.2. Let σ, τ ∈ Sn. We say that σ and τ are disjoint if for every
1 ≤ p ≤ n, if σ(p) ̸= p then τ(p) = p and if τ(p) ̸= p then σ(p) = p.

Example 5.3. Two cycles (i1, i2, · · · , ip) and (j1, j2, · · · , jq) are disjoint if and
only if ir ̸= js for all 1 ≤ r ≤ p and 1 ≤ s ≤ q.

Definition 5.4. Elements g1, g2 in a group are said to commute if g1g2 = g2g1.

Lemma 5.5. Let σ, τ ∈ Sn be disjoint. Then σ and τ commute.

Proof. Let i ∈ [n], we want to show that (σ ◦ τ)(i) = (τ ◦ σ)(i). Suppose that
σ(i) ̸= i. Then τ(i) = i. Also, σ(σ(i)) ̸= σ(i) and hence τ(σ(i)) = σ(i).
Therefore, (σ ◦ τ)(i) = σ(i) and (τ ◦ σ)(i) = σ(i), and so (σ ◦ τ)(i) = (τ ◦ σ)(i).
Another case is when τ(i) ̸= i, and one shows in this case analogously that
(σ ◦ τ)(i) = (τ ◦ σ)(i). Finally, if both of these cases do not hold, so σ(i) = i
and τ(i), then clearly (σ ◦ τ)(i) = i and (τ ◦ σ)(i) = i, so also in this case we
have (σ ◦ τ)(i) = (τ ◦ σ)(i).

Definition 5.6. Let G be a group and let S ⊂ G be a finite set of elements,
such that every two elements in S commute. Then given any two orderings
g1, . . . , gm and g′1, . . . , g

′
m of the elements of S, we have g1 · . . . ·gm = g′1 · . . . ·g′m.

We denote the resulting common value by
∏

g∈S g.

Proposition-Definition 5.7 (Cycle decomposition). Let σ ∈ Sn. There exists
a unique subset C(σ) ⊂ Sn consisting of pairwise disjoint cycles such that σ =∏

τ∈C(σ) τ .

Proof. We omit the proof, it is a straight-forward generalization of the illustra-
tion in the next example (which I will explain in person).

Example 5.8. We have(
1 2 3 4 5 6 7 8 9 10
6 10 7 9 3 4 5 8 1 2

)
= (1, 6, 4, 9)(2, 10)(3, 7, 5).

5.2 Conjugacy in the symmetric group

Exercise 5.2. Let us consider a transposition (i1, . . . , ip) ∈ Sn and a permuta-
tion σ ∈ Sn. Then

σ(i1, . . . , ip)σ
−1 = (σ(i1), . . . , σ(ip)).

Proposition 5.9. Let σ, τ ∈ Sn. Then σ and τ are conjugate in Sn if and only
if for every p ∈ Z≥2, the number of cycles in C(σ) of length p is equal to the
number of cycles in C(τ) of length p (let us say in such a case that σ and τ
have the same cycle structure).
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Proof. If we write σ ∈ Sn as a product of cycles σ = σ1 · . . . · σm and ω ∈ Sn,
then ωσω−1 = (ωσ1ω

−1) · . . . · (ωσmω−1) and Exercise 5.2 shows that ωσiω
−1 is

a cycle which has the same length as the cycle σi. Furthermore, it is immediate
from Exercise 5.2 that for i ̸= j the cycles ωσiω

−1 and ωσjω
−1 are disjoint.

Hence we showed one direction - that conjugate permutations have the same
cycle structure. For the converse, let us just give an example (the proof in
general is a straight-forward generalization of the illustration provided by that
example, which I will explain in person). In S7, let us consider σ = (126)(37)
and τ = (274)(56). Then we match terms, and define

ω :=

(
1 2 3 4 5 6 7
2 7 5 1 3 4 6

)
.

Then ωσω−1 = τ .

Remark 5.10. For example, what are the conjugacy classes in S5? We can
parametrize them as follows:

(• • • • •), (• • ••), (• • •)(••), (• • •), (••)(••), (••), id.

For example, some of the permutations that belong to the conjugacy class de-
picted as (• • •)(••) are:

(123)(45), (234)(15), (152)(34), . . .

Remark 5.11. A partition of n is a sequence (n1, n2, . . . , ) of numbers in Z≥0

such that
1 · n1 + 2 · n2 + . . . = n.

Let us denote by p(n) the number of partitions of n. Then a corollary of the
above proposition is that the number of conjugacy classes in Sn is p(n). This
function of n was studied by number theorists. For example, one knows that

p(n) ∼ 1

4
√
3

eπ
√

2/3·
√
n

n
as n→ ∞.

5.3 Transpositions

Definition 5.12. A cycle of length 2 is called a transposition.

Exercise 5.3. Notice that every cycle can be expressed as a product of trans-
positions:

(i1, . . . , ip) = (i1, ip) · · · · · (i1, i3) · (i1, i2).

Corollary 5.13 (Of Exercise 5.3 and Proposition 5.7). Every permutation in
Sn can be written as a product of transpositions. In particular, the group Sn is
generated by its subset of transpositions.
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5.4 The sign homomorphism

Let us denote by µ2 the group consisting of elements 1 and −1, with the group
operation being multiplication.

Theorem-Definition 5.14. For n ≥ 2, there exists a unique group epimor-
phism

sgn : Sn → µ2.

It sends transpositions to −1. It is called the sign homomorphism.

Proof. Let us first establish that given an epimorphism sgn : Sn → µ2, we
must have sgn(σ) = −1 for every transposition σ ∈ Sn. Indeed, if for some
transposition σ ∈ Sn we have sgn(σ) = 1, then for every ω ∈ Sn we have
sgn(ωσω−1) = 1 (why?), and so, since every transposition is conjugate to σ we
obtain that sgn(τ) = 1 for every transposition τ ∈ Sn. From Corollary 5.13 it
then follows that sgn(τ) = 1 for all τ ∈ Sn, contradicting sgn being surjective.

Let us now establish the uniqueness. In fact, from Corollary 5.13 it is clear
in view of the epimorphisms in question taking values −1 on transpositions.

Finally, one needs to establish existence. Let us denote by F the set of
functions from Rn to R. We have an action of Sn on F :

(σ • f)(x1, . . . , xn) := f(xσ(1), . . . , xσ(n)).

Let us consider the function D : Rn → R given by

D(x1, . . . , xn) :=
∏

1≤i<j≤n

(xj − xi).

Given a subset S ⊂ [n] such that |S| = 2, let us denote by a(S) the minimal
element in S and by z(S) the maximal element in S. We can then rewrite

D(x1, . . . , xn) =
∏

S⊂[n],|S|=2

(xz(S) − xa(S)).

Let us also, given S ⊂ [n] such that |S| = 2 and σ ∈ Sn, denote by ϵσ,S the
number 1 if σ(a(S)) < σ(z(S)) and the number −1 otherwise. Let us notice
that, given σ ∈ Sn, we have

(σ•D)(x1, . . . , xn) =
∏

S⊂[n],|S|=2

(xσ(z(S))−xσ(a(S))) =
∏

S⊂[n],|S|=2

ϵσ,S(xz(σ(S))−xa(σ(S))) =

=

 ∏
S⊂[n],|S|=2

ϵσ,S

·

 ∏
S⊂[n],|S|=2

(xz(S) − xa(S))

 =

 ∏
S⊂[n],|S|=2

ϵσ,S

·D(x1, . . . , xn).

Thus, given σ ∈ Sn, we have σ • D ∈ {D,−D}. Let us define sgn(σ) ∈ µ2 to
be such that σ • D = sgn(σ) · D. Then sgn is a group homomorphism: Given
σ, τ ∈ Sn we have

(στ) •D = σ • (τ •D)) = σ • (sgn(τ) ·D) = sgn(τ) · (σ •D) =
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= sgn(τ) · (sgn(σ) ·D) = (sgn(τ) · sgn(σ)) ·D

and therefore
sgn(στ) = sgn(σ) · sgn(τ).

A final point to check is that there exists σ ∈ Sn for which sgn(σ) = −1.
Namely, let us see that sgn((1, 2)) = −1. For that, we need to check that,
denoting σ := (1, 2), ∏

S⊂[n],|S|=2

ϵσ,S = −1.

This is equivalent to ∣∣{(i, j) ∈ [n]2 | i < j, σ(i) > σ(j)}
∣∣

being odd. But we see that the set in question contains precisely one element -
the element (1, 2).

Remark 5.15. Thus, a description of sgn(σ) is as follows: Write σ as a product
of transpositions σ = τ1 · . . . · τm. Then sgn(σ) is equal to 1 if m is even and to
−1 if m is odd.

Remark 5.16. We see from the proof of Theorem-Definition 5.14 that another
description of sgn(σ) is as follows. Consider the number of pairs (i, j) with
i, j ∈ [n] and i < j and σ(i) > σ(j). Then sgn(σ) is equal to 1 if this number is
even and to −1 if this number is odd.

Exercise 5.4. Here is another description of the sign homomorphism. Consider
the group homomorphism

ι : Sn → GLn(C)

defined as follows. Denoting by {ei}1≤i≤n the standard basis of the space Cn of
column vectors, we set ι(σ) to be the unique matrix satisfying ι(σ)ei = eσ(i) for
all 1 ≤ i ≤ n. In other words, ι(σ)j,i is equal to 1 if σ(i) = j and to 0 otherwise.
Then sgn(σ) = det(ι(σ)) for all σ ∈ Sn.

5.5 The alternating group

Definition 5.17. For n ≥ 2, we denote by An the kernel of the epimorphism
sgn : Sn → µ2. Thus, An is a normal subgroup in Sn, of index 2. It consists of
the even permutations.

Lemma 5.18. An is generated by its subset of cycles of length 3.

Proof. Every element in An can be written as a product of an even number of
transpositions. Thus, it is enough to show that the product of two transpositions
can be written as a product of cycles of length 3. To that end, let us consider
a product of two transpositions σ := (i1i2)(j1j2). Let us divide into cases
according to the size of {i1, i2} ∩ {j1, j2}. If this size is 2, then σ = id (so it
is the empty product of cycles of length 3). If this size is 1, say i2 = j2, then
σ = (i1, i2, j1). If this size is 0, then σ = (i1, i2, j1)(i2, j1, j2).
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Lemma 5.19. If n ≥ 5, then all cycles of length 3 are conjugate inside An.

Proof. Let us consider two cycles σ, τ ∈ An of length 3. By Proposition 5.9
they are conjugate in Sn, i.e. there exists ω ∈ Sn such that τ = ωσω−1. If ω is
even then we are done. Otherwise, since n ≥ 5 there exist i1, i2 ∈ [n] such that
i1 ̸= i2 and σ(i1) = i1 and σ(i2) = i2. Then (i1, i2)σ(i1, i2)

−1 = σ and therefore
if we denote ω′ := ω ◦ (i1, i2) then we obtain ω′σ(ω′)−1 = τ . Notice that ω′ is
even, and we are done.

Theorem 5.20. If n ≥ 5, then An is a simple group.

Proof. Let N ⊂ An be a normal subgroup, and assume that N ̸= {id}. We want
to show that N = An. It is enough to see that N contains a cycle of length 3,
because then by Lemma 5.19 it will contain all cycles of length 3, and then by
Lemma 5.19 it will be equal to An.

Let id ̸= σ ∈ N be a permutation with maximal possible number of fixed
points (i.e. i ∈ [n] satisfying σ(i) = i). It is enough to see that σ is a cycle of
length 3. We will consider several options for C(σ). Each time, unless σ is a
cycle of length 3, we will come up with a 3-cycle τ ∈ An, denote σ

′ := τστ−1σ−1,
notice that σ′ ∈ N since N is normal in An, and check that σ′ ̸= id and σ′ has
more fixed points than σ, contradicting the choice of σ. This will finish the
proof.

(had some inaccuracies in this part, should complete again sometime... look
in a book...)

Corollary 5.21. If n ≥ 5, then Sn has no normal subgroups except {id}, Sn

and An.

Proof. Let N ⊂ Sn be a normal subgroup - we want to see that either N = {id}
or N = Sn. Consider N ′ := N ∩ An. Then N ′ is a normal subgroup in An.
Hence, since An is simple, we have either N ′ = {id} or N ′ = An. In the first
case, either N = {id} or |N | = 2. The first subcase finishes the proof, while the
second subcase is impossible since, taking id ̸= σ ∈ N we have that N contains
also all permutations with the same cycle structure as σ (in view of Proposition
5.9), and this prevents |N | being equal to just 2. In the second case, we have
An ⊂ N , and thus (by the correspondence theorem, say) either N = An or
N = Sn, as desired.

Remark 5.22. The group A4 is not simple. Indeed, it has a normal subgroup
V ⊂ A4 which is

V := {id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.
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6 p-groups and Sylow theorems

6.1 p-groups

Throughout this subsection, let p ∈ Z≥1 be a prime number.

Definition 6.1. A group G is called a p-group if the order of G is equal to pk

for some k ∈ Z≥0.

Lemma 6.2. Let us be given an action of a p-group G on a finite set X. Recall
the notation

FixG(X) := {x ∈ X | gx = x ∀g ∈ G}

(this is the set of fixed points of the given action).

1. We have |FixG(X)| ≡p |X|.

2. If p does not divide |X| then our action has at least one fixed point.

Proof. Clearly 2 follows from 1. To show 1, we simply consider the decompo-
sition into orbits. Notice that the orbits with one element are precisely {x}
for x ∈ FixG(X). Recall that given an orbit O ∈ OrbG(X), if x ∈ O then
|O| = |G|/|StabG(x)|. Therefore, if |O| > 1 then p divides |O|. Therefore

|X| =
∑

O∈OrbG(X)

|O| = |FixG(X)|+
∑

O∈OrbG(X)
|O|>1

|O|

and the last sum is divisible by p, which gives the desired.

Claim 6.3. Let G be a p-group. If |G| > 1 then |Z(G)| > 1.

Proof. Let us consider the action of G on itself by conjugation. The fixed points
of this action are the elements in Z(G). By the previous lemma we obtain that
p divides |Z(G)|. Since |Z(G)| ≥ 1 (as 1 ∈ Z(G), we must have |Z(G)| ≥ p, so
in particular |Z(G)| > 1.

Exercise 6.1. Let G be a group. Assume that G/Z(G) is cyclic. Then G is
abelian.

Corollary 6.4. Let G be a group with p2 elements. Then G is abelian.

Proof. We saw that |Z(G)| > 1 and so either |Z(G)| = p or |Z(G)| = p2 (the
latter means that G is abelian, so we want to exclude the former). But |Z(G)| =
p would imply that |G/Z(G)| = p and so, as we saw in the past, G/Z(G) would
be cyclic, so by the exercise G would be abelian, a contradiction.

Exercise 6.2. Let G be a group with p2 elements. Then G is either isomorphic
to Zp2 or to Zp ×Zp. Hint: If G is not isomorphic to Zp2 then all non-identity
elements in G have order p. Take one such element g1 ∈ G, and then take some
g2 ∈ G∖ ⟨g1⟩. Show that G is the direct product of ⟨g1⟩ and ⟨g2⟩.
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Claim 6.5. Let G be a p-group. Then for every d dividing |G| there exists in
G a subgroup of order d.

Proof. The proof is by induction on |G| (the case |G| = 1 being trivial). Assume
|G| > 1. Then, as we saw, |Z(G)| > 1. By Cauchy’s theorem, there exists
z ∈ Z(G) such that oz = p. Let us denote C := ⟨z⟩. Then C is normal in G
and |C| = p. By the induction hypothesis, G/C has subgroups of orders pe for
0 ≤ e ≤ k − 1. Therefore, using the correspondence theorem, G has subgroups
of orders pe for 1 ≤ e ≤ k.

6.2 Sylow theorems

Throughout this subsection, let p ∈ Z≥1 be a prime number.

Definition 6.6. Let G be a finite group. Write |G| = pkn where n ∈ Z≥1 and
k ∈ Z≥0 and gcd(p, n) = 1. A subgroup H ⊂ G is called a p-Sylow subgroup
if |H| = pk.

Example 6.7. Recall that Zp is a field with p elements. Let us consider the
group G := GLn(Zp). By counting linearly independent vectors, we have:

|G| = (pn−1)·(pn−p)·. . .·(pn−pn−1) = p1+2+...+(n−1)·(pn−1)·(pn−1−1)·. . .·(p−1).

Let us now consider the subgroup U ⊂ G consisting of upper-triangular matrices
whose diagonal entries are equal to 1. We have:

|U | = p1+2+...+(n−1).

Therefore U is a p-Sylow subgroup in G.

Proposition 6.8. Let G be a finite group and let H ⊂ G be a subgroup. Let P
be a p-Sylow subgroup in G. Then there exists g ∈ G such that H ∩ g−1Pg is a
p-Sylow subgroup in H.

Proof. Let us consider the action of H on G/P by h • gP := hgP . Since
|G/P | = |G|/|P | is not divisible by p, there exists an orbit O ∈ OrbH(G/P )
such that |O| is not divisible by p. Fixing such an orbit O, let us also fix some
gP ∈ O. Then

StabH(gP ) = {h ∈ H | hgP = gP} = {h ∈ H |g−1hg ∈ P } = H ∩ gPg−1.

Thus

[H : H ∩ gPg−1] = |H|/|H ∩ gPg−1| = |H|/|StabH(gP )| = |O|

and so H ∩ gPg−1 is a p-group whose index in H is not divisible by p. Clearly,
this is equivalent to H ∩ gPg−1 being a p-Sylow subgroup of H.

Theorem 6.9 (First Sylow theorem). Let G be a finite group. Then there exist
in G p-Sylow subgroups.
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Proof. By Proposition 6.8, if we can find a monomorphism of groups G → G′

where G′ is a finite group which has a p-Sylow subgroup, then G will also have
a p-Sylow subgroup, giving the desired. Recall that, denoting n := |G|, we can
find a monomorphism G → Sn, so that we reduce the claim to G = Sn. Also,
recall that we can find a monomorphism Sn → GLn(Zp), so that we reduce the
claim to G = GLn(Zp). But we saw that this G contains a p-Sylow subgroup,
in Example 6.7.

Remark 6.10. Let us give another proof of the first Sylow theorem, using
Cauchy’s theorem and induction on |G|, instead of using Proposition 6.8. Let
us denote |G| = pkn with gcd(p, n) = 1. If k = 0 the claim is trivial, so
we assume that k ≥ 1. Let us argue by induction on |G| (the case |G| = 1
being trivial). Let us consider an element g ∈ G ∖ Z(G), and its centralizer
CG(g). We have CG(g) ̸= G (since g /∈ Z(G)). If pk divides |CG(g)| then by
the induction hypothesis CG(g) contains a subgroup of order pk and therefore
G contains a subgroup of order pk and we are done. Thus we can assume that
(for every g ∈ G ∖ Z(G)) pk does not divide |CG(g)|, and therefore the size of
the conjugacy class of g, which is |G|/|CG(g)|, is divisible by p. In other words,
we can assume that all conjugacy classes in G which are not singletons have size
divisible by p. Therefore, since G is the union of Z(G) and all the conjugacy
classes in G which are not singletons, we get that the size of Z(G) is divisible by
p. By Cauchy’s theorem, Z(G) then contains an element of order p, denote such
an element by z. Denote C = ⟨z⟩. Then |C| = p and C is a normal subgroup
of G. By the induction hypothesis, G/C has a subgroup of order pk−1, denote
such a subgroup by H. Denote by H ⊂ G the subgroup which corresponds to
H under the correspondence theorem (i.e. the inverse image of H under the
canonical projection map G→ G/C). Then |H| = |C| · |H| = p · pk−1 = pk, and
we found a p-Sylow subgroup in G as desired.

Let us next give some corollaries of Proposition 6.8.

Corollary 6.11 (Second Sylow theorem). Let G be a finite group. Every two
p-Sylow subgroups in G are conjugate, i.e. given p-Sylow subgroups P1, P2 ⊂ G
there exists g ∈ G such that gP1g

−1 = P2.

Proof. Applying Proposition 6.8, there exists g ∈ G such that P2 ∩ gP1g
−1

is a p-Sylow subgroup in P2. Since P2 is a p-group, this simply means that
P2 = P2∩gP1g

−1, i.e. P2 ⊂ gP1g
−1. Since P2 and gP1g

−1 have the same order,
we must have an equality P2 = gP1g

−1.

Corollary 6.12 (Also sometimes called a part of the second Sylow theorem).
Let G be a finite group. Every p-subgroup of G is contained in a p-Sylow subgroup
of G, i.e. given a p-subgroup Q ⊂ G there exists a p-Sylow subgroup P ⊂ G
such that Q ⊂ P .

Proof. In fact we more or less repeat the previous proof (one can unify if one
wants to “save argumentation raw material”). Namely, let R ⊂ G be some
p-Sylow subgroup. By Proposition 6.8, there exists g ∈ G such that Q∩ gRg−1
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is a p-Sylow subgroup in Q. Since Q is a p-group this simply means that
Q ∩ gRg−1 = Q i.e. Q ⊂ gRg−1. Notice that gRg−1 is a p-Sylow subgroup of
G, and we are done.

Corollary 6.13. Let G be a finite group and let P ⊂ G be a p-Sylow subgroup.
Then P is normal in G if and only if P is the only p-Sylow subgroup in G.

Proof. The set {gPg−1 : g ∈ G} is the set of p-Sylow subgroups in G (by the
second Sylow theorem). It is equal to the singleton {P} if and only if gPg−1 = P
for all g ∈ G, i.e. if and only if P is normal in G.

Theorem 6.14 (Third Sylow theorem). Let G be a finite group. Denote |G| =
pkn for k ∈ Z≥0 and m ∈ Z≥1 with m not divisible by p. Denote by sp ∈ Z≥1

the number of p-Sylow subgroups in G. Then:

1. sp|n.

2. sp ≡p 1.

Proof. Let S denote the set of p-Sylow subgroups of G (so sp = |S|). We have
an action of G on S by conjugation: g • P := gPg−1. This action is transitive
by the second Sylow theorem. Thus, fixing some P0 ∈ S, and denoting by
H the stabilizer of P0 with respect to our action, i.e. H = NG(P0), we have
|G|/|H| = sp. Notice that P0 ⊂ H, so |P0| = pk divides H. Hence sp = |G|/|H|
divides n, giving the first desired fact. To show the second fact, let us restrict
our action of G on S by conjugation to an action of P0 on S. Since P0 is a
p-group, by Lemma 6.2 the number of fixed points of this action is congruent
modulo p to |S| = sp. It is enough therefore to check that there is precisely one
fixed point. A fixed point of this action is a p-Sylow subgroup P ⊂ G satisfying
gPg−1 = P for all g ∈ P0, i.e. satisfying P0 ⊂ NG(P ). Clearly P0 is such,
and we want to check that is it the only one. In other words, given a p-Sylow
subgroup P ⊂ G satisfying P0 ⊂ NG(P ), we want to check that P = P0. But,
notice that P and P0 are p-Sylow subgroups in NG(P ), and thus conjugate in
NG(P ) by the second Sylow theorem. But P is normal in NG(P ), and thus we
must have P = P0.

Remark 6.15. As we have implicitly seen above, given a finite group G, using
the action by conjugation of G on the set of p-Sylow subgroups in G, we have
that the number of p-Sylow subgroups in G is equal to [G : NG(P )] where P is
any p-Sylow subgroup in G.

Example 6.16. Let us prove the following claim using Sylow theory: Let G be
a finite group of order pq where p and q are primes with p < q. Assume in
addition that q ̸≡p 1. Then we claim that G is cyclic. Indeed, let P ⊂ G be a
p-Sylow subgroup. We have [G : P ] = q, and therefore NG(P ), being a subgroup
of G which contains P , must be either equal to P or to G. In the first case we
have that the number of p-Sylow subgroups in G is [G : NG(P )] = q. But this
is impossible since q ̸≡p 1, in view of the third Sylow theorem. Hence we must
have NG(P ) = G, i.e. P is normal in G. Let also Q ⊂ G be a q-Sylow subgroup
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in G. Reasoning similarly, since we clearly have p ̸≡q 1, we also see that Q is
normal in G. Notice that P ∩Q = {1} (why?), and therefore |PQ| = pq, and so
PQ = G. Thus, we have all the conditions to deduce that G is the direct product
of P and Q, so isomorphic to P ×Q. By the Chinese reminder theorem, since
gcd(p, q) = 1,

G ∼= P ×Q ∼= Zp × Zq
∼= Zpq,

i.e. G is cyclic.

Example 6.17. The condition in the previous example is necessary, in general,
for the conclusion. Indeed, suppose that p and q are primes numbers, with p < q
and q ≡p 1. Since p divides q − 1, there exists s ∈ Z×

q with order p. Recall that
we have an isomorphism

α : Z×
q

∼−→ Aut(Zq)

given by sending e ∈ Z×
q to the automorphism of Zq given by x 7→ ex. We have

a homomorphism
β : Zp → Z×

q

given by sending [m]p to am. Taking the composition

γ := α ◦ β : Zp → Aut(Zq)

we obtain an action aγ : Zp × Zq → Zq of Zp on Zq by group automorphisms
(defined by aγ([m]p, x) := smx - recall Remark 4.41). Then the corresponding
semidirect product Zq ⋊aγ

Zp is not abelian (and so not cyclic).

Exercise 6.3. Repeat the above analysis again - given primes p < q and a group
G of order pq, show that G is isomorphic to some semidirect product Zq ⋊ Zp.
The piece of data of the action of Zp on Zq is encoded by an element s ∈ Z×

q of
order dividing p, and one can understand things completely...

7 Normal series etc.

7.1 Normal series

Definition 7.1. LetG be a group. A normal series forG is a series (G0, G1, . . . , Gn)
consisting of subgroups of G, with the properties:

• G0 = {1}.

• Gn = G.

• Gi is a normal subgroup of Gi+1 for all 0 ≤ i ≤ n− 1.

We call the sequence (G1/G0, . . . , Gn/Gn−1) the corresponding sequence of fac-
tors.
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Lemma 7.2. Let G be a group and let H ⊂ G be a subgroup. Let

(G0, . . . , Gn) (7.1)

be a normal series for G.

1. The sequence
(G0 ∩H, . . . , Gn ∩H) (7.2)

is a normal series for H, whose factors are isomorphic to subgroups of fac-
tors of (7.1). If H is normal in G then the factors of (7.2) are isomorphic
to normal subgroups of factors of (7.1).

2. Suppose that H is normal in G, and denote by p : G→ G/H the canonical
projection map. Then the sequence

(p(G0), . . . , p(Gn)) (7.3)

is a normal series for G/H, whose factors are isomorphic to quotient
groups of factors of (7.1).

Proof. 1. It is immediate to see that the sequence is a normal series for H.
Notice that we have a monomorphism (Gi+1 ∩H)/(Gi ∩H) → Gi+1/Gi given
by h(Gi ∩H) 7→ hGi, and that its image is normal in the target if H is normal
in G, giving the desired.

2. It is immediate to see that the sequence is a normal series for G/H.
Notice that we have an epimorphism Gi+1/Gi → p(Gi+1)/p(Gi) given by gGi 7→
p(g)p(Gi), giving the desired.

Lemma 7.3. Let G be a group, let H ⊂ G be a normal subgroup and denote by
p : G→ G/H the canonical quotient map. Let

(H0, . . . ,Hm) (7.4)

be a normal series for H and let

(L0, . . . , Lk) (7.5)

be a normal series for G/H. Then

(H0, . . . ,Hm = p−1(L0), . . . , p
−1(Lk))

is a normal series for G, whose sequence of factors is isomorphic to the con-
catenation of the sequences of factors of (7.4) and (7.5).

Proof. Left as an exercise.

55



7.2 Groups of finite length, Jordan-Holder theorem

Definition 7.4. Let G be a group. A normal series for G is called a compo-
sition series if all its factors are simple groups. In such a case, the sequence
of factors is called a sequence of composition factors.

Definition 7.5. A group is said to be of finite length if it has a composition
series.

Remark 7.6. Given a group G and a normal series

(G0, . . . , Gn)

for G, let us say that this series is without repetitions if Gi ̸= Gi+1 for all
0 ≤ i ≤ n− 1. Let us say that this series is saturated if for every 0 ≤ i ≤ n− 1
and every subgroup Gi ⊂ H ⊂ Gi+1 such that H is normal in Gi+1, we have
either H = Gi and H = Gi+1. Then the normal series is a composition series
if and only if it is without repetitions and saturated. Notice that if a group
G has a saturated normal series then it has finite length, since by eliminating
repeating elements in the series, we can make it to be without repetitions (while
still being saturated).

Example 7.7. A composition series for the group Z12 is given by

({[0]12}, ⟨[6]12⟩, ⟨[3]12⟩,Z12).

Indeed, the corresponding sequence of factors is isomorphic to

(Z2,Z2,Z3).

Notice that we can find some other composition series for Z12, such as

({[0]12}, ⟨[4]12⟩, ⟨[2]12⟩,Z12),

({[0]12}, ⟨[6]12⟩, ⟨[2]12⟩,Z12),

and the sequences of composition factors are isomorphic to a permutation of the
sequence of composition factors for the first composition series.

Example 7.8. The group A4 has a composition series:

({id}, {id, (12)(34)}, V, A4),

and the sequence of composition factors is isomorphic to

(Z2,Z2,Z3).

Remark 7.9. Combining the above two examples, we learn that, first, a group
can have several composition series, with different (up to isomorphism) se-
quences of composition factors, although in the example they happen to be the
same if we disregard the order of appearance of the composition factors. Also,
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it might be that two non-isomorphic groups can have composition series with
isomorphic sequences of composition factors. This is a repetition of the idea
that groups can be “glued” in various ways from the same “building blocks”.
For example, we say that under the right conditions on primes p < q, we can
find non-abelian semi-direct products G := Zq⋊Zp. Such a semi-direct product
has a composition series ({1},Zq, G) with a sequence of composition factors, up
to isomorphism, (Zq,Zp). But, of course, also the abelian group Zq × Zp has a
composition series ({1},Zq, H) with composition factors (Zq,Zp).

Example 7.10. It can be that a group does not have a composition series, i.e.
it is of infinite length. The simplest example is of Z. Indeed, if we have a
composition series (G0, . . . , Gn) in Z, then G1 ̸= {0} (otherwise G1/G0 is the
trivial group, so not simple). But then G1 = ⟨m⟩ for some m ∈ Z≥1 and so
G1/G0

∼= H1 = ⟨m⟩ ∼= Z, but Z is not simple.

Lemma 7.11. Let G be a group and let N ⊂ G be a normal subgroup. Then G
has finite length if and only if both N and G/N have finite length.

Proof. Suppose first that G has finite length. Pick a composition series for G
and construct a normal series for N using Lemma 7.2. By the lemma, the factors
of this series for N are isomorphic to normal subgroups of factors of our series
for G. Since the latter are simple, the factors of the normal series for N are
either trivial or simple, i.e. the normal series is saturated, showing that N has
finite length. Now construct a normal series for G/N using Lemma 7.2. By the
lemma, the factors of this series for G/N are isomorphic to quotient groups of
factors of our series for G. Since the latter are simple, the factors of the normal
series for G/N are either trivial or simple, i.e. the normal series is saturated,
showing that G/N has finite length.

Suppose now that both N and G/N have finite length. Pick composition
series for N and G/N and construct a normal series for G from them using
Lemma 7.3. By the lemma, the factors of this normal series are isomorphic
to factors of the normal series for N or the normal series for G/N , so that in
any case they are simple, showing that the normal series for G is a composition
series, and hence G has finite length.

Lemma 7.12. A finite group is of finite length.

Proof. The proof is by induction on |G|, where G is the finite group which we
want to show is of finite length. If |G| = 1 then (G) is a composition series for G
(the corresponding sequence of composition factors is empty). Now let |G| > 1.
If G is simple, then ({1}, G) is a composition series for G (with sequence of
composition factors isomorphic to (G)). Suppose that G is not simple. Then
there exists a normal subgroup N ⊂ G such that N ̸= {1} and N ̸= G. Using
the induction hypothesis, both N and G/N are of finite length, and hence by
the previous lemma G is of finite length.

Theorem 7.13 (Jordan-Holder). Let G be a group and let

(H0, . . . ,Hn)
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and
(K0, . . . ,Km)

be two composition series for G. Then the sequences of factors

(H1/H0, . . . ,Hn/Hn−1)

and
(K1/K0, . . . ,Km/Km−1)

coincide up to isomorphism and permutation.

Proof. We perform induction on min(m,n) (the case when this is 0 is clear).
Let us denote

L := Hn−1 ∩Km−1.

If Hn−1 ⊂ Km−1 then, since G/Hn−1 is simple, by the correspondence theorem
we obtain Km−1 = Hn−1. Similarly, if Km−1 ⊂ Hn−1 then Km−1 = Hn−1. In
this case L has composition series

(H0, . . . ,Hn−1)

and
(K0, . . . ,Km−1),

and we can apply the induction hypothesis to see that the sequences

(H1/H0, . . . ,Hn−1/Hn−2)

and
(K1/K0, . . . ,Km−1/Km−2)

are the same up to isomorphism and permutation, and therefore appending to
them G/L = G/Hn−1 = G/Km−1 yields sequences which are the same up to
isomorphism and permutation, giving the desired. Thus, we are left to analyse
the case when neither Hn−1 ⊂ Km−1 nor Km−1 ⊂ Hn−1. Since L is a normal
subgroup of G, L admits a composition series, say

(L0, . . . , Lk).

We have a monomorphism α : Hn−1/L → G/Km−1 (given by hL 7→ hKm−1)
whose image is a normal subgroup in the target. The image can not be trivial
because this would mean that Hn−1 ⊂ Km−1, which we assume is not the case.
Hence (since G/Km−1 is a simple group), the image must be the whole G/Km−1,
so that in fact α is an isomorphism. Therefore, we have a composition series for
Hn−1 given by

(L0, . . . , Lk, Hn−1).

We also have the composition series for Hn−1 given by

(H0, . . . ,Hn−1).
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We can apply the induction hypothesis, obtaining that the following series are
the same up to isomorphism and permutation:

(L1/L0, . . . , Lk/Lk−1, G/Km−1)

and
(H1/H0, . . . ,Hn−1/Hn−2).

Analogously, we obtain that the following series are the same up to isomorphism
and permutation:

(L1/L0, . . . , Lk/Lk−1, G/Hn−1)

and
(K1/K0, . . . ,Km−1/Km−2).

But then
(L1/L0, . . . , Lk/Lk−1, G/Km−1, G/Hn−1)

is the same up to isomorphism and permutation as both

(H1/H0, . . . ,Hn−1/Hn−2, G/Hn−1)

and
(K1/K0, . . . ,Km−1/Km−2, G/Km−1),

so the two latter series are the same up to isomorphism and permutation, as
desired.

Definition 7.14. Let G be a group of finite length. If

(G0, . . . , Gn)

is a composition series forG, the number n is called the length, or composition
length, of G. For a simple group H, the number of 0 ≤ i ≤ n − 1 for which
Gi+1/Gi is isomorphic to H can be called the amount of times H appears
in G. These do not depend on the choice of composition series, by the Jordan-
Holder theorem.

Exercise 7.1. Let G be a group of finite length and let N ⊂ G be a normal
subgroup. Let H be a simple group. Then the amount of times H appears in
G is equal to the amount of times H appears in N plus the amount of times H
appears in G/N .

Example 7.15. Given n ∈ Z≥1, let us write n = p1 · . . . pk where pi are prime
numbers. Then we have a composition series for Zn = Z/⟨n⟩ given by

(Z/⟨1⟩,Z/⟨p1⟩,Z/⟨p1p2⟩ . . . ,Z/⟨n⟩),

whose sequence of factors is isomorphic to

(Zp1
,Zp2

, . . . ,Zpn
).

Then the Jordan-Holder theorem shows that for each given prime p, the amount
of 1 ≤ i ≤ n for which p = pi does not depend on our choice of writing n as a
product of primes. In other words, it recovers the uniqueness of decomposition
into primes, basically.
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7.3 Commutator subgroups

Definition 7.16. Let G be a group.

1. Given g1, g2 ∈ G we define the commutator [g1, g2] := g1g2g
−1
1 g−1

2 ∈ G.

2. Given subgroups H1, H2 ⊂ G we define [H1, H2] to be the subgroup of G
generated by the subset

{[h1, h2] : h1 ∈ H1, h2 ∈ H2} ⊂ G.

In particular, [G,G] is called the commutator subgroup of G.

Exercise 7.2. Let G be a group and let g1, g2 ∈ G. Then [g1, g2] = 1 if and
only if g1g2 = g2g1, i.e. g1 and g2 commute.

Exercise 7.3. Let G be a group. Show that [G,G] is a normal subgroup of G.
Show that G/[G,G] is abelian. Show that given a normal subgroup K in G such
that G/K is abelian, we have [G,G] ⊂ K. One says informally that “G/[G,G]
is the largest abelian quotient of G”.

7.4 Solvable groups

Definition 7.17. A group G is called solvable if there exists a normal series
for G all of whose factors are abelian.

Lemma 7.18. Let G be a group and let H ⊂ G be a subgroup. If G is solvable
then H is solvable. If H is normal in G and G is solvable then G/H is solvable.
If H is normal in G and both H and G/H are solvable then G is solvable.

Proof. This follows in a straight-forward way from Lemma 7.2 and Lemma 7.3,
once we notice that subgroups of abelian groups are abelian and quotient groups
of abelian groups are abelian.

Example 7.19. Abelian groups are solvable. The semidirect product of two
solvable groups is solvable, and so in particular the semidirect product of two
abelian groups is solvable.

Example 7.20. p-groups are solvable. Indeed, we can prove this by induction
on the order of a p-group, because, recall, the center of a non-trivial p-group is
non-trivial.

Remark 7.21. A theorem of Burnside states that if the order of a finite group
is divisible by at most two primes, then this group is solvable. The proof is via
representation theory of finite groups.

Claim 7.22. The group Sn is not solvable for n ≥ 5 (in fact, An is not solvable
for n ≥ 5).

Proof. This is clear, since we saw that An is simple (for n ≥ 5), therefore it has
no non-trivial normal series (complete!).
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Remark 7.23. In Galois theory, the previous claim is used to show the non-
solvability of equations of degree ≥ 5 in radicals (it is a very virtuoso transition).
Hence the term, “solvable”.

Definition 7.24. Let G be a group. The derived series of G is the sequence
of subgroups of G defined recursively as follows: G(0) := G and G(n+1) :=
[G(n), G(n)] for n ≥ 0.

Lemma 7.25. Let G be a group. For every n ≥ 0, G(n) is a normal subgroup
of G.

Proof. The proof is by induction on n, the case n = 0 being trivial. Suppose
that we showed the claim for some n, and let us show it for n + 1. Let g ∈
G; we want to see that gG(n+1)g−1 ⊂ G(n+1). Since G(n+1) is generated by
elements of the form [h, k] where h, k ∈ G(n), it is enough to show that for
h, k ∈ G(n) we have g[h, k]g−1 ∈ G(n+1). We have g[h, k]g−1 = [ghg−1, gkg−1],
and since by the induction hypothesis we have ghg−1, gkg−1 ∈ G(n), we have
[ghg−1, gkg−1] ∈ G(n+1), as desired.

Claim 7.26. Let G be a group. The following are equivalent:

1. G is solvable.

2. There exists n ≥ 0 such that G(n) = {1}.

3. There exists a normal series for G

(G0, . . . , Gn)

with abelian factors such that, additionally, Gi is normal in G for all
0 ≤ i ≤ n.

Proof. Notice that it is trivial that 3 implies 1. That 2 implies 3 is also clear:
If G(n) = {1} consider the normal series for G given by

(G(n), G(n−1), . . . , G(0))

has abelian factors, and each G(i) is normal in G. Thus, we are left to see that
1 implies 2. Let

(G0, . . . , Gn)

be a normal series for G with abelian factors. We claim that G(i) ⊂ Gn−i for
all 0 ≤ i ≤ n. Then G(n) ⊂ G0 = {1} showing that G(n) = {1} as desired. One
proceeds by induction on i, the case i = 0 being trivial. Now if the claim is
shown for a given i, notice that

G(i+1) = [G(i), G(i)] ⊂ [Gn−i, Gn−i] ⊂ Gn−(i+1),

as desired.
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7.5 Nilpotent groups

Definition 7.27. Let G be a group. A normal series for G

(G0, . . . , Gn)

is called a central series if Gi is normal in G for all 0 ≤ i ≤ n, and Gi+1/Gi

lies in the center of G/Gi for all 0 ≤ i ≤ n− 1. If G admits a central series then
G is called nilpotent.

Exercise 7.4. Given a group G and a normal series

(G0, . . . , Gn)

for G, show that it is a central series if and only if [Gi+1, G] ⊂ Gi for all
0 ≤ i ≤ n− 1.

Example 7.28. Abelian groups are nilpotent.

Remark 7.29. Clearly, nilpotent groups are solvable.

Lemma 7.30. Let G be a group and let H ⊂ G be a subgroup. If G is nilpotent
then H is nilpotent. If H is normal in G and G is nilpotent, then G/H is
nilpotent.

Proof. The proof repeats the same ideas as the proof of the analogous claim for
solvability, we leave it as an exercise.

Exercise 7.5. Let G be a nilpotent group. Show that if G is not trivial then
Z(G) is not trivial.

Remark 7.31. Notice, however, that if G is a group and H ⊂ G is a normal
group, then if both H and G/H are nilpotent, it in general does not follow that
G is nilpotent. Indeed, the group S3 has the subgroup A3, and both A3 and
S3/A3, being abelian, are nilpotent. However, we claim that S3 is not nilpotent.
Indeed, one easily checks that Z(S3) = {1} and therefore the previous exercise
shows that S3 is not nilpotent.

Exercise 7.6. Let k be a field and let n ∈ Z≥1. Let U be the subgroup of GLn(k)
consisting of upper triangular matrices whose diagonal values are all equal to 1.
Show that U is a nilpotent group. Next, denote by B the subgroup of GLn(k)
consisting of upper triangular matrices and denote by T the subgroup of GLn(k)
consisting of diagonal matrices. Notice that T,U ⊂ B. Show that B = U ⋊ T .
Deduce that B is solvable. As an extra exercise (not a must), try to see that, in
general, B is not nilpotent (maybe except a few simple cases, like n = 1 etc.).

Definition 7.32. Let G be a group. The lower central series of G is
the sequence of subgroups of G defined recursively as follows: L0(G) := G,
Ln+1(G) := [Ln(G), G]. The upper central series of G is the sequence
of subgroups of G defined recursively as follows: U0(G) := {1}, Un+1(G) :=
p−1
n (Z(G/Un(G))) where pn : G→ G/Un(G) denotes the canonical projection.
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Claim 7.33. Let G be a group. The following are equivalent:

1. G is nilpotent.

2. There exists n ≥ 0 such that Ln(G) = {1}.

3. There exists n ≥ 0 such that Un(G) = G.

Proof. To show that 2 implies 1, notice that it is easy to see that

(Ln(G), . . . , L0(G))

is a central series for G. To show that 3 implies 1, notice that it is easy to see
that

(U0(G), . . . , Un(G))

is a central series for G.

Suppose now that G is nilpotent. Let

(G0, . . . , Gn)

be a central series for G. We claim that Li(G) ⊂ Gn−i for all 0 ≤ i ≤ n. Indeed,
we check this by induction. For i = 0 the claim is clear. If we checked the claim
for some i, then

Li+1(G) = [Li(G), G] ⊂ [Gn−i, G] ⊂ Gn−(i+1),

completing the induction step. Therefore, in particular, Ln(G) ⊂ G0 = {1},
and so Ln(G) = {1}. We claim next that we also have Gi ⊂ Ui(G) for all
0 ≤ i ≤ n. We again check this by induction. For i = 0 the claim is clear. If we
checked the claim for some i, then we have

[Gi+1, G] ⊂ Gi ⊂ Ui(G)

and therefore, denoting by p : G → G/Ui(G) the canonical quotient map, we
have p(Gi+1) ⊂ Z(G/Ui(G)), showing that Gi+1 ⊂ Ui+1(G), completing the
induction step. Therefore, in particular, G = Gn ⊂ Un(G), and so Un(G) =
G.

Claim 7.34. p-groups are nilpotent.

Proof. If G is a p-group, we claim that Ui+1(G) ̸= Ui(G) unless Ui(G) = G.
This will show that Ui(G) = G for big enough i, by order consideration. To
that end, notice that G/Ui(G) is a p-group, and if it is not trivial then, as we
saw, Z(G/Ui(G)) is not trivial, i.e. Z(G/Ui(G)) ̸= Ui(G)/Ui(G) and therefore
Ui+1(G) ̸= Ui(G) (by the correspondence theorem).

Lemma 7.35. The product of two finitely many nilpotent groups is nilpotent.
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Proof. It is enough to show that G1 ×G2 is nilpotent for two nilpotent groups
G1 and G2. Given subgroups H1, H

′
1 ⊂ G1 and H2, H

′
2 ⊂ G2 it is easy to see

that [H1 × H2, H
′
1 × H ′

2] = [H1, H
′
1] × [H2, H

′
2] and from this it is easy to see

that Ln(G1 ×G2) = Ln(G1)× Ln(G2) for all n ≥ 0.

Remark 7.36. Let us briefly remark regarding internal finite products. Given
a group G and subgroups H1, . . . ,Hk ⊂ G, we say that G is the product of
H1, . . . ,Hk if the map

ϕ : H1 × . . .×Hk → G

given by
(h1, . . . , hk) 7→ h1 · . . . · hk

is an isomorphism. It is an exercise that this is equivalent to the following
conditions:

1. For any 1 ≤ i, j ≤ k and any h ∈ Hi and h
′ ∈ Hj we have hh′ = h′h. This

condition allows us to write, for example, H1H2 · . . . · Hk as
∏

1≤i≤kHi,
because it does not matter in which order we take the product (and the
product is a subgroup of G).

2. For every 1 ≤ i ≤ k we have Hi ∩
∏

1≤j≤k,j ̸=iHj = {1}.

3. We have G =
∏

1≤i≤kHi.

In fact, more precisely, the first conditions is equivalent to ϕ being a group
homomorphism. The second condition then is equivalent to ϕ being injective,
and the third condition to ϕ being surjective. In particular, if G is finite, the first

condition implies that
∣∣∣∏1≤i≤kHi

∣∣∣ divides ∏1≤i≤k |Hi|. If the second condition

is satisfies in addition, then we have
∣∣∣∏1≤i≤kHi

∣∣∣ =
∏

1≤i≤k |Hi|. The third

condition is then equivalent, given the first two conditions, to the numerical
condition |G| = |P1| · . . . · |Pk|.

Theorem 7.37. Let G be a finite group. The following are equivalent:

1. G is nilpotent.

2. Each Sylow subgroup in G is normal in G.

3. G is the direct product of its Sylow subgroups.

4. G is isomorphic to a finite product of p-groups (for different p’s).

Proof. Notice that 4 implies 1 since we saw that p-groups are nilpotent and that
the finite product of nilpotent groups is nilpotent. Notice also that it is trivial
that 3 implies 4.

Let us see that 2 implies 3. Let p1, . . . , pk be the different primes dividing |G|.
Let Pi be the unique pi-Sylow subgroup in G, for every 1 ≤ i ≤ k. We want to
see that G is the product of P1, . . . , Pk, using the remark above. Since the Sylow
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subgroups of G are normal in G, for i and j we have [Pi, Pj ] ⊂ Pi ∩ Pj = {1},
or in other words gh = hg for all g ∈ Pi and h ∈ Pj , so that condition 1 of the
remark above is satisfied. Notice that it is also clear that the numerical condition
replacing condition 3 in the remark also obviously holds in our case. Thus, it is
left to check condition 2. But, notice that, since condition 1 is satisfied, we have

that
∣∣∣∏1≤j≤k,j ̸=i Pj

∣∣∣ divides ∏
1≤j≤k,j ̸=i |Pj |, and therefore is relatively prime

to |Pi|. Hence
∣∣∣Pi ∩

∏
1≤j≤k,j ̸=i Pj

∣∣∣ divides two relatively prime numbers, and

hence it is equal to 1, so Pi ∩
∏

1≤j≤k,j ̸=i Pj = {1}, as desired.

Let us now see that 1 implies 2. So let G be nilpotent, let p be a prime and
let P ⊂ G be a p-Sylow subgroup. We want to show that P is normal in G. We
will do this by induction on |G|. If |G| = 1 then the claim is trivial, so assume
|G| > 1. Then Z(G) ̸= {1}. Let us consider P ′ := PZ(G) ⊂ G. If P ′ = G
then it is immediate to see that P is normal in G. Hence let us assume that
P ′ ̸= G. Notice that P ′/Z(G) is a p-Sylow subgroup in G/Z(G). Therefore,
since G/Z(G) is nilpotent, by the induction hypothesis P ′/Z(G) is normal in
G/Z(G), and so by the correspondence theorem P ′ is normal in G. Thus, given
g ∈ G, we have p-Sylow subgroups P and gPg−1 of P ′. But, notice also that
P is normal in P ′. Hence, by the second Sylow theorem, P is the only p-Sylow
subgorup in P ′, and therefore gPg−1 = P . Since g was arbitrary, this shows
that P is normal in G.

8 A bit about presentation

8.1 The infinite cyclic group

Definition 8.1. Given groups G and H, let us denote by Hom(H,G) the set
of group homomorphism from H to G.

Exercise 8.1. Let G be a group. We have a bijection

Hom(Z, G) → G

given by sending ϕ to ϕ(1).

In words, “to give a homomorphism from Z is the same as to specify where
1 should go (and this specification is unconstrained).

8.2 Finite cyclic groups

Claim 8.2. Let G be a group and let n ∈ Z≥1. We have a bijection

Hom(Zn, G) → {g ∈ G | gn = 1}

given by sending ϕ to ϕ([1]n).

Proof. An exercise.
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Let us paraphrase in multiplicative notation for convenience. Let n ∈ Z≥1

and let C be a cyclic group of order n, with generator c. Then for any group G
we have a bijection

Hom(C,G) → {g ∈ G | gn = 1}
and we say “to give a homomorphism from C is the same as to specify an
element whose n-th power is 1”. We say that C is given by generators and
relations as follows: It has a generator c, satisfying the relation cn = 1.

8.3 Dihedral groups

Let n ∈ Z≥3 and let us consider the dihedral group Dn. Recall that we have
elements r ∈ Dn, s ∈ Dn and they satisfy relations rn = 1, s2 = 1 and
srs−1 = r−1. If we want to say in this case also, that Dn is specified by
having generators r, s and relations rn = 1, s2 = 1 and srs−1 = r−1, we
should understand that in some sense these relations are “enough”, they already
determine Dn. What is the formalization of this? It is precisely given by the
idea hinted at before:

Claim 8.3. Given a group G, we have a bijection

Hom(Dn, G) → {(g, h) ∈ G2 | gn = 1, h2 = 1, hgh−1 = g−1}

given by ϕ 7→ (ϕ(r), ϕ(s)).

8.4 Free groups

In this language of generators and relations, Z is given by generators and rela-
tions as follows: it has generator 1 and an empty set of relations. We can ask,
whether there a group F2 which is given by generators and relations as follows:
it has two generators x1, x2 and an empty set of relations. In other words, we
would like to have a group F2, together with two elements x1, x2 ∈ F2, such
that for any group G the map

Hom(F2, G) → G2

given by ϕ 7→ (ϕ(x1), ϕ(x2)) is a bijection. Such a group exists, it is called
the free group on two generators. Similarly, we have the free group on n
generators for every n ∈ Z≥0 (and, in fact, also free groups on infinitely many
generators...).

9 Abelian groups

9.1 Notation

In this section, we discuss abelian groups and use exclusively additive notation
(unless stated otherwise). Let us note that a customary notation for the direct
product in this setting is, except A1×A2, also A1⊕A2. In this setting elements
of finite order are also called torsion elements.
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9.2 Some general properties

In abelian groups, the subgroup generated by a set has simpler description than
in general, in non-abelian groups.

Lemma 9.1. Let A be an abelian group and let S ⊂ A be a subset. Then ⟨S⟩
consists precisely of elements in A that can be written as n1s1 + . . .+ nksk for
some k ∈ Z≥0, ni ∈ Z and si ∈ S. In particular, if (s1, . . . , sk) ∈ Ak is a finite
sequence of elements in A, then

⟨s1, . . . , sk⟩ := ⟨{s1, . . . , sk}⟩ = {n1s1 + . . .+ nksk : n1, . . . , nk ∈ Z}.

Proof. An exercise.

Lemma 9.2. Let A be an abelian group and let a1, a2 ∈ a. Denote by n1 the
order of a1 and denote by n2 the order of a2. Then the order of a1 + a2 divides
lcm(n1, n2).

Proof. Abbreviate n := lcm(n1, n2). Then n(a1 + a2) = na1 + na2 = 0 + 0 and
hence the order of a1 + a2 divides n.

9.3 Finite abelian groups

Definition 9.3. Let A be an abelian group and let n ∈ Z≥0. Let us denote

A(n) := {a ∈ A | na = 0}.

In other words, A(n) consists of the elements in A whose order divides n.

Lemma 9.4. Let A be an abelian group and let n ∈ Z≥0. Then A(n) is a
subgroup of A.

Proof. Since A is abelian, we have n(a1 + a2) = na1 + na2 for all a1, a2 ∈ A.
Therefore the map A → A given by a 7→ na is a group homomorphism. Hence
its kernel, which is A(n), is a subgroup of A.

Definition 9.5. Let A be an abelian group and let p ∈ Z≥1 be a prime number.
Let us denote

A((p)) :=
⋃

k∈Z≥0

A(pk).

In other words, A((p)) consists of the element of A which are killed by high
enough power of p or, in other words, the elements whose order is a power of p.

Lemma 9.6. Let A be an abelian group and let p ∈ Z≥1 be a prime number.
Then A((p)) is a subgroup of A.

Proof. This follows from the more general exercise, that if G is a group and for
every k ∈ Z≥0 we are given a subgroup Gk ⊂ G, such that Gk ⊂ Gk+1 for all
k ∈ Z≥0 then ⋃

k∈Z≥0

Gk
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is a subgroup of G. In other words, the “increasing union” of a sequence of
subgroups is a subgroup.

Lemma 9.7. Let A be a finite abelian group and let p ∈ Z≥1 be a prime number.
Then A((p)) is the (unique) p-Sylow subgroup of A.

Proof. Notice that we know that A has a unique p-Sylow subgroup, because we
know that if there is a normal p-Sylow subgroup then it is the unique p-Sylow
subgroup, and in an abelian group all subgroups are normal. If we denote
by P ⊂ A the p-Sylow subgroup, then on one hand all elements in P have
order dividing |P | and hence have an order which is a power of p, showing
that P ⊂ A((p)). On other other hand, given a ∈ A((p)), since the order of
a is a power of p, the subgroup ⟨a⟩ of A is a p-group, and therefore (as we
learned) it is contained in a p-Sylow subgroup, so contained in P , showing that
A((p)) ⊂ P .

Claim 9.8. Let A be a finite abelian group and let p1, . . . , pk be the prime
numbers dividing |A|. Then

A = A((p1)) × . . .×A((pk)).

Proof. Since A((pi)) is the unique pi-Sylow subgroup of A, this claim is immedi-
ate from Theorem 7.37. However, notice that we don’t need really to remember
anything about nilpotent groups for this claim (it is too much). The argument
is simply that

A((pi))

⋂ ∑
1≤j≤k,j ̸=i

A((pj)) = {0}

because the order of
∑

1≤j≤k,j ̸=iA((pj)) divides
∏

1≤j≤k,j ̸=i |A((pj))| and hence
is relatively prime to the order of A((pi)). And also

∏
1≤i≤k |A((pi))| = |A| (just

by counting, since each A((pi)) is a pi-Sylow subgroup of A) and therefore by
Remark 7.36 the claim is valid.

Proposition 9.9. Let p ∈ Z≥1 be prime and let A be an abelian p-group. Then
A is the finite direct product of some cyclic subgroups. In other words, there
exists k1, . . . , kr ∈ Z≥1 and an isomorphism

Zpk1 × . . .× Zpkr

∼−→ A.

We will have a lemma before proving the proposition:

Lemma 9.10. Let A be an abelian p-group. Let a ∈ A be an element with max-
imal possible order. Let us denote by π : A → A/⟨a⟩ the canonical projection.
Let b ∈ A/⟨a⟩. Then there exists b ∈ A such that π(b) = b and b has the same
order as b.

Proof. Let us denote by pr the order of a and by pk the order of b. Let b ∈ π−1(b)
be any element. The order of b, which is pk, divides the order of b. We have
π(pkb) = pkb = 0 and therefore pkb ∈ Ker(π) = ⟨a⟩, so we can write pkb = na
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for some n ∈ Z with 0 ≤ n < pr. If n = 0 then pkb = 0 so the order of b
divides pk, and since it is divisible by pk, we get that the order of b is pk, as
desired. So let us assume n ̸= 0. Then we can write n = pℓm for ℓ ∈ Z≥0 and
m ∈ Z≥1 with gcd(m, p) = 1. Since 0 < n < pr we have ℓ ≤ r. The order of
na is pr/gcd(pr, pℓm) = pr/pℓ = pr−ℓ. The order of b is then, it is easy to see,
pk · pr−ℓ = pk+r−ℓ. Since a is assumed to have maximal possible order among
the elements of A, we have r ≥ k + r − ℓ, i.e. ℓ ≥ k. Then we can denote
c := pℓ−kma so that we have na = pkc. Now denote b′ := b − c. Then, since
c ∈ ⟨a⟩, we have π(b′) = b. Also, we have pkb′ = 0 and therefore b′ has order pk

(since, as we said, the order of b′ is divisible by the order of b = π(b′) which is
pk). Thus we found an element b′ as desired.

Proof (of Proposition 9.9). The proof is by induction on |A|. If |A| = 1 then
the claim is clear, so assume |A| > 1. Let a ∈ A be an element of maximal
possible order. Then |A/⟨a⟩| < |A| and therefore by the induction hypothesis
we can find k1, . . . , kr ∈ Z≥1 and an isomorphism

ϕ : Zpk1 × . . .× Zpkr

∼−→ A/⟨a⟩.

Let us denote bi := ϕ(0, . . . , [1]pki , . . . , 0) where the [1]pki is at the i-th place
and all the other components are zeros. Let us, using the previous lemma, find
bi ∈ A such that bi + ⟨a⟩ = bi and the order of bi is pki . Let us consider the
group homomorphism

ϕ̃ : Zpk1 × . . .× Zpkr → A

given by
ϕ̃([m1]pk1 , . . . , [mr]pkr ) := m1b1 + . . .+mrbr

(see that it is well-defined). It is injective, since its composition with the canon-
ical projection A → A/⟨a⟩ is ϕ, which is injective. Let us denote by B ⊂ A

the image of ϕ̃ (so that ϕ̃ induces an isomorphism of its source with B). Since

the composition of ϕ̃ with the canonical projection A → A/⟨a⟩ is injective, we

in fact have B ∩ ⟨a⟩ = {0}. Also, since the composition of ϕ̃ with the canon-
ical projection A → A/⟨a⟩ is surjective, we have B + ⟨a⟩ = A. Thus we have
A = ⟨a⟩ × B. Since B is isomorphic to a product of cyclic groups, we get that
A is also isomorphic to a product or cyclic groups, as desired.

We also have uniqueness:

Proposition 9.11. Let p ∈ Z≥1 be a prime. If we are given sequences of
positive integers (k1, . . . , kr), (d1, . . . , ds) such that

Zpk1 × . . .× Zpkr

is isomorphic to
Zpd1 × . . .× Zpds ,

then these sequences coincide up to permutation. Equivalently, for every positive
integer k, the number

|{1 ≤ i ≤ r | ki = k}|
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is equal to the number
|{1 ≤ i ≤ s | di = k}| .

Proof. Let us denote
A := Zpk1 × . . .× Zpkr .

Let us denote, for k ∈ Z≥1,

α(k) = {1 ≤ i ≤ r | ki = k}.

We want to determine α from the abelian p-group A (without knowing about
the decomposition we have of A) - this will imply the claim (understand why).
Notice that, given d ∈ Z≥1 and k ∈ Z≥0, we have

logp
∣∣(Zpd)(pk)

∣∣ = min{k, d}.

Therefore, for every k ∈ Z≥0, we have

logp
∣∣A(pk)

∣∣ = ∑
1≤i≤r

min{k, ki}.

Hence, if we denote, for every k ∈ Z≥0,

α′(k) := logp
∣∣A(pk+1)

∣∣− logp
∣∣A(pk)

∣∣ ,
we have, for every k ∈ Z≥0,

α′(k) = |{1 ≤ i ≤ r | ki > k}| .

Then, we have, for every k ∈ Z≥1,

α(k) = α′(k − 1)− α′(k).

Thus, we recover α completely from A as an abelian p-group (without knowing
how it originated), and the claim follows.

Now, using Claim 9.8, we obtain the basic uniqueness and existence claim
for finite abelian groups:

Theorem 9.12. Let A be a finite abelian group.

1. There exists a finite sequence (n1, . . . , nr) where each ni is a prime power
which is not equal to 1, such that A is isomorphic to

Zn1
× . . .× Znr

.

2. Given two sequences (n1, . . . , nr) and (m1, . . . ,ms) as in the previous item,
they coincide up to permutation. Put differently, given any k which is a
prime power which is not equal to 1, we have

|{1 ≤ i ≤ r | ni = k}| = |{1 ≤ i ≤ s | mi = k}| .

Proof. This is immediate from what we seen (exercise).
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9.4 Finitely generated abelian groups

Definition 9.13. An abelian group is a torsion group if all its elements are
torsion elements. An abelian group is a torsion-free group if all its non-zero
elements are non-torsion.

Lemma 9.14. A finitely generated torsion group is finite.

Definition 9.15. Let A be an abelian group. We denote by Ator ⊂ A the
subgroup of torsion elements (check that it is a subgroup!).

Lemma 9.16. Let A be an abelian group. Then A/Ator is torsion-free.

Proof. Let us denote by π : A → A/Ator the canonical projection. Let y ∈
A/Ator, let d ∈ Z≥1 and assume that dy = 0 (we want to show that y = 0).
Let x ∈ π−1(y). We have π(dx) = dπ(x) = dy = 0 and therefore dx ∈ Ator.
Therefore there exists e ∈ Z≥1 such that edx = 0. Therefore x ∈ Ator and so
y = π(x) = 0.

Thus, in order to understand finitely generated abelian groups, we want to
first try to understand torsion-free finitely generated abelian groups. We will
next study one kind of such groups, which will turn out to be the only kind.

9.5 Lattices (finitely generated free abelian groups)

Definition 9.17. Let A be an abelian group. A sequence a1, . . . , an ∈ A is
a (finite) Z-basis for A if for every element a ∈ A there exists a unique
(d1, . . . , dn) ∈ Zn such that a = d1a1 + . . . + dnan. Equivalently, if the group
homomorphism

Zn → A

given by
(d1, . . . , dn) 7→ d1a1 + . . .+ dnan

is a group isomorphism.

Definition 9.18. An abelian group L is a lattice (or a finitely generated
free abelian group) if it is isomorphic to Zn for some n ∈ Z≥0. Equivalently,
if it has a finite Z-basis.

Lemma 9.19. Let m,n ∈ Z≥0 with m < n. Then Zn can not be generated by
m elements.

Corollary 9.20. Let n1, n2 ∈ Z≥0. If n1 ̸= n2 then Zn1 is not isomorphic to
Zn2 .

Definition 9.21. Let L be a lattice. The rank of L is the number n ∈ Z≥0

such that L is isomorphic to Zn (this is well-defined by the corollary).
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Proof (of Lemma 9.19). Suppose thatm,n ∈ Z≥0 and that Zn can be generated
by m elements; we will show that m ≥ n. Let v1, . . . , vm ∈ Zn be such that

Zn = ⟨v1, . . . , vm⟩.

Let us consider
Zn ⊂ Qn.

Given v ∈ Qn, there exists d ∈ Z≥1 such that dv ∈ Zn. Then, there exist
k1, . . . , km ∈ Z such that

dv = k1v1 + . . .+ kmvm.

If we now think about Qn as a vector space over the field Q, we can write there

v =
d

k1
v1 + . . .+

d

km
vm.

Thus, since v was arbitrary, we in fact showed that v1, . . . , vm span Qn as a
vector space over Q. By linear algebra, we know that then necessarily we must
have m ≥ n, as desired.

Remark 9.22. Let A and B be abelian groups and let π : A → B be an epi-
morphism of groups. Denote K := Ker(π). If C ⊂ A is a subgroup such that
A = K × C, then π|C : C → B is an isomorphism. We then have a monomor-
phism s : B → A given by s(b) = (π|C)−1(b) and π ◦ s = idB . Conversely,
if we have a monomorphism s : B → A such that π ◦ s = idB , then setting
C := Im(s) we have A = K×C. When these equivalent conditions hold, we say
that π admits a splitting. As an exercise, you can also think about this for
non-abelian groups, but then one will not have direct products but semi-direct
products...

Lemma 9.23. Let A be an abelian group, let L be a lattice and let π : A → L
be an epimorphism. Then π admits a splitting.

Proof. Let us denote B := Ker(π). Let y1, . . . , ym ∈ L be a Z-basis for L. For
every 1 ≤ i ≤ m, let xi ∈ A be such that π(xi) = yi. Let C := ⟨x1, . . . , xm⟩.
We claim that A = B × C. First, let us see that B ∩ C = {0}. Let a ∈ B ∩ C.
Then, since a ∈ C, we can write a = d1x1+ . . .+dmxm for some d1, . . . , dm ∈ Z.
Then π(a) = d1y1 + . . . + dmym. But π(a) = 0 because a ∈ B, and therefore
we obtain 0 = d1y1 + . . .+ dmym. Since y1, . . . , ym is a Z-basis for L, we obtain
di = 0 for all 1 ≤ i ≤ m and thus a = 0. Thus we showed that B ∩ C = {0}.
Now, let us see that B + C = A. let a ∈ A. There exists d1, . . . , dm ∈ Z such
that π(a) = d1y1 + . . . + dmym. Denote c := d1x1 + . . . + dmxm. Then c ∈ C,
and we have π(a− c) = 0, and so a− c ∈ B, showing that a ∈ B + C.

Lemma 9.24. Let L be a lattice and let M ⊂ L be a subgroup. Then M is also
a lattice.
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Proof. Denoting by n the rank of L, the proof is by induction on n. If n = 0 the
claim is clear. If n = 1, the claim follows from the fact that all subgroups of Z
are either isomorphic to Z (and so lattices of rank 1) or trivial (and so lattices
of rank 0). Therefore assume n > 1 and let us perform the induction step. Let
x1, . . . , xn be a Z-basis for L. Denote L1 := ⟨x1, . . . , xn−1⟩ and L2 := ⟨xn⟩.
Then L = L1 × L2 and so we have the map π : L→ L2 given by sending x ∈ L
to x2 ∈ L2, where we (uniquely) write x = x1 + x2 with x1 ∈ L1 and x2 ∈ L2.
Consider now π|M : M → L2. Then the image of π|M is a subgroup of L2 and
hence a lattice (by the already considered case of rank 1). Therefore, by the
previous lemma M is isomorphic to Ker(π|M ) × Im(π|M ). But Ker(π|M ) is a
subgroup of L1 and hence a lattice by the induction hypothesis. Thus M is
isomorphic to a product of two lattices, and hence itself a lattice.

Corollary 9.25. Let A be a finitely generated abelian group and let B ⊂ A be
a subgroup. Then B is also finitely generated.

Proof. Let a1, . . . , an ∈ A be such that A = ⟨a1, . . . , an⟩. Let π : Zn → A be
the group homomorphism given by

(d1, . . . , dn) 7→ d1a1 + . . .+ dnan.

Then π is surjective. Denote B′ := π−1(B). By the lemma, B′ is a lattice, and
in particular finitely generated. Since we have an epimorphism π|B′ : B′ → B,
B is also finitely generated.

Proposition 9.26. Let A be a torsion-free finitely generated abelian group.
Then A is a lattice.

Proof. Let a1, . . . , an ∈ A be such that A = ⟨a1, . . . , an⟩. Let us fix a maximal
subset S ⊂ {1, . . . , n} such that {ai}i∈S are Z-linearly independent (i.e. if
{di}i∈S are integers such that

∑
i∈S diai = 0 then di = 0 for all i ∈ S). For

notational convenience, by reordering we can assume that S = {1, . . . ,m} for
0 ≤ m ≤ n. Denote L := ⟨a1, . . . , am⟩. Then a1, . . . , am is a Z-basis for L. Given
m+1 ≤ i ≤ n, there exists di ∈ Z≥1 such that diai ∈ L. Indeed, otherwise it is
easy to see that a1, . . . , am, ai is also a Z-linearly independent set, contradicting
the maximality of S. Let us denote d := dm+1 · . . . · dn. Consider the group
homomorphism Md : A → A given by a 7→ da. Since A is torsion-free, Md is
injective. Therefore A is isomorphic to Im(Md). But Im(Md) ⊂ L and therefore
it is a lattice, by the previous lemma. Hence A is a lattice, as desired.

9.6 Finitely generated abelian groups again

Claim 9.27. Let A be a finitely generated abelian group. Then there exists a
lattice L ⊂ A such that A = Ator × L.

Proof. Clearly, since A is finitely generated so is A/Ator. Since A/Ator is torsion-
free, by the proposition we just saw it is a lattice. Therefore, by a lemma we had
the canonical projection π : A→ A/Ator admits a splitting, and so there exists
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a subgroup L ⊂ A such that A = Ator×L. We also know that π|L : L→ A/Ator

is an isomorphism, and so L is a lattice.

Corollary 9.28 (Existence part of the basic structural theorem on finitely
generated abelian groups). A finitely generated abelian group is isomorphic to
a finite product of cyclic groups, of infinite order or an order which is a prime
power not equal to 1.

Proof. This is clear from the claim, because a lattice is isomorphic to a finite
product of copies of Z, and a finite abelian group is, as we saw, isomorphic to a
finite product of cyclic groups of prime power order.

We also have uniqueness:

Claim 9.29 (Uniqueness). Suppose we have two data

(r, (m1, . . . ,mk))

and
(s, (n1, . . . , nℓ))

where r, s ∈ Z≥0, k, ℓ ∈ Z≥0 and the mi and nj are prime powers different from
1. If

Zr × Zm1 × . . .× Zmk

is isomorphic to
Zs × Zn1 × . . .× Znℓ

,

then r = s, k = ℓ and (m1, . . . ,mk) and (n1, . . . , nℓ) are equal after a permuta-
tion.

Proof. Denote by A the abelian group which is the first expression in the state-
ment. Notice that

Ator = Zm1
× . . .× Zmk

(embedded in the obvious way in A, by appending zeros at the Z-places). There-
fore by the uniqueness theorem we have already seen for finite abelian groups,
applied to Ator, we obtain that (m1, . . . ,mk), up to permutation, does not de-
pend on the decomposition chosen. Next, A/Ator

∼= Zr, and therefore r is the
rank of the lattice A/Ator and hence it is also independent of the decomposi-
tion.

9.7 The multiplicative group of a finite field

Let us make a small complement here.

Theorem 9.30. Let k be a finite field. Then k× is a cyclic group.

We will use a lemma:
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Lemma 9.31. Let G be a finite group, denote n := |G|. Suppose that for every
d ∈ Z≥1 satisfying d|n, we have∣∣{g ∈ G | gd = 1

}∣∣ ≤ d.

Then G is cyclic.

Proof. For every d|n, let us denote

nd := |{g ∈ G | og = d}| .

Then
n =

∑
d|n

nd.

Notice, however, that is for some d|n we have nd ̸= 0, then if we pick g ∈ G
with og = d, the elements h of ⟨g⟩ all satisfy hd = 1 and there are precisely d
such elements, and therefore by the assumption those are all the elements h in
G which satisfy hd = 1. In particular, there are precisely ϕ(d) elements h in G
which satisfy oh = d (the generators of ⟨g⟩), i.e. nd = ϕ(d). Thus, we obtained
that either nd = 0 or nd = ϕ(d). But, recall that

n =
∑
d|n

ϕ(d).

Therefore, by considering the two sum-expressions for n, it is clear that we must
have nd = ϕ(d) for all d|n. In particular, for d = n, we have nn ̸= 0, i.e. there
exists an element in G of order n, which means that G is cyclic.

Proof (of Theorem 9.30). Recall that, since k is a field, for every monic poly-
nomial f ∈ k[x] of degree d ∈ Z≥1, we have

|{c ∈ k | f(c) = 0}| ≤ d.

Let us denote n := |k×|. Given d ∈ Z≥1 for which d|n, considering the polyno-
mial f(x) := xd − 1, we obtain∣∣{c ∈ k× | cd = 1

}∣∣ ≤ d.

By the previous lemma, k× is therefore cyclic.

9.8 Diffie-Hellman secret sharing and Al-Gamal encryp-
tion

A beautiful idea (formulated vaguely) is that there are bijections ϕ : X → Y
such that for any given x ∈ X it is easy to compute ϕ(x), while for any given
y ∈ Y it is hard (to the point of impracticality) to compute ϕ−1(y). We can
call such a bijection a one-way bijection.
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Suppose that we can find n ∈ Z≥1, an abelian group M (for which let us
use additive notation) and an isomorphism of groups e : Zn → M which is a
one-way bijection. In other words, M is cyclic of order n, with some generator
m0 := e([1]n) ∈ M . Let us note that given α ∈ Zn and m ∈ M we give a
meaning to αm ∈ M by choosing a ∈ Z such that α = [a]n and letting αm be
am - since m has order dividing n, the result will not depend on the choice of
the representative a. Notice also that we have the property αe(β) = e(αβ) for
α, β ∈ Zn.

Now suppose that Bob wants to send alice a message m ∈ M , over a non-
secure channel. First, Alice picks α ∈ Zn, called her private key, and shares
with everybody e(α) ∈ M , called her public key. Now, if Bob wants to send
alice a message m ∈ M , Bob picks randomly β ∈ Zn (his momentary private
key) and sends Alice (m1,m2) := (e(β), βe(α)+m). Notice that he used Alice’s
public key. Now, Alice can find m:

m = m2 − αm1,

because
βe(α) = e(βα) = e(αβ) = αe(β)!

One also expresses this, without thinking about the message m, as the ability of
Alice and Bob to share a secret - e(αβ) can be read from (α, e(β)) (information
that Alice knows) and also from (e(α), β) (information that Bob knows), but not
from (e(α), e(β)) (information that everybody listening to the channel knows).

As a side remark, let us notice that here Bob uses with each transmission a
new private key, because otherwise someone who reads the channel transmission
(the massages (m1,m2)) could start figuring out frequencies of the messages,
and start figuring things out.

A common choice for M is Z×
p , where p is a (large) prime number. We

saw that this group is cyclic. If one finds a generator of it, one obtains an
isomorphism e : Zp−1

∼−→ Z×
p , and it is well-believed to be a one-way bijection.

Another choice for M is an appropriately chosen cyclic subgorup of an elliptic
curve over a finite field.

10 Basic notions of ring theory

10.1 The definition and examples

Definition 10.1. A ring is a triple (R,+, ·) where R is a set and +, · : R×R→
R are functions (we again write r1 + r2 instead of +(r1, r2) and r1 · r2 or even
r1r2 instead of ·(r1, r2), and also the notational convention is that when we
don’t have brackets, we perform + before ·) satisfying the following properties:

1. (R,+) is an abelian group.

2. r1 · (r2 · r3) = (r1 · r2) · r3 for all r1, r2, r3 ∈ R.
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3. There exists an element 1 ∈ R such that 1 · r = r and r · 1 = r for all
r ∈ R.

4. We have r · (r1 + r2) = r · r1 + r · r2 and (r1 + r2) · r = r1 · r+ r2 · r for all
r, r1, r2 ∈ R.

A ring (R,+, ·) is called commutative if r1 · r2 = r2 · r1 for all r1, r2 ∈ R.

Remark 10.2. As before, given a ring (R,+, ·), the element 1 ∈ R (neutral
with respect to ·) is uniquely determined. We also always write 0 ∈ R for the
(uniquely determined) neutral element with respect to +.

Remark 10.3. As before, we usually denote a ring (R,+, ·) by R, keeping the
operations + and · implicit notationally.

Example 10.4. The trivial commutative ring is the one with one element; a
commutative ring having one element is equivalent to 0 = 1 being satisfied in it.

Example 10.5. Notice that a field is simply a non-trivial commutative ring
(R,+, ·) such that, in addition, to every 0 ̸= r ∈ R there exists an inverse, i.e.
s ∈ R such that r · s = 1 and s · r = 1.

Example 10.6. We have the ring of integers (Z,+, ·).

Example 10.7. Given n ∈ Z≥1, we have the ring of integers modulo n, denoted
Zn - we already defined addition and multiplication elements of Zn, and all the
properties required in the definition of a ring are satisfied.

Example 10.8. Given a field k and n ∈ Z≥0, we have the ring Mk(n) of n-
by-n matrices over k, where addition is the usual element-wise addition and
multiplication is the usual matrix multiplication.

Example 10.9. Given a field k, we have the commutative ring k[x] of polyno-
mials over k in one variable x. If we want a formal definition, we can define
k[x] to consist of sequences

(c0, c1, . . .) ∈ kZ≥0

satisfying the condition that there exists n0 ∈ Z≥0 (depending on the sequence)
such that cn = 0 for all n ≥ n0. Addition of such sequences is element-wise,
while multiplication is by “convolution”:

(c0, c1, . . .) · (d0, d1, . . .) = (c0d0, c0d1 + c1d0, c0d2 + c1d1 + c2d0, . . .).

However, we can think of x as denoting the sequence (0, 1, 0, 0, . . .), and then
instead of (c0, c1, . . . , cn, 0, . . .) we can write

c0 + c1x+ c2x
2 + . . .+ cnx

n.

Example 10.10. Given a field k and a vector space V over k, we have the ring
Endk(V ) of k-linear endomorphisms of V , where addition is element-wise and
multiplication is composition.
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Example 10.11. Given an abelian group A, we have the ring End(A) of endo-
morphisms of A as a group, where addition is element-wise and multiplication
is composition.

Example 10.12. A ring R is called a skew field if every non-zero element
in it has an inverse. Thus, a field is a commutative skew field. The most
famous example of a non-commutative skew field is Hamilton’s quaternions.
We can construct them first as a vector space over R, with basis 1, i, j, k. This
gives the addition. As for multiplication, we define it to be the R-bilinear map
characterized by the following effect on our basis elements: of course, as the
notation hints, 1 · x = x and x · 1 = x for all x ∈ {1, i, j, k}. Next,

i · i = −1, j · j = −1, k · k = −1,

and finally
i · j = k, j · k = i, k · i = j

and
j · i = −k, k · j = −i, i · k = −j.

So, in some sense, the quaternions are like a “three-headed complex-number
mutation”.

Remark 10.13. Given a ring R, a subset S ⊂ R is called a subring if it is a
subgroup with respect to +, closed under ·, and contains 1. A subring of a ring
is a ring itself, inheriting the addition and multiplication.

10.2 Ring homomorphisms and isomorphisms

Definition 10.14. Let R and S be rings. A ring homomorphism from R to
S is a map ϕ : R → S satisfying ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1 · r2) =
ϕ(r1) · ϕ(r2) for all r1, r2 ∈ R, and also ϕ(1) = 1.

Remark 10.15. In the definition above, the preservation of addition by ϕ
implies that ϕ(0) = 0, but the preservation of multiplication does not necessarily
imply that ϕ(1) = 1 - for example, we can take ϕ to be constant with value 0,
it will preserve addition and multiplication, but will not in general send 1 to 1.

Example 10.16. Let k be a field, and let k[x] be the ring of polynomials in one
variable x over k. Let d ∈ k. We then have a ring homomorphism

evd : k[x] → k,

given by sending
∑n

i=0 cix
i to

∑n
i=0 cid

i, called evaluation at d. One also
denotes, given p ∈ k[x], p(d) := evd(p).

Remark 10.17. Given a ring homomorphism ϕ : R → S, we define its kernel
and image by

Ker(ϕ) := {r ∈ R | ϕ(r) = 0}
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and
Im(ϕ) := {ϕ(r) : r ∈ R}.

It is immediate that Im(ϕ) is a subring of S, but Ker(ϕ) is not, in general, a
subring of R - it does not contain 1 in general. It also has some extra properties
- we will discuss it in the next subsection.

Remark 10.18. We of course have the notion of a ring isomorphism - it
is a ring homomorphism which admits an inverse ring homomorphism. This is
equivalent to it being bijective. We then have the notion of isomorphic rings.

Example 10.19. Let k be a field and let V be a finite-dimensional vector space
over k; denote its dimension by n ∈ Z≥0. Choosing a basis e1, . . . , en for V over
k, we obtain an isomorphism of rings

ϕ : Endk(V ) →Mn(k)

as follows. Given T ∈ Endk(V ), write T (ej) =
∑

1≤i≤n cijei for cij ∈ k, and
then let the (i, j)-element of ϕ(T ) to be cij.

10.3 Two-sided ideals and quotient rings

Again we have some natural questions. First, given a surjective ring homomor-
phism ϕ : R → S, what can we say about Ker(ϕ)? We want to characterize its
properties so that every subset of R with such properties will be the kernel of
some surjective ring homomorphism. The relevant definition is:

Definition 10.20. Let R be a ring. A subset I ⊂ R is called a two-sided
ideal if:

1. I is a subgroup of R with respect to +.

2. For r ∈ R and s ∈ I we have r · s ∈ I and s · r ∈ I.

Remark 10.21. The second condition in the definition above, stronger than
being closed under multiplication, can be vaguely thought of as the analog of the
condition we had for a normal subgroup, of being closed under multiplication
and under conjugation.

Remark 10.22. If R is commutative, we simply say “ideal” instead of a “two-
sided ideal”. One has also notions of left ideals (where one requires r · s ∈ I
but not s · r ∈ I above) and right ideals (where one requires s · r ∈ I but not
r · s ∈ I above), but for commutative rings these are all the same.

Exercise 10.1. Let ϕ : R→ S be a homomorphism of rings. Then Ker(ϕ) is a
two-sided ideal in R.

Definition 10.23. Let R be a ring and let I ⊂ R be a two-sided ideal. We
define a ring, denoted R/I and called the quotient ring of R by I, as follows.
As an abelian group, we let R/I be the quotient group of (R,+) by its subgroup
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I. we define multiplication by (r1 + I) · (r2 + I) := r1 · r2 + I for r1, r2 ∈ I.
One checks that this does not depend on the choice of representatives, and that
in this way we obtain a ring R/I. We have the canonical projection ring
homomorphism π : R → R/I, sending r to r + I. It is surjective, and its
kernel is I.

Example 10.24. We constructed Zn as the quotient group of Z by the subgroup
⟨n⟩. However, in fact, ⟨n⟩ is an ideal in Z, and the ring structure on Zn is gotten
by thinking about it as the quotient ring of Z by ⟨n⟩.

Exercise 10.2. We have the first isomorphism theorem for rings. Namely,
let ϕ : R → S be a ring homomorphism and let I := Ker(ϕ). Then we have an
isomorphism of rings

R/I → Im(ϕ)

given by sending r + I to ϕ(r).

Definition 10.25. Let R be a ring. Let Σ ⊂ R be a subset. The two-sided
ideal in R generated by Σ is a two-sided ideal I ⊂ R satisfying the following
two properties:

1. Σ ⊂ I.

2. Given a two-sided ideal J ⊂ R such that Σ ⊂ J , we have I ⊂ J .

In other words, it is the “smallest” two-sided ideal in R containing Σ. It always
exists - it can be constructed as the intersection of all two-sided ideals in R
which contain Σ (there is always one, namely the whole R).

Definition 10.26. Let R be a commutative ring. Given r, s ∈ R we say that r
divides s (or that s is divisible by r) if there exists q ∈ R such that s = qr.
Given r ∈ R, we denote by (r) the subset of R which consists of elements which
are divisible by r. It is an ideal in R. In fact (check this!) it is the ideal
generated by the subset {r}. An ideal in R is called a principal ideal if it has
the form (r) for some r ∈ R.

Exercise 10.3. Show that there is a bijection between Z≥0 and the set of ideals
in Z, given by sending n to (n) = ⟨n⟩. This bijection satisfies: n1|n2 if and only
if (n2) ⊂ (n1).

Exercise 10.4. Let us consider the evaluation homomorphism evd : k[x] → k.
Its kernel is

Id := {p ∈ k[x] | p(d) = 0}.
Show that Id = (x−d). In other words, a polynomial has d as a root if and only
if it is divisible by the polynomial x − d. Since evd is surjective, we obtain an
isomorphism of rings

k[x]/(x− d) ∼= k.

Exercise 10.5. Recall division with reminder for polynomials. Given a field
k and given f, g ∈ k[x] with g ̸= 0, there exist q, r ∈ k[x] with the degree of r
smaller than the degree of g, such that f = qg + r.
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Claim 10.27. Let k be a field. Every ideal in k[x] is a principal ideal. Moreover,
given f1, f2 ∈ k[x], we have (f1) = (f2) if and only if for some c ∈ k× we have
f2 = c · f1. Thus, there is a bijection between the set of monic polynomials
in k[x] and the set of ideals in k[x], given by sending f to (f). This bijection
satisfies: f1|f2 if and only if (f2) ⊂ (f1).

Proof. Let us first see the second (“uniqueness”) assertion. If f1 = 0 then we
immediately see that f2 = 0 and the claim is clear. So let us assume that f1 ̸= 0.
We have f2 = gf1 and f1 = hf2 for some g, h ∈ k[x]. We then have f1 = hgf1.
Since f1 ̸= 0, by considering degrees we see that the degree of h and g must be
zero, and so in particular g ∈ k× and the claim follows.

Let us now be given an ideal I ⊂ k[x]; let us see that I is a principal ideal.
If I = {0} then the claim is clear, so assume that I ̸= {0}. Let f ∈ I be
non-zero of minimal possible degree. We claim that I = (f). It is immediate
that (f) ⊂ I. To see the converse, let g ∈ I (we want to see that g ∈ (f)).
Using division with reminder, there exist q, r ∈ k[x] such that g = qf + r and
the degree of r is less than the degree of f . But r = g − qf ∈ I, and therefore
by the minimality assumption on f we must have r = 0. Thus g = qf ∈ (f), as
desired.

10.4 Simple rings

Definition 10.28. A ring R is called simple if R ̸= {0} and IdlR = {0, R}.

Claim 10.29. Skew fields are simple. Partially conversely, a commutative sim-
ple ring is a field.

Proof. Let R be a skew field. Let I ⊂ R be a two-sided ideal, and assume that
I ̸= {0}. We want to see that I = R. It is enough to see that 1 ∈ I (why?). Let
0 ̸= r ∈ I. Since r is invertible, we have 1 = r−1r ∈ I.

Now, let R be a commutative simple ring (we want to see that R is a field).
Let 0 ̸= r ∈ R. We want to see that r is invertible, i.e. that there exists s ∈ R
such that sr = 1. Consider the ideal (r) ⊂ R. Since it is non-zero (as it contains
r), by our assumption it must be equal to R. In particular, 1 ∈ (r), i.e. there
exists s ∈ R such that sr = 1, as desired.

Example 10.30. Let k be a field and let n ∈ Z≥1. Then Mn(k) is a simple
ring.

Proof. I prefer to think about an n-dimensional vector space V over k and
Endk(V ), which is isomorphic toMn(k). Let I ⊂ Endk(V ) be a two-sided ideal,
and assume that I ̸= {0}. We want to see that I = Endk(V ). Let 0 ̸= T ∈ I.
Let 0 ̸= v ∈ Im(T ) and letw ∈ T−1(v). Let us choose a basis e1, . . . , en for V
over k. Given 1 ≤ i ≤ n, let us consider Si ∈ Endk(V ) sending ei to w and
ej to 0, for j ̸= i. Also, let Ti ∈ Endk(V ) be arbitrary such that Ti(v) = ei.
Then let us denote Mi,j := Tj ◦ T ◦ Si ∈ I. We have Mi,j(er) = ej if r = j and
Mi,j(er) = 0 if r ̸= j. Then IdV =

∑
1≤i≤nMi,i ∈ I and so I = Endk(V ), as

desired.
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10.5 Maximal ideals

Exercise 10.6. We have the correspondence theorem for rings. Namely, to
state a basic version, let us, given a ring R, denote by IdlR the set of two-sided
ideals in R. let R be a ring and let I ⊂ R be a two-sided ideal. Let us denote

IdlIR := {J ∈ IdlR | I ⊂ J}.

Then there is a bijection between IdlIR and IdlR/I , given by sending J ∈ IdlIR to

J/I := {j + I | j ∈ J} ∈ IdlR/I ,

and in the other direction, given by sending J ∈ IdlR/I to

{r ∈ R | r + I ∈ J} = π−1(J) ∈ IdlIR,

where we have denoted by π : R→ R/I the canonical projection.

Definition 10.31. Given a ring R, a two-sided ideal I ⊂ R is called maximal
if I ̸= R and for every two-sided ideal J ⊂ R satisfying I ⊂ J we have either
J = I or J = R.

Exercise 10.7. Let R be a ring and let I ⊂ R be a two-sided ideal. Show that
I is maximal in R if and only if R/I is a simple ring. In particular, if R is
commutative, an ideal I ⊂ R is maximal if and only if R/I is a field.

Claim 10.32. There is a bijection between the set of prime numbers and the
set of maximal ideals in Z, given by sending p to (p).

Proof. This follows from Exercise 10.3. Namely, translating in terms of the
bijection there, we are interested in Z≥0 with the partial order of division. We
have the minimum 1 (which corresponds to (1) = Z), and we are interested in
minimal elements in Z≥0 ∖ {1}. Those are clearly the prime numbers.

Claim 10.33. Let k be a field. There is a bijection between the set of irreducible
monic polynomials in k[x] and the set of maximal ideals in k[x], given by sending
p to (p). In particular, if k is algebraically closed, there is a bijection between k
and the set of maximal ideals in k[x], given by sending d to (x− d).

Proof. This follows from Claim 10.27. Namely, translating in terms of the bi-
jection there, we are interested in the set Mon of monic polynomials in k[x],
with the partial order of division. In Mon we have the minimum 1 (which corre-
sponds to (1) = k[x]), and we are interested in minimal elements in Mon∖ {1}.
Those are clearly the irreducible (monic) polynomials.

A powerful idea in mathematics is a duality between (some sorts of) spaces
and (some sorts of) commutative rings. Roughly, given a space, we can as-
sociate to it the commutative ring of (some sorts of) functions on that space
(where addition and multiplication are point-wise). How to go back, i.e. how to
associate (at least on some rough intuitive level) a space to a commutative ring?
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If we take our space to be the “line” k, where k is an algebraically closed field,
an algebraic substitute for “functions” on k is the ring k[x] of polynomials over
k in one variable x (indeed, every p ∈ k[x] defines a function k → k given by
d 7→ p(d)). There is a natural bijection between k and the set of maximal ideals
in k[x], given by sending d ∈ k to the maximal ideal (x − d). Thus, a general
idea is that the set of maximal ideals in a given commutative ring is some sort
of “space”, such that the ring can be thought of as the ring of functions on that
space. In this way, Z becomes the “ring of functions” on the “space” consisting
of prime numbers! More precisely, if R is a commutative ring and m ⊂ R is a
maximal ideal, recall that k(m) := R/m is a field. We can think of it as the
“field of possible values of functions in R at the point m”, and given a “function”
f ∈ R, its value at the “point” m is given by f + m ∈ R/m. Then a number
n ∈ Z gives a “function” on the set of prime numbers, whose value at a prime
p is [n]p.

10.6 Integral domains, principal ideal domains

Definition 10.34. Given a ring R, we denote by R× the subset of R consisting
of invertible elements (with respect to the multiplicatiom). We call elements in
R× the units in R. The set R× is equipped with the multiplication it inherits
from R and, together with it, it becomes a ring.

Lemma-Definition 10.35. Let R be a commutatvie ring. The relation “di-
vides” (i.e., given r, s ∈ R, r|s if there exists q ∈ R such that r = qs) is
transitive and reflexive. If, for r, s ∈ R, we have r|s and s|r, we say that r
and s are associates, and denote r ∼ s. If r and s are associates then given
any t ∈ R we have r|t if and only if s|t (and also t|r if and only if t|s). Put
differently, r and s are associated if and only if (r) = (s). The relation ∼ is an
equivalence relation.

Definition 10.36. A commutative ring R is called an integral domain if for
r, s ∈ R, if rs = 0 then r = 0 or s = 0.

Exercise 10.8. Let R is an integral domain. Given r, s ∈ R, we have r ∼ s if
and only if s = qr for some q ∈ R×.

Definition 10.37. Let R be an integral domain. An element p ∈ R is called
prime if p is not zero and not a unit, and given r, s ∈ R such that p|rs, we
have either p|r or p|s. An element p ∈ R is called irreducible if p is not zero
and not a unit, and given r, s ∈ R such that p = rs, we have either s ∼ p (i.e.
r ∈ R×) or r ∼ p (i.e. s ∈ R×).

Exercise 10.9. In an integral domain, prime elements are irreducible.

Definition 10.38. An integral domain is called a principal ideal domain if
every ideal in it is principal.

Example 10.39. The rings k[x] and Z are principal ideal domains.
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Claim 10.40. In principal ideal domains, irreducible elements are prime.

Proof. Let R be a principal ideal domain and let p ∈ R be an irreducible ele-
ments. Let r, s ∈ R and suppose that p|rs (we want to see that p|r or p|s). Let
us consider the ideal

(p, r) := {q1p+ q2r : q1, q2 ∈ R} ⊂ R.

Since R is a principal ideal domain, there exists t ∈ R such that (p, r) = (t). So
(p) ⊂ (p, r) = (t) and therefore t|p. Since p is irreducible, we have either t ∼ 1
or t ∼ p. Notice that t|r (since r ∈ (p, r) = (t)) and therefore in the latter case
(that t ∼ p) we obtain p|t|r as desired. So let us assume that t ∼ 1. This means
that (p, r) = (1) and therefore there exist q1, q2 ∈ R such that 1 = q1p + q2r.
Then

s = s · 1 = s(q1p+ q2r) = sq1p+ q2sr.

The first summand is divisible by p, and the second summand is also divisible
by p, since sr is. Thus s is divisible by p, as desired.
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