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Chapter 1

Introduction

These notes are partially based on notes written by Zavosh Amir Khosravi
(which are in their turn partially based on notes written by Serin Hong) as well
as books by Davenport and Stein.

5



6 CHAPTER 1. INTRODUCTION



Chapter 2

Numbers, factorization,
prime numbers and the
simplest Diophantine
equations

2.1 The numbers

The set of natural numbers N = {1, 2, 3, · · · } is the most basic; As Kronecker
said, ”God made the integers, all else is the work of man”. We have addition
of natural numbers, multiplication, as well as the order relation (the relation
m ≤ n, which can be characterized through addition as saying: there exists `
s.t. n = m+ `). We will not rigorously define all this, and will not make a list
of properties. A very nice possible approach is to define the natural numbers as
a set N together with an element 1 ∈ N and a function s : N → N (thought of
secretly as s(n) = n+ 1), such that:

1. 1 is not in the image of s.

2. s is injective (i.e. if s(m) = s(n) then m = n).

3. If a subset S ⊂ N satisfies 1 ∈ S and s(n) ∈ S for every n ∈ S, then
S = N.

All can then be patiently constructed and proved from these axioms (in the
setting of axiomatic set theory). Notice that the last axiom is a reformulation
of the principle of mathematical induction:

Principle 2.1.1. Let P (n) be a statement, depending on n ∈ N. Assume that:

• P (1) is correct.

7
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• For every n ∈ N, if P (n) is correct then P (n+ 1) is correct.

Then P (n) is correct for every n ∈ N.

It is not hard to show that this principle is equivalent to the following one,
which is more convenient sometimes:

Principle 2.1.2. Let P (n) be a statement, depending on n ∈ N. Assume that:

• P (1) is correct.

• For every n ∈ N, if P (m) is correct for all m < n, then P (n) is correct.

Then P (n) is correct for every n ∈ N.

As an example of using this principle, let us show:

Proposition 2.1.3. Let S ⊂ N be a subset. If S is non-empty, then there exists
a minimal element in S, i.e. an element m ∈ S such that for every n ∈ S we
have m ≤ n.

Proof. Let us consider the statement P (n): If for a subset S ⊂ N one has n ∈ S,
then S contains a minimal element. If we know all P (n)’s to be correct, the
proposition will follow, since given a non-empty S, there exists n ∈ S, and then
by P (n) we will know that S contains a minimal element. “Base of induction”:
The statement P (1) is correct, since if 1 ∈ S then 1 is a minimal element in
S (as it is minimal in the whole N). “Step of induction”: Let now n be given
and assume that P (m) is correct for all m < n; We want to establish P (n). Let
then S ⊂ N be such that n ∈ S. If n itself is minimal in S, we are done. If
not, there exists m ∈ S such that m < n. Then by the correctness of P (m) we
deduce that S contains a minimal element.

One can then consider “artificially” formal differences m−n of natural num-
bers, with the identification of m− n with m′ − n′ whenever m+ n′ = n+m′.
This gives the set of integers Z. One can define addition, multiplication and the
order relation on Z, and prove all desired elementary properties. In particular,
one has the once-avantgarde element n − n, which does not depend on n and
denoted 0. It is common to think that once upon the time it was not clear, why
one needs a symbol for “nothing”.

2.2 Divisibility

Definition 2.2.1. Let m,n ∈ Z. We define m|n (in words: m divides n or n is
divisible by m) if there exists k ∈ Z such that n = m · k.

Lemma 2.2.2. Let k,m, n ∈ Z. One has:

1. 1|n, n|n, −n|n.

2. k|m and m|n =⇒ k|n.
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3. m|n and n|m ⇐⇒ m ∈ {n,−n}.

4. k|m and k|n =⇒ k|m+ n.

5. k|m =⇒ k|mn.

Proof.

1. n = n · 1 , n = 1 · n, n = (−1) · (−n)...

2. m = k · q1, n = m · q2 =⇒ n = k · (q1 · q2).

3. If m = 0 or n = 0 then the statement is clear, so let’s assume m 6= 0 and
n 6= 0. If we have n = m · q1,m = n · q2 then n = n · (q2 · q1). Since n 6= 0,
we get 1 = q2 · q1. By Lemma 2.2.4 that follows, we obtain q1 ∈ {1,−1}
and the claim follows.

4. m = kq1, n = kq2 =⇒ m+ n = k(q1 + q2).

5. m = kq =⇒ mn = k(qn).

Definition 2.2.3. Let n ∈ Z. We say that n is invertible if there exists m ∈ Z
such that 1 = m · n.

Lemma 2.2.4. The invertible elements in Z are 1 and −1.

Proof. Clearly 1 and −1 are invertible (1 = 1 · 1, 1 = (−1) · (−1)). The element
0 is not invertible (because m · 0 = 0 for all m, so there is no m for which
m · 0 = 1). If |n| > 1 then n is not invertible because then |mn| > 1 for m 6= 0
and mn = 0 for m = 0, so in no case can we have mn = 1.

Remark 2.2.5. Let us say that n,m ∈ Z6=0 are associate, if m|n and n|m.
Equivalently, by Lemma 2.2.2, if m ∈ {n,−n}. This is an equivalence relation.
In terms of divisibility, we should not distinguish associate numbers. Thus,
when studying gcd’s, primes and so on, it is in fact “most correct” to do so in
terms of the equivalence classes of the above equivalence relation. The set of
equivalence classes is in clear bijection with Z≥0 (each equivalence class has a
unique non-negative element).

Remark 2.2.6. If n is divisible by d and d 6= 0, there exists a unique m ∈ Z
such that n = md. We denote this m by n

d .

2.3 Division with remainder

Theorem 2.3.1. Let m ∈ Z6=0 and n ∈ Z. There exists a unique pair (q, r) ∈
Z× [0, |m| − 1] for which

n = qm+ r.
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Proof. Let us prove uniqueness first. If (q1, r1), (q2, r2) ∈ Z× [0, |m|−1] are two
pairs such that n = q1m+r1 and n = q2m+r2 then we get q1m+r1 = q2m+r2
so (q2−q1)m = r1−r2. Notice that we have r1−r2 ≤ (|m|−1)−0 = |m|−1 and
also r1−r2 ≥ 0−(|m|−1) = −(|m|−1), in other words |r1−r2| ≤ |m|−1. But,
on the other hand, |(q2 − q1)m| ≥ |m| if q2 − q1 6= 0, i.e. if q1 6= q2. Therefore
we must have q1 = q2. Then from the equation q1m + r1 = q2m + r2 we also
get r1 = r2.

Now let us establish existence. We can assume that n ≥ 0 because if −n =
qm + r then n = (−q)m + (−r). We proceed by induction on n. Base case:
n = 0. Then the pair (0, 0) works. Induction step: Assume that the existence
claim holds for some n ≥ 0, and let us show it for n+ 1. Write n = qm+ r. If
r < m− 1, then the pair (q, r + 1) works for n+ 1. If r = m− 1, then the pair
(q + 1, 0) works for n+ 1.

2.4 gcd and Euclid’s algorithm

Definition 2.4.1. Let m,n ∈ Z and let d ∈ Z. We say that d is the greatest
common divisor of m and n (abbreviating “gcd”) if:

1. d|m and d|n.

2. For every e ∈ Z satisfying e|m and e|n, one has e|d.

Lemma 2.4.2. Let m,n ∈ Z. Any two gcd’s of m and n are associate.

Proof. If d, e are both gcd’s of m and n, then by the definition we have e|d
because e is a divisor and d is a gcd, and in the same way we have d|e. Thus d
and e are associates.

Remark 2.4.3. One should interpret the above lemma as saying that the gcd is
unique, by our remark above that associate numbers should not be distinguished
when talking about divisibility.

Theorem 2.4.4 (Euclid). Let m,n ∈ Z. Then there exists a gcd for m and n.

Proof. The proof is via an algorithm (“Euclid’s algorithm”)/induction, using
Lemma 2.4.5 that follows.

1. If m = 0, it is easy to see that n is the gcd of m and n.

2. If m 6= 0, we perform division with remainder, writing n = qm + r with
r ∈ [0, |m| − 1]. Then by Lemma 2.4.5 below, the gcd of m and n will be
the same as the gcd of r and m, so we replace the pair (n,m) with the
pair (m, r). and return to the first step.

The algorithm will end: If m = 0 this is clear; if n = 0 this is clear (after
the swap of the second step we will have m = 0); if |n| = |m| also clear because
after the second step we will have m = 0; if |n| < |m| then after the second step
we will have |n| > |m|; and finally, if |n| > |m|, then max{|m|, |n|} becomes
strictly smaller after the second step.
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Lemma 2.4.5. Let n = qm+ r. Then if d is the gcd of r and m, it is also the
gcd of m and n.

Proof. Since d|m, we have d|qm. Then, since d|qm and d|r, we have d|qm+ r,
i.e. d|n. Furthermore, if e|m and e|n, we have e|n− qm, i.e. e|r, and therefore,
since d is the gcd of r and m, we get e|d.

Example 2.4.6. Let us find the gcd of −1740 and 522:

• −1740 = (−4) · 522 + 348.

• 522 = 1 · 348 + 174.

• 348 = 2 · 174 + 0.

Therefore, the gcd of our two numbers is 174 (or −174).

We will denote the gcd of the numbers m and n by gcd(m,n). For conve-
nience, we will usually mean by that the non-negative representative of the set
of gcd’s (which is an equivalence class for being associate).

2.5 Ideals and gcd

Definition 2.5.1. Let I ⊂ Z be a subset. We say that I is an ideal, if the
following hold:

1. 0 ∈ I.

2. If m,n ∈ I then m+ n ∈ I.

3. If m ∈ I and n ∈ Z, then mn ∈ I.

Example 2.5.2. Let d ∈ Z. Consider then

(d) := {m ∈ Z | d|m} = {m ∈ Z | ∃e s.t. m = ed}.

It is easy to see that (d) is an ideal.

Remark 2.5.3. The previous example shows that we can think of an ideal as a
set of numbers which potentially can be the set of all numbers that are divisible
by a given fixed number.

Example 2.5.4. Let d1, . . . , dr ∈ Z. Consider then

(d1, . . . , dr) := {m ∈ Z | ∃e1, . . . , er s.t. m = e1d1 + . . .+ erdr}.

It is easy to see that (d1, . . . , dr) is an ideal.

Proposition 2.5.5. Let I ⊂ Z be an ideal. Then there exists d ∈ Z such that
I = (d). Any two such d’s are associate.
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Proof. It is clear that if (d1) = (d2) then d1 and d2 are associates, so we are left
with proving the existence.

If I has no elements other than 0 then I = (0) and we are done. Otherwise,
there exists m ∈ I such that m 6= 0. Since −m = (−1) ·m ∈ I, and either m or
−m is positive, we see that I ∩Z>0 is non-empty. Let d be the minimal element
of I ∩ Z>0. We claim now that I = (d). First, notice that d ∈ I and therefore
md ∈ I for every m ∈ Z, and hence (d) ⊂ I. Conversely, let m ∈ I (we want
to show that m ∈ (d). We perform division with remainder: m = qd+ r where
0 ≤ r ≤ d−1. Since m ∈ I and d ∈ I we have r = m−qd ∈ I. By the minimality
of d, we therefore must have r = 0. Hence m = qd and so m ∈ (d).

Remark 2.5.6. Therefore, the ideals in Z are in bijection with equivalence
classes of integers up to being associate. In fact, the “correct” way of thinking
about divisibility issues is in terms of ideals.

Discussion 2.5.7 (gcd via ideals). Let now m,n ∈ Z. By Proposition 2.5.5,
there exists d ∈ Z such that (d) = (m,n). We claim that d is the gcd of m and
n. Indeed, since m ∈ (m,n) = (d), we have d|m. Similarly, d|n. To proceed,
notice that since d ∈ (d) = (m,n), there exist f, g such that d = fm + gn.
Then, if some e satisfies e|m and e|n, we obtain e|fm+ gn = d. This concludes
showing that d is the gcd of m and n.

Remark 2.5.8. The last discussion teaches us that the gcd of m and n is
an integral linear combination of m and n, i.e. that there exist f, g such that
d = fm+gn. This also follows easily from Euclids algorithm, as we demonstrate
in the next example.

Example 2.5.9. We found earlier that 174 is the gcd of −1740 and 522. Let
us find how the former can be expressed as an integral linear combination of the
latter:

174 = 1·522+(−1)·348 = 1·522+(−1)·(1·(−1740)+5·522) = (−4)·522+(−1)·(−1740).

2.6 Linear equations in two variables - existence
of solutions

Let us apply the above to study the solutions of a linear equation mx+ ny = r
(here m,n, r ∈ Z and we seek solutions (x, y) ∈ Z2).

Proposition 2.6.1. The equation mx + ny = r has a solution if and only if
gcd(m,n)|r.

Proof. This is clear in view of the above theory, since the existence of a solu-
tion to the equation is, by definition, equivalent to the statement r ∈ (m,n).
Denoting d = gcd(m,n), we have (m,n) = (d) and therefore the existence of a
solution to the equation is equivalent to r ∈ (d), i.e. to d|r.
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2.7 Relatively prime numbers

Definition 2.7.1. We say that m and n are relatively prime if gcd(m,n) = 1.
Equivalently, if no d > 1 divides both m and n.

Lemma 2.7.2. The equation mx+ ny = 1 has a solution if and only if m and
n are relatively prime.

Proof. The equation mx + ny = 1 has a solution if and only if gcd(m,n)|1,
which in turn is equivalent to gcd(m,n) = 1.

Lemma 2.7.3. Suppose that either m or n is not zero. Denote g := gcd(m,n).
Then m

g and n
g are relatively prime.

Proof. We can write xm+ yn = g. Then, dividing by g, we obtain xmg + y ng =
1.

Lemma 2.7.4. Let m and n be relatively prime. If m|ne then m|e.

Proof. Write 1 = fm + gn. Then e = 1 · e = fme + gne. Clearly m|fme and
m|ne|gne. Hence m|fme+ gne = e.

Lemma 2.7.5. Let m and n be relatively prime. If m|e and n|e then mn|e.

Proof. Since m|e, we can write e = km for some k. Since n|e = km and n is
relatively prime to m, by the previous lemma we obtain n|k. Thus we can write
k = `n for some `. Then e = km = `nm, i.e. nm|e. Write 1 = fm+ gn. Then
e = 1 · e = fme + gne. Clearly m|fme and m|ne|gne. Hence m|fme + gne =
e.

Lemma 2.7.6. Suppose that m and n are relatively prime, and that k and n
are relatively prime. Then mk and n are relatively prime.

Proof. Write em+ fn = 1, gk + hn = 1. Then

1 = (em+ fn)(gk + hn) = eg ·mk + (emh+ fgk + fhn) · n.

2.8 Linear equations in two variables - finding
all solutions

Proposition 2.8.1. Suppose that either m or n is not zero. Suppose that the
equation mx+ny = r has a solution (x0, y0). Denote g := gcd(m,n). Then the
general solution of the equation is:

(x0 −
n

g
t, y0 +

m

g
t), t ∈ Z.
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Proof. First of all, (x0 − n
g t, y0 + m

g t) is indeed a solution for every t ∈ Z:

m(x0 −
n

g
t) + n(y0 +

m

g
t) = r.

Next, let (x1, y1) be a solution. We will assume that m 6= 0 (the case n 6= 0 is
dealt with analogously). We have

m(x1 − x0) + n(y1 − y0) = 0.

Therefore m|n(y1 − y0), and thus m
g |

n
g (y1 − y0). Since m

g and n
g are relatively

prime, we have m
g |y1−y0. Therefore there exists t ∈ Z such that m

g t = y1−y0, or

y1 = y0+m
g t. Substituting this into the equation, we obtainm(x1−x0)+mn

g t = 0
and so, since m 6= 0, x1 − x0 + n

g t = 0, or x1 = x0 − n
g t.

2.9 Primes

Definition 2.9.1. Let p ∈ Z≥1 be not equal to 1. We say that p is prime if for
all m,n ∈ Z≥1 one has the implication:

p = mn =⇒ p = m or p = n.

In other words, if m ∈ Z≥1 satisfies m|p then m = p or m = 1.

We have the following property:

Lemma 2.9.2. Let p be a prime and n ∈ Z. Then either p|n or p and n are
relatively prime.

Proof. gcd(p, n) divides p, and hence is either p or 1. If it is p then p|n. If it is
1, then p and n are relatively prime.

We have the following important characterization of primes:

Claim 2.9.3. Let p ∈ Z≥1 be not equal to 1. The following conditions are
equivalent:

1. For all m,n ∈ Z one has the implication:

p|mn =⇒ p|m or p|n.

2. p is prime.

Proof. Suppose that the first condition holds. If we have p = mn, then in
particular p|mn and therefore p|m or p|n, let’s say the first. Then we have
p|m but also m|p (because p = mn) and therefore p and m are associates, and
therefore are equal (as both are positive).

Conversely, suppose that the second condition holds. Suppose that we have
p|mn. Then by Lemma 2.9.2 either p|m, in which case we are done, or p and m
are relatively prime, in which case p|n by Lemma 2.7.4.
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Remark 2.9.4. Again, it is more correct to talk about primeness of equivalence
classes of integers up to being associate (and thus, in fact, about prime ideals).

Theorem 2.9.5 (Euclid). There are infinitely many primes.

Proof. If there are finitely many primes, say p1, p2, . . . , pr, we can form the
following number:

n := p1 · p2 · (. . .) · pr + 1.

By Lemma 2.9.6 that follows, there exists a prime p such that p|n. Then for
every 1 ≤ i ≤ r we have p 6= pi, since pi|n would force pi|1. Hence there is a
new prime p, contradicting p1, p2, . . . , pr being all primes.

Lemma 2.9.6. Let n ∈ Z≥1. Then either n = 1 or there exists a prime p such
that p|n.

Proof. We proceed by induction on n. For n = 1 the claim is clear. Let n > 1
and suppose that the claim holds for all numbers in [1, n− 1]. If n is prime, the
claim is clear for n. If not, then there exists m ∈ Z≥1 such that m|n but neither
m = n nor m = 1. Thus, by the induction assumption, there exists a prime p
such that p|m. Since m|n, we get p|n and we are done.

2.10 Factorization into primes

Theorem 2.10.1. Let n ∈ Z≥1.

1. There exists a list of primes p1, . . . , pr such that

n = p1p2 · · · pr

(n = 1 is considered to be a product of an empty list of primes).

2. If q1, . . . , qs is another list of primes such that

n = q1q2 · · · qs,

then the two lists are the same up to reordering; That is, for every prime
p, the number of 1 ≤ i ≤ r for which pi = p is equal to the number of
1 ≤ j ≤ s for which qj = p.

Proof. For existence, we proceed by induction on n. If n = 1, we should consider
it as the product of the empty list of primes. Assume thus that n > 1. If n is
prime, then it is the product of the list n consisting of one prime. If n is not
prime, by Lemma 2.9.6 there exists a prime p such that p|n. Since n

p < n, we
can assume by induction that n

p = p1 · · · pr for some primes p1, . . . , pr. Then
n = p1 · · · pr · p.

The uniqueness claim will be clear from the following characterization: The
number k of 1 ≤ i ≤ r for which pi = p is the unique number for which pk divides
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n and pk+1 does not divide n. Indeed, clearly pk divides n. Showing that pk+1

does not divide n is equivalent to showing that p does not divide n
pk

. Notice
that n

pk
is written as a product of primes, non of which is p. Therefore p does

not divide it (because if it would, it would divide on of the primes appearing in
the product, and therefore would be equal to it).

We can rephrase the unique factorization into primes as follows. Let us
consider the set of primes P ⊂ Z≥1. Let us denote by Exp the set of functions
α : P → Z≥0 for which

{p ∈ P | α(p) 6= 0}
is finite. Thus, more concretely, ordering the primes

p1 < p2 < . . .

we can depict α as a sequence

α(p1), α(p2), . . .

all of whose entries are 0 after a certain point. For every α ∈ Exp, we can form
a well defined product ∏

p∈P
pα(p),

because almost all (i.e., all except finitely many) terms of the product are equal
to 1, so we can disregard them.

Proposition 2.10.2 (Unique factorization). One has a bijection

Exp→ Z≥1
given by

α 7→
∏
p

pα(p).

Example 2.10.3. One has

819 = 20 · 32 · 50 · 71 · 110 · 131 · 170 · . . . .

2.11 Another proof of Euclid’s theorem

Let us sketch a different proof of the fundamental Theorem 2.9.5, which requires
some knowledge of analysis (due to Euler). Consider the infinite sum of positive
numbers: ∑

n∈Z≥1

1

n
=

1

1
+

1

2
+

1

3
+ . . . .

By the unique factorization into primes, one can write this as a product:∑
n∈Z≥1

1

n
=
∏
p∈P

(
1

p0
+

1

p1
+

1

p2
+ . . .

)
=
∏
p∈P

1

1− p−1
.

Therefore, would there be finitely many primes, the sum would converge. But,
by basic analysis, this sum does not converge.
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2.12 Statistics of primes

One can think as follows. The additive structure of Z≥1 is very simple. The
multiplicative structure of Z≥1 is also very simple (as evidenced by proposition
2.10.2). What is highly complicated is the relation between the two structures.
One of the basic questions one can ask about this relation is something as
follows: The m-th prime number, how many times one should add 1 to itself
to obtain it? Much more than m? Quite equivalently, one can ask how many
primes one has in the interval [1, n] for a given n.

Let us denote therefore by π(n) the number of prime numbers in the interval
[1, n]. Euclid’s theorem gives the most basic information, that

lim
n→∞

π(n) =∞,

One has the much more precise very famous theorem:

Theorem 2.12.1 (Prime number theorem). One has

lim
n→∞

π(n)
n

ln(n)

= 1.

In other words, for every 0 < ε there exists N such that for n > N the ratio
π(n)
n of primes in the interval [1, n] lies between 1−ε

ln(n) and 1+ε
ln(n) .

Example 2.12.2. The number of primes between 1 and n := 1000000 is 78498.
On the other hand, n

ln(n) ≈ 72382.

Let us give a very very crude heuristic for the prime number theorem (which
will be unsatisfying, but a start). First, notice that if a number m is composite,
then it has a prime factor ≤

√
m (this is since it has at least to prime factors, and

if those two are >
√
m, their product, and even more so m, is > m). Therefore,

if we want to count primes in [
√
n, n], we need to remove all numbers divided

by primes <
√
n. The proportion of numbers not divided by p is around 1− 1

p .
Therefore, crudely assuming that to not be divided by primes are independent
events, we get that the proportion of primes in the interval [

√
n, n] is around

α =
∏
p<
√
n

(
1− 1

p

)
.

We have:

α−1 =
∏
p≤
√
n

1

1− p−1
=

∑
m which can be written

as a product of primes <
√
n

1

m
∼
∑
m≤n

1

m
∼ ln(n)

and thus α ∼ 1
ln(n) .
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In fact, a better approximation to π(n) than n/ln(n) is

Li(n) :=

∫ n

2

dt

ln(t)

(it kinds of aggregates all the local densities 1
ln(t) adjusting them as we travel

along the line).

Example 2.12.3. One has Li(1000000) ≈ 78626 - much better!

One has

lim
n→∞

Li(n)
n

ln(n)

= 1

and therefore the prime number theorem is equivalent to

lim
n→∞

π(n)

Li(n)
= 1.

The hyper-celebrated Riemann hypothesis is equivalent to the statement that

|π(n)− Li(n)| = O(
√
n · ln(n)),

which means that there exists C > 0 such that

|π(n)− Li(n)| ≤ C · (
√
n · ln(n)).

Remark 2.12.4. Gauss (around the age of 15) made tables of Li(n) and con-
jectured that the density of primes around a given number n is around 1

ln(n) .

2.13 gcd and lcm in terms of prime factorization

Given m,n ∈ Z≥1, let us write

m =
∏
p∈P

pα(p), n =
∏
p∈P

pβ(p).

Then it is easy to see that m|n if and only if α(p) ≤ β(p) for all p ∈ P . It is
therefore easy to see that

gcd(m,n) =
∏
p∈P

pmin{α(p),β(p)}.

We can also define the lowest common multiple of m,n as a number k such that
m|k, n|k and additionally if m|` and n|` for some `, then k|`. Then it is easy
to see that

lcm(m,n) =
∏
p∈P

pmax{α(p),β(p)}.

Remark 2.13.1. We see that

lcm(m,n) =
mn

gcd(m,n)

(because max{a, b} = a+ b−min{a, b}).
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2.14 Pythagorean triples

Definition 2.14.1. A Pythagorean triple is a solution (x, y, z) ∈ Z3 to the
equation

x2 + y2 = z2.

In other words, we are seeking right-angle triangles whose side lengths are inte-
gers.

Definition 2.14.2. A Pythagorean triple (x, y, z) is said to be primitive, if
x, y, z are relatively prime (equivalently, some two numbers out from x, y, z are
relatively prime).

Given a Pythagorean triple (x, y, z), let g = gcd(x, y, z). Then the triple
(xg ,

y
g ,

z
g ) is a primitive Pythagorean triple. And of course conversely, if (x, y, z)

is a Pythagorean triple, then so is (dx, dy, dz). This shows that it is enough to
understand primitive Pythagorean triples.

Let (x, y, z) be a primitive Pythagorean triple. We can assume that x, y, z >
0 (all other possibilities are easily recovered from those). Exactly one out of x, y
is even; Indeed, if both x, y are odd, then writing x = 2x0+1, y = 2y0+1, z = 2z0
we obtain x2 + y2 = 4(· · · ) + 2 and z2 = 4(· · · ) so x2 + y2 − z2 = 4(· · · ) + 2, so
it can’t be 0.

Suppose then, without loss of generality, that x is even and y is odd - all
other possibilities will be easily recovered from those. Write x = 2x0. Then

4x20 = z2 − y2 = (z − y)(z + y).

Notice that

gcd(z − y, z + y) = gcd(z − y, 2y) = 2 · gcd(z − y, y) = 2 · gcd(z, y) = 2.

Therefore, we can write z − y = 2m, z + y = 2n and gcd(m,n) = 1. We obtain

x20 = mn.

Since m and n are relatively prime, it follows easily that m and n are squares -
m = m2

0, n = n20. We obtain

z =
z − y

2
+
z + y

2
= n20 +m2

0

and

y = −z − y
2

+
z + y

2
= n20 −m2

0,

and thus
x2 = z2 − y2 = 4n20m

2
0,

so
x = 2n0m0.
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Now, conversely, for integers m0, n0 the triple(
2n0m0, n

2
0 −m2

0, n
2
0 +m2

0

)
is a Pythagorean triple, which is primitive if gcd(n0,m0) = 1 and one of n0,m0

is even.

Now we present a different approach to Pythagorean triples, a geometric
one. A point (x, y) ∈ R2 is said to be rational, if x, y ∈ Q. For a subset A ⊂ R2,
we denote

AQ = {(x, y) ∈ A | x, y ∈ Q}.

Imagine the unit circle in the Cartesian plane:

S := {(X,Y ) ∈ R2 | X2 + Y 2 = 1}.

Given (X,Y ) ∈ SQ, we write

X =
x

z
, Y =

y

w

where w, z ∈ Z≥1 and

gcd(x, z) = 1, gcd(y, w) = 1.

We must have z = w; Indeed,

w2x2 + z2y2 = z2w2

and this shows easily that divisors of z are also divisors of w and vice versa.
Therefore,

(X,Y ) = (
x

z
,
y

z
)

with
gcd(x, z) = 1, gcd(y, z) = 1.

We see that (x, y, z) is a primitive Pythagorean triple. Conversely, given a
primitive Pythagorean triple (x, y, z) we can form the point

(
x

z
,
y

z
) ∈ SQ.

This shows that SQ is in bijection with the set primitive Pythagorean triples
(x, y, z) with z > 0.

The question now is how to construct points of SQ.

We say that a line L ⊂ R2 is rational, if it can be written in the form

L = {(x, y) ∈ R2 | ax+ by = c}

for some a, b, c ∈ Q (where (a, b) 6= (0, 0)).
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Lemma 2.14.3. 1. Let L,M ⊂ R2 be two rational lines. Then all points in
L ∩M are rational.

2. Let L ⊂ R2 be a rational line. Then if one of the points in L∩S is rational,
so are all.

Proof.

1. This follows from the method of solving a system of two linear equations in
two variables by substitution - all we do is multiply/divide/add/substract
the coefficients, to obtain the solutions.

2. Writing ax+by = c for the equation of L with rational coefficients, suppose
b 6= 0 (the other case, a 6= 0, is dealt with analogously). Then we can
rewrite

L = {(x, y) ∈ R2 | y = ex+ f}

for some e, f ∈ Q. Then the intersection points L∩ S correspond to x for
which

(1 + e2)x2 + 2efx+ (f2 − 1) = 0.

So if there are two intersection points (the case of 0 or 1 intersection
points is clear), they correspond to two roots x of the equation. But
if a quadratic equation αx2 + βx + γ = 0 with rational coefficients has
one rational root, then the other root must also be rational, since the
sum of the roots is equal to −β

α . Therefore the x-coordinate of the second
intersection point will be also rational, and therefore also the y-coordinate
(because y = ex+ f).

Let us consider now

L := {(X,Y ) ∈ R2 | Y = 0}

(the x-axis). It is not hard to see that there is a bijection between LQ and
SQ \ {(0, 1)}, as follows: to P ∈ LQ we associate the unique intersection point
of S with the line passing through P and (0, 1). And to P ∈ SQ \ {(0, 1)} we
associate the unique intersection point of L with the line passing through P and
(0, 1).

Let us compute the concrete form of the bijection. Given (t, 0) ∈ LQ, The
line through (0, 1) and (t, 0) has the form

L′ = {(0, 1) + s(t, 0) : s ∈ R}.

We find the intersection points in L′ ∩ S in terms of s, and obtain an equation

(1 + t2)s2 − 2s = 0.
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The solution s = 0 corresponds to the point (0, 1). The othe solution is s = 2
1+t2 ,

giving the point (
2t

1 + t2
, 1− 2

1 + t2

)
.

Let us write
t =

n

m

with gcd(n,m) = 1 and m ∈ Z≥1. Then our point is written(
2nm

n2 +m2
,
n2 −m2

n2 +m2

)
,

corresponding to the Phytagorean triple

(2nm, n2 −m2, n2 +m2).



Chapter 3

Modular arithmetic

3.1 Definitions and illustrations

Definition 3.1.1. Let us fix d ∈ Z≥1. For m,n ∈ Z, we say that m is congurent
to n modulo d, and write

m ≡d n

or

m ≡ n (mod d)

if d|n−m.

Lemma 3.1.2. The relation ≡d is an equivalence relation on Z. In detail:

1. For all n ∈ Z, n ≡d n.

2. For all n,m ∈ Z, if n ≡d m then m ≡d n.

3. For all n,m, k ∈ Z, if n ≡d m and m ≡d k then n ≡d k.

Lemma 3.1.3. Let us perform division with remainder:

n = q1d+ r1, m = q2d+ r2

where r1, r2 ∈ [0, . . . , d− 1]. Then m ≡d n if and only if r1 = r2.

Proof. We have m ≡d n i.f.f.

d|n−m = (q1 − q2)d+ (r1 − r2).

This happens i.f.f. d|r1−r2. Since |r1−r2| ≤ d−1, this happens i.f.f. r1−r2 = 0,
i.e. r1 = r2.

The congruence relation interacts well with addition and multiplication:

23
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Lemma 3.1.4. If m1 ≡d m2 and n1 ≡d n2, then

m1 + n1 ≡d m2 + n2

and
m1n1 ≡d m2n2.

Proof. Let us prove the second claim, for example. We have

m2n2 −m1n1 = m2(n2 − n1) + (m2 −m1)n1.

Since d|n2−n1 and d|m2−m1, we have also d|m2(n2−n1) + (m2−m1)n1.

Since congruence modulo d is an equivalence relation, we can form equiva-
lence classes (which are in this case called residue classes modulo d), i.e. consider
the sets of the form

[n]d = {m | m ≡d n} ⊂ Z.
One can also write a bit more explicitly

[n]d = n+ Zd = {n+ kd : k ∈ Z}.

The set of all residue classes has d elements, and we denote it by Zd. Each
n′ ∈ [n]d is called a representative of the residue class [n]d.

Example 3.1.5.

Z3 =
{
{· · · ,−6,−3, 0, 3, 6, · · · }

{· · · ,−5,−2, 1, 4, 7, · · · }

{· · · ,−4,−1, 2, 5, 8, · · · }
} (3.1.1)

From the last lemma it follows that the set Zd has well-defined addition and
multiplication: If we need to add/multiply to classes, we choose representatives
of them, add/multiply these integers, and then take residue class of the result.
The point is that the end answer does not depend on the representatives chosen,
thanks to the lemma. For example:

+ [0]3 [1]3 [2]3
[0]3 [0]3 [1]3 [2]3
[1]3 [1]3 [2]3 [0]3
[2]3 [0]3 [1]3 [2]3

Example 3.1.6. Let us notice that

12 ≡4 32 ≡4 1

and
02 ≡4 22 ≡4 0.

Thus, for example, the number 25798347 can not be a square, because

25798347 =? · 100 + 47 ≡4 3.
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Exercise 3.1.7. Let

εk . . . ε1ε0

be the decimal representation of a number n ∈ Z≥0 (so here εi ∈ {0, 1, . . . , 9}).
Show that is divisible by 3 if and only if

εk + εk−1 + . . .+ ε0

is divisible by 3.

Solution. Notice that 10m ≡3 1. Therefore

n =
∑

0≤i≤k

εi · 10i ≡3

∑
0≤i≤k

εi.

Theorem 3.1.8. There are infinitely many primes which are congruent to 3
modulo 4.

Proof. Suppose, to obtain a contradiction, that there are only finitely many
primes which are congruent to 3 modulo 4 - enumerate them p1, p2, . . . , pk.
Consider

n := 4 · p1 · . . . · pk − 1.

Notice that n ≡4 3. Would all primes dividing n be congruent to 1 modulo 4,
their product, n, would also be congruent to 1 modulo 4. Hence, there exists
at least one prime dividing n which is congruent to 3 modulo 4. As none of
p1, . . . , pk divide n, we obtain a new prime which is congruent to 3 modulo 4,
contradicting the assumptions.

Remark 3.1.9. In fact, there are also infinitely many primes which are con-
gruent to 1 modulo 4, we will see this later. Anyhow, a much more general
statement holds, a very famous theorem of Dirichlet: Let m be relatively prime
to d. Then there exist infinitely many primes which are congruent to m modulo
d. One can say that the ideas involved in the proof are highly beautiful.

3.2 The Chinese remainder theorem

Remark 3.2.1. Let d, e ∈ Z≥1 and assume that d|e. Then every residue class
modulo e determines a well-defined residue class modulo d. Indeed, given n ∈ Z,
we associate to the residue class [n]e the residue class [n]d. We only then need
to see that this does not depend on the n chosen to represent the class. Indeed,
if [n′]e = [n]e, we have e|n′ − n and thus in particular d|n′ − n so [n′]d = [n]d.

In other words, we have a well-defined “forgetting information” map

frgted : Ze → Zd.



26 CHAPTER 3. MODULAR ARITHMETIC

Theorem 3.2.2. Let d, e ∈ Z≥1 be relatively prime. Let m,n ∈ Z. Then there
exists k ∈ Z such that

k ≡d m, k ≡e n.

Moreover, such k is unique modulo de. In other words, the map

frgtded × frgtdee : Zde → Zd × Ze

is a bijection.

Proof. Let us show uniqueness first. Suppose that k1, k2 both satisfy the de-
mands. Then k1 ≡d k2 and k1 ≡e k2. This means that d|k2 − k1 and e|k2 − k1.
Since d and e are relatively prime, this implies that de|k2 − k1, i.e. k1 ≡de k2.

Now let us show existence. It is enough to show that there exists r ∈ Z such
that

r ≡d 1, r ≡e 0.

Indeed, then analogously there exists s such that

s ≡d 0, s ≡e 1,

and then k = mr + ns will satisfy what we want. Since d and e are relatively
prime, there exist f1, f2 such that f1d+ f2e = 1. Then r = f2e is a number as
we desire. Indeed, f2e = 1− f1d ≡d 1 and clearly f2e ≡e 0.

We can extend this:

Theorem 3.2.3. Let d1, . . . , dn ∈ Z≥1 be pairwise relatively prime1. Let m1, . . . ,mn ∈
Z. Then there exists k ∈ Z such that

k ≡di mi ∀1 ≤ i ≤ n.

Moreover, such k is unique modulo d1 · . . . · dn. In other words, the map∏
1≤i≤n

frgtd1·...·dndi
: Zd1·...·dn →

∏
1≤i≤n

Zdi

is a bijection.

Proof. Let us show uniqueness. Suppose that k1, k2 both satisfy the demand.
Then di|k2 − k1 for all 1 ≤ i ≤ n. Since the di’s are pairwise relatively prime,
we obtain that d1 · . . . · dn|k2 − k1, as desired.

Now let us show existence. Analogously to the previous reasoning, it is
enough to show that there exists r ∈ Z such that r ≡d1 1 and r ≡di 0 for all
2 ≤ i ≤ n. Again since r2, . . . , rn are pairwise relatively prime, the condition
r ≡di 0 for all 2 ≤ i ≤ n is equivalent to the condition r ≡d2·...·dn 0. Since d1
and d2 · . . . · dn are relatively prime, we can use the previous result, deducing
the existence of r.

1For example, the numbers 2, 2, 1 are relatively prime but not pairwise relatively prime.
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Exercise 3.2.4. Which integers leave a remainder 1 when divided by 2, a re-
minder 2 when devided by 3, and remainder 3 when divided by 11?

Solution. We find a solution to

2x+ 3y = 1,

say (−1, 1). Then
3 ≡2 1, 3 ≡3 0

and
−2 ≡2 0,−2 ≡3 1.

Therefore
1 · 3 + 2 · (−2) = −1

is an integer which is 1 modulo 2 and 2 modulo 3. We now find a solution to

6x+ 11y = 1,

say (2,−1). Then
−11 ≡6 1,−11 ≡11 0

and
12 ≡6 0, 12 ≡11 1.

Therefore
−1 · (−11) + 3 · 12 = 47

is a number as desired. Then the general solution is

47 + k · (2 · 3 · 11), k ∈ Z.

3.3 Invertibility, Wilson’s theorem

Definition 3.3.1. We say that a residue class α ∈ Zd is invertible, if there
exists a residue class β ∈ Zd such that αβ = [1]d. The residue class β is then
called an inverse to α. We denote by

Z×d ⊂ Zd

the subset of invertible elements. We say that a number n ∈ Z is invertible
modulo d, if [n]d is an invertible residue class. We say that m ∈ Z is inverse to
n modulo d if [m]d is inverse to [n]d (i.e. if mn ≡d 1).

Example 3.3.2. Set d = 10. Consider n = 3. Then one finds that 3 · 3 ≡10 −1
and so 3·(−3) ≡10 1, so −3 is inverse to 3 modulo 10 (if you wish, 7 is inverse to
3 modulo 10). However, 2 does not have an inverse modulo 10: 2 times anything
is even, so can’t be of the form 10k + 1 (i.e. 1 modulo 10). So [3]10 ∈ Z×10 and
[2]10 6∈ Z×10.
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Lemma 3.3.3. The inverse of a residue class, if exists, is unique (concretely,
if m1n ≡d 1 and m2n ≡d 1 then m1 ≡d m2).

Proof. Let α ∈ Zd and let β1, β2 ∈ Zd be two inverses of α. Then

β1 = β1 · [1]d = β1 · (αβ2) = (β1α) · β2 = [1]d · β2 = β2.

Definition 3.3.4. If α ∈ Zd is invertible, we will denote by α−1 ∈ Zd its inverse
(we saw that it is unique, if it exists).

Example 3.3.5. Thus, [3]−110 = [−3]10.

Remark 3.3.6. Notice that [1]d ∈ Z×d , if α, β ∈ Z×d then αβ ∈ Z×d , and if
α ∈ Z×d then α−1 ∈ Z×d .

Claim 3.3.7. n is invertible modulo d if and only if n is relatively prime to d.

Proof. n admits an inverse modulo d i.f.f. there exists m s.t. d|(mn− 1). This
happens i.f.f. there exist m, k s.t. mn − 1 = kd, i.e. mn + (−k)d = 1. As we
saw earlier, the possibility of writing 1 as an integral linear combination of n
and d is equivalent to n and d being relatively prime.

Corollary 3.3.8. Let p be prime.

1. Every [0]p 6= α ∈ Zp is invertible. In other words, n is invertible modulo
p if and only if n 6≡p 0.

2. Let α, β ∈ Zp. If αβ = [0]p then α = [0]p or β = [0]p. Equivalently, if
α 6= [0]p and β 6= [0]p then αβ 6= [0]p.

3. Let [0]p 6= α ∈ Zp and β, γ ∈ Zp. If αβ = αγ then β = γ.

Proof.

1. This is because n is relatively prime to p if and only if p does not divide
n.

2. This is simply a restatement of the property: p|nm implies p|n or p|m.
But in terms of the previous item, this can be proven as follows: αβ = [0]p
and α 6= [0]p, then β = [1]pβ = α−1αβ = α−1[0]p = [0]p.

3. If αβ = αγ then α(β − γ) = [0]p and thus, by the previous item, as
α 6= [0]p, we have β − γ = [0]p, i.e. β = γ.

Remark 3.3.9. This corollary says that Zp is a field. It is a finite field, some-
times called a Galois field.

Let us now prove Wilson’s theorem, after a lemma.
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Lemma 3.3.10. Let p be a prime and let n 6≡p 0. Then n is its own inverse
modulo p if and only if n ≡p 1 or n ≡p −1.

Proof. In other words, we need to show that α ∈ Zp satisfies α2 = [1]p if
and only if α ∈ {[1]p, [−1]p}. We have α2 = [1]p i.f.f. α2 − [1]p = [0]p, i.f.f.
(α − [1]p)(α + [1]p) = [0]p, and by the last lemma this implies that either
α − [1]p = [0]p (in which case α = [1]p) or α + [1]p = [0]p (in which case
α = −[1]p).

Theorem 3.3.11 (Wilson’s theorem). Let p be a prime. Then

(p− 1)! ≡p −1.

Equivalently, p divides (p − 1)! + 1. Conversely, if n ∈ Z≥1 \ {1} satisfies
(n− 1)! ≡n −1 then n is prime.

Proof. For p = 2 we verify directly, so assume that p > 2. One would like to
say that each term in the product

(p− 1)! = 1 · 2 · . . . · (p− 1)

gets canceled with its inverse modulo p, but one should be careful with elements
which are their own inverses modulo p. By the previous lemma, those are 1 and
p− 1. Therefore, all terms in the product get canceled, except 1 and p− 1, and
we get:

(p− 1)! ≡p 1 · (p− 1) ≡p −1.

Now, if n is as in the statement then, since −1 is relatively prime to n, also
(n− 1)!, which is congruent to it modulo n, is relatively prime to n. Therefore,
each 1 ≤ k ≤ n−1 is relatively prime to n, clearly implying that n is prime.

Let us also discuss integer powers of an invertible element. Let α ∈ Z×d . For
n ∈ Z we define αn ∈ Z×d as follows. If n = 0, we define αn = [1]d. If n > 0,
we define αn = α · . . . · α where we multiply n terms. When n < 0, we define
αn = (α−1)−n. Note that there is no conflict of the two meanings of α−1 we
have now.

Lemma 3.3.12. For n,m ∈ Z one has αn+m = αn · αm and αnm = (αn)m.

3.4 Fermat’s little theorem

Let d ∈ Z≥1. Notice that given α ∈ Z×d , it is easy to see that there exists k ∈ Z≥1
such that αk = [1]d. Indeed, we consider the elements [1]d, α, α

2, . . . ∈ Z×d .
Those are infinitely many elements in a finite set, and therefore two of them
must be equal - there exist i < j such that αi = αj . Then αj−i = [1]×, and
j − i ∈ Z≥1. We want now to obtain more specific information about possible
k’s.
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Theorem 3.4.1 (Fermat’s little theorem). Let p ∈ Z≥1 be a prime. Let α ∈ Z×p
(i.e. [0]p 6= α ∈ Zp). Then αp−1 = [1]p. In other words, given n 6≡p 0 one has

np−1 ≡p 1.

Proof. Let us denote α = [n]p. We want to see that αp−1 = [1]p.

Let us consider all the non-zero residue classes

α1, . . . , αp−1.

Now consider also the residue classes

αα1, . . . , ααp−1.

All of those are non-zero, and pairwise different (if ααi = ααj then α(αi−αj) =
[0]p and therefore αi − αj = [0]p i.e. αi = αj). Hence, our second list also
contains all non-zero residue classes, each appearing exactly once. Therefore we
have

α1 · α2 · . . . · αp−1 = (αα1) · (αα2) · . . . · (ααp−1) = αp−1 · α1 · α2 · . . . · αp−1.

Since α1 · α2 · . . . · αp−1 is non-zero, we obtain [1]p = αp−1.

Example 3.4.2. Let us find the last digit of 72017. This means, since we use the
decimal system, to find the remainder upon division by 10. Applying Fermat’s
theorem for p = 5, we get

72017 = 74·?+1 = (74)? · 7 ≡5 1? · 7 ≡5 2.

Also, clearly 72017 ≡2 1. We check that the only residue modulo 10 which is 2
modulo 5 and 1 modulo 2 is 7. Hence 7 is the last digit of 72017.

3.5 Euler’s theorem

Definition 3.5.1. We define

φ(d) := |Z×d |.

In words, φ(d) is the number of residue classes modulo d which are invertible.
In other words, φ(d) is the number of numbers in the list 0, 1, . . . , d − 1 which
are relatively prime to d.

Claim 3.5.2. Let d, e ∈ Z≥1 be relatively prime. Then

φ(de) = φ(d)φ(e).
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Proof. Let us recall the bijection

frgtded × frgtdee : Zde → Zd × Ze.

We claim that an element α ∈ Zde is invertible i.f.f. the elements frgtded (α) and
frgtdee (α) are invertible. Indeed, write α = [n]de. Then frgtded (α) = [n]d and
frgtdee (α) = [n]e. Thus what we want to show is that n is relatively prime to
de i.f.f. it is relatively prime to both d and e. This we saw.

Example 3.5.3. We have φ(1) = 1. For a prime p, we have φ(p) = p− 1. We
also have φ(pk) = pk − pk−1. Indeed, a number is relatively prime to pk i.f.f. it
is relatively prime to p, i.f.f. it is not a multiple of p. There are pk−1 multiples
of p in the interval [0, pk]. Then, for example,

φ(45) = φ(32 · 5) = φ(32)φ(5) = (32 − 3) · (5− 1) = 24.

Theorem 3.5.4 (Euler). Let d ∈ Z≥1. Let α ∈ Z×d . Then αφ(d) = [1]d. In
other words, given n ∈ Z which is relatively prime to d one has

nφ(d) ≡d 1.

Proof. The proof is practically identical to that of Fermat’s little theorem.
Namely, consider all the different residue classes

α1, . . . , αφ(d)

constituting Z×d . Then
αα1, . . . , ααφ(d)

is again a list of residue classes in Z×d , and they are all different: If ααi = ααj
then we get α(αj −αi) = [0]d and multiplying by α−1 we get αj −αi = [0]d, i.e.
αi = αj . Therefore, since these are φ(d) different residue classes in Z×d , which
has φ(d) members, we deduce that these are again exactly all the different
residues classes in Z×d . Then

(αα1) · (αα2) · . . . · (ααφ(d)) = α1 · α2 · . . . · αφ(d)

and so, dividing by α−11 · α
−1
2 · . . . · α

−1
φ(d), we obtain

αφ(d) = [1]d.

Example 3.5.5. Let us compute the remainder of 354 after division by 35.

We compute
φ(35) = φ(5)φ(7) = 4 · 6 = 24.

We thus have
3540 = 32·24+6 = (324)2 · 36 ≡35 12 · 36.
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We compute then

36 = (33)2 ≡35 (−8)2 ≡35 64 ≡35 −6 ≡35 29.

Alternatively, we have
36 ≡5 34 · 32 ≡5 32 ≡5 4

and
36 ≡7 1;

The second congruence says that 36 is in the list 1, 8, 15, 22, 29 modulo 35, while
the first congruence then pins it to 29.

Example 3.5.6. there are some calculating mistakes in this example....

Let us denote p0 = 3 and pn+1 = 3pn recursively. Let us calculate p2012 mod 100.

We have φ(100) = φ(2252) = 40. So we would like to calculate [p2011]40.
Iterating, we have φ(40) = φ(235) = 16, φ(16) = 8 , φ(8) = 4 , φ(4) = 2. So:

[p2007]2 = 1 and thus p2008 = 3p2007 ≡4 3. Then p2009 = 3p2008 ≡8 33 ≡8 1.
Then p2010 = 3p2009 ≡16 3. Then p2011 = 3p2012 ≡40 33 = 27. Then p2012 =
3p2011 ≡100 327. So we are left with computing 327 mod 100. We have:

327 ≡100 3 · (313)2 ≡100 3 · (3 · (36)2)2 ≡100 3 · (3 · ((33)2)2)2.

We have
(33)2 = (20 + 7)2 ≡100 49 + 80 ≡100 29.

Then
(33)2)2 ≡100 292 = (30− 1)2 ≡100 1− 60 ≡100 41.

Then
3 · ((33)2)2 ≡100 3 · 41 ≡100 23.

Then
(3 · ((33)2)2)2 ≡100 232 ≡100 (20 + 3)2 ≡100 29.

Then finally
3 · (3 · ((33)2)2)2 ≡100 3 · 29 = 87.

Thus, p2012 ≡100 87.
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Polynomials etc.

4.1 Polynomials

Let P ∈ Z[X] be a polynomial. If n ≡d m, then P (n) ≡d P (m). Therefore, for
every α ∈ Zd we can define the value P (α) ∈ Zd unambiguously as [P (n)]d for
any n ∈ Z for which [n]d = α. Thus, our polynomial defines a function

Zd → Zd : α 7→ P (α).

For polynomials P,Q ∈ Z[X], we write P ≡d Q if for all i ∈ Z≥0 the
coefficient of Xi in P is congruent modulo d to the coefficient of Xi in Q. Notice
that if P ≡d Q, then these define the same function Zd → Zd, i.e. P (α) = Q(α)
for all α ∈ Zd, or in other words P (n) ≡d Q(n) for all n ∈ Z.

Remark 4.1.1. One should be careful - one can have two polynomials P,Q ∈
Z[X] for which P 6≡d Q but nevertheless P (α) = Q(α) for all α ∈ Zd. For
example, take d = p to be a prime, P = X and Q = Xp (and recall Fermat’s
little theorem).

4.2 Roots modulo relatively prime numbers

Let d, e ∈ Z≥1 be relatively prime, and let P ∈ Z[X]. Then we see that there is
a bijection

{γ ∈ Zde | P (γ) = [0]de}
∼−→ {α ∈ Zd | P (α) = [0]d} × {β ∈ Ze | P (β) = [0]e}

given by

γ 7→
(
frgtded (γ), frgtdee (γ)

)
.

Therefore, in order to study modular roots it is enough to do so modulo
prime powers.

33



34 CHAPTER 4. POLYNOMIALS ETC.

4.3 Roots modulo p

Throughout this section, we fix a prime p ∈ Z≥1.

Lemma 4.3.1. Let P ∈ Z[X] be a polynomial of degree d > 0 and let n ∈ Z
be such that P ([n]p) = [0]p (i.e. P (n) ≡p 0). Then there exists a polynomial
Q ∈ Z[X] of degree d− 1 such that P ≡p Q · (X − n).

Proof. One can perform division with remainder, writing

P = Q(X − n) + P (n)

for some (uniquely defined) Q ∈ Z[X]. Since P (n) ≡p 0, we have P ≡p Q(X −
n).

Lemma 4.3.2. Let P ∈ Z[X] be a polynomial of degree d > 0 and let n1, . . . , nk ∈
Z be pairwise distinct modulo p, where k ≤ d. Assume that P ([ni]p) = [0]p (i.e.
P (ni) ≡p 0) for all 1 ≤ i ≤ k. Then there exists a polynomial Q ∈ Z[X] of
degree d− k such that P ≡p Q · (X − n1) · . . . · (X − nk).

Proof. We prove this by induction on k, where the case k = 1 is the previous
lemma. To perform the induction step, we write P ≡p Q · (X − nk). For every
1 ≤ i ≤ k − 1, we have

0 ≡p P (ni) = Q(ni)(ni − nk).

Since ni−nk 6≡p 0, we have Q(ni) ≡p 0. Therefore, we can utilize the induction
hypothesis to find Q′ such that

Q ≡p Q′ · (X − n1) · . . . · (X − nk−1).

Then
P ≡p Q′ · (X − n1) · . . . · (X − nk−1) · (X − nk).

Corollary 4.3.3. Let P ∈ Z[X] be a polynomial of degree d > 0 for which the
coefficient of Xd is not zero modulo p. Then

|{α ∈ Zp | P (α) = [0]p}| ≤ d.

Proof. Suppose that α1, . . . , αd ∈ Zp are pairwise distinct, and all are roots
of P . We will show then that there are no additional roots of P . Choose
n1, . . . , nd ∈ Z such that [ni]p = αi. Then by the previous lemma we have

P ≡p Q · (X − n1) · . . . · (X − nd)

for some Q of degree 0, i.e. Q = m for some m ∈ Z. Notice that m is congruent
modulo p to the coefficient of Xd in P , hence by our assumption m 6≡p 0.
Therefore if n ∈ Z satisfies P (n) ≡p 0 we get n−ni ≡p 0 for some 1 ≤ i ≤ d. This
means that if α ∈ Zp satisfies P (α) = [0]p then α = αi for some 1 ≤ i ≤ d.
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Example 4.3.4. Let p = 3 and consider

P = X2 + 1 ∈ Z[X].

Note that P has no root modulo 3. This is similar to how X2 + 1 has no real
root. One then synthetically adds an imaginary root i, and gets the complex
numbers as the set of formal expressions of the form a + ib for a, b ∈ R. One
can do the same in our case, and create a new set, consisting of expressions of
the form α + iβ for α, β ∈ Z3. Thus, this set has 32 elements. One then can
define multiplication and addition on that set:

(α+ iβ) + (γ + iδ) = (α+ γ) + i(β + δ),

(α+ iβ) · (γ + iδ) = (αγ − βδ) + i(αδ + βγ).

One obtains a finite field with 9 elements. But, contrary to the case with
real/complex numbers, where once we add i all polynomials have a root (“fun-
damental theorem of algebra”) here, although the polynomial X2 + 1 will have a
root now, other polynomials will still be lacking a root. Then one can construct
a field with 33 elements having some more roots, etc. One eventually obtains
an infinite field, by enlarging in this way. It is called the algebraic closure of
Z3. It is quite important because it is related to number theory (of somewhat
combinatorial flavor, of counting), but philosophically is similar to the field of
complex numbers, so in some sense is “continuous”. The famous Weil conjec-
tures (already theorems) are one precise manifestation of that.

4.4 Roots modulo prime powers

Let p ∈ Z≥1 be a prime. Suppose that we have a root β ∈ Zpk+1 of P ∈ Z[X].

Then clearly frgtp
k+1

pk
(β) ∈ Zpk is also a root of P (i.e. for n ∈ Z one has

P (n) ≡pk+1 0 then one also has P (n) ≡pk 0). We want now to ask the converse:
If we have a root α ∈ Zpk of P , whether we can find a root β ∈ Zpk+1 of P such

that frgtp
k+1

pk
(β) = α.

Proposition 4.4.1 (Hensel’s lemma). Let P ∈ Z[X] and let α ∈ Zpk be a
root of P . Suppose in addition that P ′(α) ∈ Z×

pk
. Then there exists a unique

β ∈ Zpk+1 such that frgtp
k+1

pk
(β) = α and β is a root of P .

In other words, let P ∈ Z[X] and let n ∈ Z be P (n) ≡pk 0. Suppose in
addition that P ′(n) is not divided by p. Then there exists m ∈ Z such that
m ≡pk n and P (m) ≡pk+1 0. Moreover, any two such m’s are congruent modulo
pk+1.

Proof. In general, the elements in Zpk+1 which are mapped under frgtp
k+1

pk
to

some [r]pk are exactly the following ones:

[r]pk+1 , [r + pk]pk+1 , . . . , [r + (p− 1)pk]pk+1 .
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One can state it a bit better, saying that there is a bijection

Zp
∼−→ {α ∈ Zpk+1 | frgtp

k+1

pk
(α) = [r]pk}

given by [m]p 7→ [r + m · pk]pk+1 (in particular, one checks that this map is
well-defined).

Let us take n ∈ Z such that α = [n]pk . By the above, since [P (n)]pk = [0]pk ,
there exists a unique 0 ≤ i ≤ p − 1 such that [P (n)]pk+1 = [i · pk]pk+1 . Recall
that we can write

P (n+X) = P (n) + P ′(n) ·X +Q ·X2

for some Q ∈ Z[X]. We have therefore:

P (n+ jpk) = P (n) + P ′(n) · jpk + (jpk)2·?

where ? is some integer. Therefore

P ([n+jpk]pk+1) = [P (n+jpk)]pk+1 = [P (n)]pk+1+[P ′(n)·jpk]pk+1 = [(i+P ′(n)·j)·pk]pk+1 .

Since P ′(n) 6≡p 0, there will be exactly one 0 ≤ j ≤ p− 1 such that

i+ P ′(n)j ≡p 0,

which is equivalent to
(i+ P ′(n)j) · pk ≡pk+1 0.

(need to polish a bit the presentation)

Example 4.4.2. Let us consider the polynomial P (X) = X2−7 and p = 3. We
have a root [1]3 of P . Notice that P ′(X) = 2X and P ′([1]3) = [2]3 6= [0]3. Hence
there exists a unique element α2 ∈ Z9 such that α2

2 = [7]9 and frgt93(α2) = 1.
So the options for α2 are [1]9, [4]9, [7]9 and one finds that α2 = [4]9. We can
continue, finding the unique α3 ∈ Z27 such that frgt279 (α3) = [4]9 and α2

3 =
[7]27. One finds α3 = [13]27. One can continue, obtaining an infinite sequence

([1]3, [4]9, [13]27, . . . , )

of “better and better” solutions to X2 − 7 = 0, in the sense that as we progress
we find varios n ∈ Z such that n2 − 7 is divided by bigger and bigger powers of
3.

4.5 p-adic integers

Let p ∈ Z≥1 be a prime. Let P ∈ Z[X] and let α1 ∈ Zp be such that P (α1) = [0]p
and P ′(α1) 6= [0]p. Then by Hensel’s lemma, there exists a unique α2 ∈ Zp2
such that P (α2) = [0]p2 and frgtp

2

p (α2) = α1. Continuing in this fashion, we

find recursively αk ∈ Zpk such that P (αk) = [0]pk and frgtp
k

pk−1(αk) = αk−1.
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Definition 4.5.1. A p-adic integer is a sequence

(α1, α2, . . .)

where αk ∈ Zpk for k ∈ Z≥1, and for each k ∈ Z≥1 one has

frgtp
k+1

pk
(αk+1) = αk.

Therefore, one can think of a p-adic integer as the information of an imag-
inary integer’s residues modulo powers of p. In particular, an actual integer
n ∈ Z determines a p-adic integer by taking αk := [n]pk .

Example 4.5.2. Here is a concrete example of a 3-adic integer, which is not
determined by an actual integer:

αk = [1 + 3 + . . .+ 3k−1]3k .

One can think that this 3-adic integer is the sum of the series

1 + 3 + 32 + . . . .

Since

1 + 3 + . . .+ 3k−1 =
3k − 1

2

we see that our p-adic integer is in fact −1/2 (in other words, if we multiply it
by 2, we get −1).

A more interesting example would be to consider the unique p-adic integer
(αk) for which α1 = [1]3 and α2

k = [7]3k for all k. This will be an element whose
square is 7.

The field of p-adic numbers Qp is obtained by formally considering quotients
of p-adic integers.
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Chapter 5

Orders, primitive roots

5.1 Orders

Let us fix d ∈ Z≥1. Let α ∈ Z×d . Let us consider the subset of the integers

Iα = {n ∈ Z | αn = [1]d} ⊂ Z.

Then one checks that this is an ideal. Moreover, this ideal is not {0}, since
φ(d) ∈ Iα by Euler’s theorem. Therefore, by the principal ideal theorem, there
exists a unique k ∈ Z≥1 such that Iα = (k). We call this k the order of α and
denote it by ord(α). Therefore:

αm = [1]p if and only if ord(α)|m.

Also, one can characterize the order as the smallest non-negative integer k for
which αk = [1]p. We have

ord(α)|φ(d).

For n ∈ Z which is relatively prime to d (and so [n]d ∈ Z×d ), we denote

ordd(n) := ord([n]d).

Lemma 5.1.1. Let α ∈ Z×d . Then the elements of the list

[1]p, α, . . . , α
ord(α)−1

are pairwise distinct, and for every k ∈ Z the element αk is equal to one of the
elements in that list. In particular, the set {αk : k ∈ Z} has ord(α) elements.

Proof. If αi = αj for some 0 ≤ i < j ≤ ord(α)− 1, we get αj−i = [1]p and thus
j − i ∈ Iα and 1 ≤ j − i < ord(α), contradicting ord(α) being the smallest.

Given k ∈ Z, we perform division with remainder k = q · ord(α) + r where
0 ≤ r < ord(α). Then αk = (αord(α))q · αr = [1]qd · αr = αr.

39
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Claim 5.1.2. Let α ∈ Z×d and let k ∈ Z. Then

ord(αk) =
ord(α)

gcd(ord(α), k)
.

In particular, if k|ord(α), we have

ord(αk) =
ord(α)

k
.

Proof. We have m ∈ Iαk i.f.f. (αk)m = [1]p i.f.f. αkm = [1]p i.f.f. km ∈ Iα i.f.f.

ord(α)|km i.f.f. ord(α)
gcd(ord(α),k) |m. Thus:

Iαk =

(
ord(α)

gcd(ord(α), k)

)
.

5.2 Primitive roots

Definition 5.2.1. We say that α ∈ Z×d is a primitive root if

ord(α) = φ(d).

We say that n ∈ Z is a primitive root modulo d if [n]d is a primitive root (in
particular, [n]d ∈ Z×d , i.e. n and d are relatively prime).

Lemma 5.2.2. Let α ∈ Z×d . The following are equivalent:

1. α is a primitive root.

2. Z×d = {[1]p, α, α
2, . . . , αφ(d)−1}.

3. For every β ∈ Z×d there exists k ∈ Z≥0 such that β = αk.

Proof. (1) =⇒ (2) follows from lemma 5.1.1. (2) =⇒ (3) is trivial. (3) =⇒
(1): By lemma 5.1.1 the set {αk | k ∈ Z} has ord(α) elements. By the current
assumption, this set is equal to Z×d . Therefore we get that ord(α) = φ(d).

Example 5.2.3. 2 is a primitive root modulo 5, since

20 ≡5 1, 21 ≡5 2, 22 ≡5 4, 23 ≡5 3

are all distinct modulo 5.

Example 5.2.4. There is no primitive root modulo 8. Indeed, we have

Z×8 = {[1]8, [3]8, [5]8, [7]8}

so φ(8) = 4, but every α ∈ Z×8 satisfies α2 = [1]8.
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Claim 5.2.5.

1. If α ∈ Z×d is a primitive root, then αk ∈ Z×d is a primitive root if and only
if gcd(k, φ(d)) = 1.

2. If Z×d admits a primitive root, then it admits exactly φ(φ(d)) primitive
roots.

Proof. We have that αk is a primitive root if and only if ord(αk) = ord(α) (since

ord(α) = φ(d), and we have ord(αk) = ord(α)
gcd(ord(α),k) , so αk is a primitive root if

and only if gcd(ord(α), k) = 1, i.e. gcd(φ(d), k) = 1.

As for the second claim, using the first claim we see that from the ele-
ments [1]d, α, . . . , α

φ(d)−1 of Z×d , the ones which are primitive roots are αi where
gcd(i, φ(d)) = 1. As i runs from 0 to φ(d)−1, there are exactly φ(φ(d)) such.

Lemma 5.2.6. Let e|d. If α ∈ Z×d is a primitive root, then frgtde(α) ∈ Z×e is
also a primitive root. In terms of integers: If n ∈ Z is a primitive root modulo
d, then n is also a primitive root modulo e.

Proof. For every β ∈ Z×e there exists γ ∈ Z×d such that frgtde(γ) = β. Next,
there exists k ∈ Z≥0 such that γ = αk. Hence

β = frgtde(γ) = frgtde(α
k) = frgtde(α)k.

In other words, every element in Z×d is a power of frgtde(α), and thus by a
criterion we saw above, frgtde(α) is a primitive root.

5.3 The case of a prime

Lemma 5.3.1. Let α, β ∈ Z×d . Assume that ord(α) and ord(β) are relatively
prime. Then

ord(αβ) = ord(α) · ord(β).

Proof. Abbreviate a := ord(α) and b := ord(β). For starters,

(αβ)ab = (αa)b · (βb)a = [1]d.

Now assume (αβ)k = [1]d for some k ∈ Z. Then αk = β−k and so, calling their
common value γ, we have that

ord(γ) = ord(αk)|ord(α) = a

and similarly ord(γ)|b and thus, since a and b are relatively prime, ord(γ) = 1,
i.e. γ = [1]d. We obtain thus αk = [1]d so a|k and βk = [1]d so b|k. Since a and
b are relatively prime, we obtain ab|k. This finishes showing that ord(αβ) =
ab.

Lemma 5.3.2. Let α, β ∈ Z×d . Then there exists an element in Z×d of order
lcm(ord(α), ord(β)).
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Proof. Let us first note that given γ ∈ Z×d and k|ord(γ), there exists an element

in Z×d of order k. Indeed, take γ
ord(γ)
k .

Let us now write decompositions into primes

ord(α) = pa11 · . . . · p
ak
k

and
ord(β) = pb11 · . . . · p

ak
k .

Since paii |ord(α), there exists in Z×d an element of order paii . Similarly, there

exists in Z×d an element of order pbii . Therefore there exists an element γi of

order p
max{ai,bi}
i . Using the previous lemma, we obtain that

ord(γ1 · . . . · γk) = ord(γ1) · . . . · ord(γk) =

= p
max{a1,b1}
1 · . . . · pmax{ak,bk}k = lcm(ord(α), ord(β)).

Theorem 5.3.3. Let p be a prime. Then there exists a primitive root in Z×p .

Proof. Let α ∈ Z×p with maximal possible order w.r.t. multiplication. In other
words, we assume that ord(α) does not strictly divide ord(β) for all β ∈ Z×p .
Because Z×p is finite, we can find such α. Let now β ∈ Z×p . If ord(β) 6 |ord(α)
then ord(α) strictly divides lcm(ord(α), ord(α)); Since by the previous lemma
there exists an element of Z×p of order lcm(ord(α), ord(β)), we obtain a contra-
diction to the choice of α. Therefore, we see that for every β ∈ Z×p we have
ord(β)|ord(α). Therefore, abbreviating k := ord(α), we see that every β ∈ Z×p
satisfies βk = [1]p. Therefore the polynomial xk − 1 has p − 1 different roots
modulo p, and thus k ≥ p− 1. Since k|p− 1, we deduce k = p− 1 and so α is a
primitive root.

5.4 The case of a prime power

Notice that in Z×4 we have a primitive root by observation. Notice that in Z×8
we don’t have a primitive root (since for every α ∈ Z×8 one has α2 = [1]8).
Therefore, there is also no primitive root in Z×

2k
for every k ≥ 3. Settled this,

we will now deal with powers of an odd prime.

Claim 5.4.1. Let p be an odd prime. If n is a primitive root modulo p, then
either n or n+ p is a primitive root modulo p2.

Proof. Consider k := ordp2(n). We know that k|φ(p2) = p2 − p = p(p− 1). On
the other hand, clearly p−1 = ordp(n)|ordp2(n) = k. Therefore either k = p−1
or k = p(p− 1). In the latter case, n is a primitive root modulo p2, so suppose
the former. Then np ≡p2 n ·np−1 ≡p2 n. Notice that since n+ p ≡p n, we argue
as above replacing n by n + p and also see that ordp2(n + p) is either p − 1 or
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p(p− 1). We want to rule out the former possibility, i.e. we want to show that
(n+p)p−1 6≡p2 1 or, equivalently, that (n+p)p 6≡p2 n+p. And indeed, we have:

(n+ p)p = np +

(
p

1

)
· np−1 · p+ . . .+ pp ≡p2 np ≡p2 n.

Claim 5.4.2. Let p be an odd prime, and let k ≥ 2. If n is a primitive root
modulo pk then n is also a primitive root modulo pk+1.

Proof. Let us consider r := ordpk+1(n). We have r|φ(pk+1) = pk(p − 1). On
the other hand, ordpk(n)|r, so since n is a primitive root modulo pk we have
pk−1(p − 1)|n. Therefore either r = pk−1(p − 1) or r = pk(p − 1). We want to

rule out the former, i.e. we want to show that np
k−1(p−1) 6≡pk+1 1.

Since n is a primitive root modulo pk−1, we have np
k−2(p−1) ≡pk−1 1 and

so we can write n = 1 + pk−1a for some a ∈ Z. Notice that a 6≡p 0, because

otherwise we would have np
k−2(p−1) ≡pk 1, but n is a primitive root modulo pk,

so its order is pk−1(p− 1). Now, we have:

np
k−1(p−1) = (1 + pk−1a)p ≡pk+1 1 + pka.

Since, as we said, a 6≡p 0, we obtain that np
k−1(p−1) 6≡pk+1 1, as desired.

Corollary 5.4.3 (of the last two claims). Let p be an odd prime. Then for
every k ∈ Z≥1, there exist in Z×

pk
primitive roots.

5.5 The rest of cases

Claim 5.5.1. Let p be an odd prime, let k ∈ Z≥1 and let n be a primitive root
modulo pk. Then either n or n+ pk is a primitive root modulo 2pk.

Proof. Exactly one of n and n + pk is odd - let us by abuse of notation and
without loss of generality assume therefore that n is odd. Thus, n is a primitive
root modulo pk and is odd, and we want to show that n is a primitive root
modulo 2pk. For starters, notice that n is indeed relatively prime to 2pk.

Notice that φ(2pk) = φ(pk). Now, nφ(2p
k) = nφ(p

k) is congruent to 1 mod-
ulo pk and also modulo 2, therefore by the Chinese remainder theorem it is
congruent to 1 modulo 2pk. Conversely, if nr ≡2pk 1, then also nr ≡pk 1 and
therefore φ(2pk) = φ(pk)|r. These two observations shows that n is a primitive
root modulo 2pk.

Proposition 5.5.2. The numbers d ∈ Z≥1 for which there exists a primitive
root modulo d are exactly ones of the following: 2, 4, pk, 2pk (here p is an odd
prime and k ∈ Z≥1.
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Proof. We already saw that for d in the list, there exists a primitive root modulo
d. We now want to rule out the other d’s.

Suppose that d, e are relatively prime. By the Chinese reminder theorem,
if for some α ∈ Z×de we have frgtded (α)k = [1]d and frgtdee (α)k = [1]e, then
αk = [1]de, and therefore ord(α)|k. Clearly k = lcm(φ(d), φ(e)) satisfies these
conditions, and so we get

ord(α)|lcm(φ(d), φ(e)).

Since lcm(φ(d), φ(e)) = φ(d)φ(e)
gcd(φ(d),φ(e)) , we see that if gcd(φ(d), φ(e)) > 1 then ev-

ery element α ∈ Z×de has order strictly less than φ(d)φ(e) = φ(de), and therefore
there are no primitive roots modulo de.

In particular, if (continuing to assume that d and e are relatively prime) each
of d and e is divisible by an odd prime or 4, we see that there are no primitive
roots modulo de, because both φ(d) and φ(e) are even, so not relatively prime.

Therefore, we rule out numbers which are divisible by more than one odd
prime, and numbers which are divisible by some odd prime and by 4. We have
already seen that numbers divisible by 8 are also ruled out. This finishes the
claim.

5.6 A Theorem of Gauss-Wilson

Theorem 5.6.1 (Gauss-Wilson). Let d ∈ Z≥2. Then∏
α∈Z×

d

α ∈ Z×d

is equal to [−1]d if Z×d admits primitive roots, and to [1]d if Z×d admits no
primitive roots.

Proof. We will prove only the first claim. If d = 2 then it is verified directly.
Hence, assume d 6= 2. Notice that then φ(d) is even.

Let γ ∈ Z×d be a primitive root. Notice that (γs)2 = [1]p if and only if

φ(d)|2s, i.e. if and only if φ(d)
2 |s. Therefore, γ0 and γ

φ(d)
2 are exactly all the

elements α of Z×d which satisfy α2 = [1]d. Therefore, since [1]d and [−1]d are

such elements, we must have γ
φ(d)
2 = [−1]d. So, as in the proof of Wilson’s

theorem, when computing the product we want to compute, pairs of elements
which are mutually inverse will cancel out, except for when an element is its
own inverse, which happens for [1]d and [−1]d. Therefore the product is equal
to the product of [1]d and [−1]d, i.e the product is equal to [−1]d.



Chapter 6

Cryptography

6.1 Substitution ciphers

The most basic encryption is by a substitution cipher, or a dictionary, i.e. if
we want to encrypt messages drawn from a set X, we construct a bijection
E : X → Y with some other set and tell E the person with whom we are
communicating. Here E−1 should be also easily calculated.

In practice, if we have a long message, we break it down to smaller parcels
which can be encoded in terms of X, and send them one by one.

For example, we can choose a number d ∈ Z≥1, have X = Y = Zd, and
E(µ) := σµ where σ ∈ Z×d is some invertible residue class. It is relatively easy
to compute σ−1, by using Euclids algorithm (picking m ∈ Z for which [m]d = σ,
we compute fm+ gd = 1 and then σ−1 = [f ]d) or by using σ−1 = σφ(d)−1 (by
Euler’s theorem).

Notice that to compute σk we only need about log2(k) multiplication modulo
d operations, and not k as the most naive way of computing would yield. Indeed,

if k is even we have σk = (σ2)k/2 and if k is odd we have sk = (σ2)
k−1
2 · s so the

number of operations N(k) needed satisfies

N(k) ≤ N(bk
2
c) + 2, N(1) = 0.

Thus we can show that

N(k) ≤ log2(k)

by induction.

One of the possible problems with the substitution cipher is that, in texts,
letters have various frequencies (for example, “e” is the most commonly appear-
ing letter in an English text), so that a person reading the encrypted message
can start to guess what is the dictionary E based on frequencies.
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Another possible problem is that the two communicating sides should some-
how agree on E, so need to be physically close, or communicate E via a non-safe
medium, etc. This can be even more annoying if they want to change E fre-
quently, to alleviate the previous problem.

6.2 Sharing a secret (Diffie-Hellman key agree-
ment)

We will now see how both sides can share a secret σ (σ has a meaning as above)
across a non-safe medium (i.e. all they send to each other is seen by others).
This is called the Diffie-Hellman key exchange.

We assume that d = p is a prime (which is large). We next choose a primitive
root α ∈ Z×p (this root does not have to be big). The information of p and α is
accessible to all.

Recall that there is a bijection

Zp−1 → Z×p : k 7→ αk.

The critical property of this bijection is the following: From a computational
point of view, it is easy to compute αk given k but very hard to compute k given
αk. The general property of that kind is known as that of a one-way function,
while in this specific case this is known as the discrete logarithm problem.

Let now Alice choose a ∈ Zp−1 and Bob choose b ∈ Zp−1 (their “private
keys”). Those are their personal secrets, they keep them to themselves. How-
ever, Alice makes αa public, and Bob makes αb public (their “public keys”).
Now, Alice knows her a and the public αb, so she can compute (αb)a. Bob
knows his b and the public αa, so he can compute (αa)b. But, of course,

(αb)a = αba = αab = (αa)b.

This value is the secret σ that Alice and Bob both now know. The public knows,
except the general p and α of the setting, also αa and αb. From this, it is not
clear how to compute αab.

If a third person, Carol, wants now be part of the secretive group, she can
choose her c ∈ Zp−1, and then proceed as follows. Alice and Bob make αab

public, and thus Carol can compute αabc. As αa and αb are already public,
Carol can also compute αac and αbc and make them public. Then Alice and
Bob can compute αabc as well, and it becomes the new secret (the public knows
αa, αb, αab, αac, αbc).

6.3 Combining the two last sections

Let us retain the setting of the previous subsection - of p and α, Alices (resp.
Bobs) private key a (resp. b) and Alices (resp. Bobs) public key αa (resp. αb).
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Then Alice and Bob both know the secret

σ = αab ∈ Z×p .

If now Bob wants to send an encryption of a message

µ ∈ Z×p

to Alice, he sends

σµ ∈ Z×p .

Alice can compute

µ = σ−1(σµ).

Thus, we use an asymmetric setting (Alice and Bob have private and public
keys) in order to create a common secret key which is then used in a symmetric
cipher (one uses the same key for encoding and decoding).

6.4 Al-Gamal encryption

When we do as before, but Bob each time changes his private key, we obtain
the Al-Gamal encryption, which can be now regarded as an asymmetric cipher.
Notice that this seems to eliminate the problem of guessing the key σ based
on letter frequencies, as this key changes with every step. Let us describe it
explicitly again.

Alice choses a ∈ Zp−1 and shares publicly αa. Then a is called the private
key and αa is called the public key.

If Bob wants to communicate a message µ ∈ Z×p to Alice, he peeks randomly
some b ∈ Zp−1 and sends the pair

(αb, αabµ) ∈ Z×p × Z×p

to Alice (notice that Bob knows how to compute αab = (αa)b since Alice’s
public key αa is, well, public). Alice can decode the message by first computing
the shared secret αab = (αb)a, then computing its inverse, thus being able to
compute

µ = (αab)−1 · (αabµ).

Thus, basically, each time Bob wants to send a message, he fulfills his part in
creating the common secret, so that now Alice and Bob share a secret σ ∈ Z×p ,
and then Bob sends to Alice σµ, and Alice deciphers it, as we explained in the
first subsection.
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6.5 RSA encryption

In the previous sections, we have used, for a prime p ∈ Z≥1, the bijection

Zp−1 → Z×p : k 7→ αk,

where α ∈ Z×p is a fixed primitive root. The property of this bijection is that
(if p and α are known) it is easy to calculate it on a given value, but hard to
calculate the inverse bijection on a given value.

We will now use a different bijection with a similar, but different property.
Namely, given some knowns it will be easy to calculate the bijection on a given
value. However, the inverse bijection will also be easy to calculate given some
other knowns. Therefore, the inverse bijection is not universally hard to compute
(as in the previous case) - it is easy to compute for those having some extra
information.

Let

d ∈ Z≥1

and let e ∈ Z be such that gcd(e, φ(d)) = 1. Then the function

Z×d → Z×d : α 7→ αe

is, by Euler’s theorem, a bijection with inverse

Z×d → Z×d : α 7→ αf

where f is inverse to e modulo φ(d).

In fact, if d is square-free (i.e. a product of distinct primes) then we can
replace Z×d above with Zd, i.e. we claim that with e and f as above the maps

Zd → Zd : α 7→ αe

and

Zd → Zd : α 7→ αf

are mutually inverse bijections. In other words, we want to check that αef = α
for all α ∈ Zd. By the Chinese remainder theorem, this is the same as checking
frgtdp(α)ef = frgtdp(α) for all primes p|d. If frgtdp(α) = [0]p, then the equality

is clear. If frgtdp(α) 6= [0]p, notice that ef ≡φ(d) 1 and φ(p)|φ(d) and hence
ef ≡φ(p) 1 and so by Fermat’s little theorem we obtain

frgtdp(α)ef = frgtdp(α) · frgtdp(α)?·φ(p) = frgtdp(α).

Assume that d is square-free. The bijection

Zd → Zd : α 7→ αe
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has the property that when d and e known it is easy to compute it on a given
value, but it is only easy to compute its inverse on a given value if one knows
φ(d), because it is necessary in order to find f as above.

Is it easy to find φ(d)? In order to compute it, we write d = p1 · . . . · pk as
a product of distinct primes. Then φ(d) = (p1 − 1) · . . . · (pk − 1). Therefore,
it is easy to compute φ(d) if we know the decomposition of d as a product of
primes. Is it easy to find the decomposition of d into primes? No! This is
the basic problem, the factorization of a number into a product of primes is a
hard thing computationally (I think that modern encryption is based on having
computational problems which are easy theoretically but hard computationally).

We thus obtain the following asymmetric encryption/decryption scheme. We
generate two huge prime numbers p and q and set d = pq. We also choose e ∈ Z
which is relatively prime to φ(d). We let d and e be publicly known. Thus, the
public can compute easily

Zd → Zd : α 7→ αe.

We can also compute easily the inverse, because we can compute φ(d) = (p −
1)(q − 1) and then compute f ∈ Z which is inverse to e modulo φ(d). Then as
explained above

Zd → Zd : α 7→ αf

is inverse to E. Hence, if someone wants to encode a message µ : Zd for us, he
sends us µe. We can decode it: µ = (µe)f .
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Chapter 7

Quadratic residue classes

7.1 The Legendre symbol

Let p be an odd prime. We are interested in deciding whether an equation

x2 +mx+ n ≡p 0

has a solution or not.

Lemma 7.1.1. The equation

x2 +mx+ n ≡p 0

has a solution if and only if the equation

x2 ≡p m2 − 4n

has a solution.

Proof. Let us denote by c an inverse to 2 modulo p. Since 2 is invertible modulo
p, the equation

x2 +mx+ n ≡p 0

has the same solutions as the equation

4x2 + 4mx+ 4n ≡p 0.

We have

4x2 + 4mx+ 4n = (2x)2 + 2 ·m · 2x+m2 + (4n−m2) = (2x+m)2 + (4n−m2)

and therefore, performing the invertible modulo p substitution y = 2x+m, we
see that our equation has a solution if and only if the equation

y2 + (4n−m2) ≡p 0

has a solution.
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Therefore, our general question is reduced to the question of determining
which residue classes modulo p admit a square root, i.e. are squares modulo p.

Definition 7.1.2 (Legendre symbol). Let α ∈ Zp. If α 6= [0]p and there exists
β ∈ Zp such that β2 = α, we write

(
α
p

)
= 1. If α 6= [0]p and there does not exist

β ∈ Zp such that β2 = α, we write
(
α
p

)
= −1. If α = [0]p, we write

(
α
p

)
= 0.

For n ∈ Z, we write
(
n
p

)
for
([n]p
p

)
.

Claim 7.1.3 (Euler’s criterion). Let α ∈ Zp. Then

[

(
α

p

)
]p = α

p−1
2 .

In other words: let n ∈ Z. Then(
n

p

)
≡p n

p−1
2 .

Proof. For α = [0]p the claim is clear, so we assume that α 6= [0]p, i.e. α ∈ Z×p .

Notice that (α
p−1
2 )2 = αp−1 = [1]p by Fermat’s little theorem. As we saw

before, one therefore has α
p−1
2 ∈ {[1]p, [−1]p}. Therefore, we want to show that

α
p−1
2 is equal to [1]p if and only if α is a square.

If α is a square, so α = β2 for some β ∈ Z×p ., then

α
p−1
2 = (β2)

p−1
2 = βp−1 = [1]p

by Fermat’s little theorem again.

Now assume conversely that α
p−1
2 = [1]p. We use the existence of a primitive

root γ ∈ Z×p . Recall that γr = [1]p if and only if p− 1|r. Write α = γk for some

k ∈ Z. Then [1]p = α
p−1
2 = γk·

p−1
2 and therefore p − 1|k · p−12 . This gives 2|k.

Therefore, we can consider β = α
k
2 , which will be an element fo which β2 = α.

Remark 7.1.4. Since p is an odd prime, so in particular p > 2, the map
{−1, 0, 1} ↪→ Z→ Zp is injective. Therefore, [

(
α
p

)
]p determines

(
α
p

)
.

Corollary 7.1.5. Let n,m ∈ Z. One has(
mn

p

)
=

(
m

p

)
·
(
n

p

)
.

Proof. One has(
mn

p

)
≡p (mn)

p−1
2 = m

p−1
2 · n

p−1
2 ≡p

(
m

p

)
·
(
n

p

)
and hence the equality.
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Corollary 7.1.6. One has (
−1

p

)
≡p (−1)

p−1
2

and so −1 is a square modulo p if p ≡4 1 and a non-square modulo p if p ≡4 3.

We can now prove:

Theorem 7.1.7. There are infinitely many primes which are congruent to 1
modulo 4.

Proof. Again, suppose that there are only finitely many such, denote then
p1, . . . , pk. Consider then

n := 4(p1 · · · pk)2 + 1.

Let p be a prime factor of n. As p can not be any of the pi’s, it is enough to
show that p ≡4 1 to obtain a contradiction. And indeed, we have:

−1 ≡p 4(p1 · · · pk)2

so −1 is a square modulo p, and therefore by the previous corollary we have
p ≡4 1.

7.2 Statement of the quadratic reciprocity law
and examples

Theorem 7.2.1 (Gauss’s quadratic reciprocity law). Let p, q be two distinct
odd primes. One has: (

p

q

)
= (−1)

p−1
2 ·

q−1
2

(
q

p

)
.

And we also have:

Theorem 7.2.2 (The supplementary law).(
2

p

)
=

{
1 if p ≡8 ±1

−1 if p ≡8 ±3
.

For the proof, we will need a few preliminaries. Let us first see some examples
of applying this.

Example 7.2.3. Fix an odd prime p ∈ Z≥1, and vary an odd prime q ∈ Z≥1
(with q different than p). We see that the answer to the question of whether p
is a square modulo q depends only on [q]4p! This is one possible “essence” of
this law.
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Example 7.2.4. For a prime p ∈ Z≥1 distinct from 2 and 5, one has(
5

p

)
=

(
p

5

)
.

Notice that in Z5, the non-zero squares are [1]5 and [4]5. Therefore, 5 is a square
modulo p if and only if p is congruent to 1 or 4 modulo 5.

Example 7.2.5.(
12

23

)
= (

(
2

23

)
)2 ·
(

3

23

)
=

(
3

23

)
= −

(
23

3

)
= −

(
2

3

)
= −(−1) = 1.

Alternatively, one can compute:(
12

23

)
=

(
−11

23

)
=

(
−1

23

)(
11

23

)
= (−1) · −

(
23

11

)
= (−1) · −

(
1

11

)
= 1.

Thus, 12 is a square modulo 23. One can indeed find that 92 − 12 = 3 · 23 so
92 ≡23 12.

Example 7.2.6.(
30

59

)
=

(
2

59

)
·
(

3

59

)
·
(

5

59

)
= (−1)·(−

(
59

3

)
)·
(

59

5

)
= (−1)·(−

(
2

3

)
)·(
(

4

5

)
) = (−1)·1·1 = −1.

Thus, 30 is not a square modulo 59.

7.3 The discrete Fourier transform

Throughout, fix d ∈ Z≥1. We denote

µd = {ζ ∈ C× | ζd = 1}.

Elements ζ ∈ µd are called d-th roots of unity. Denoting

ζ1 = e
2πi
d = cos(

2πi

d
) + i · sin(

2πi

d
),

we have
µd = {1, ζ1, . . . , ζd−11 }

(and all the listed elements are different, i.e. µd contains d elements). Notice
that if n ≡d m, then ζn = ζm. Hence for α ∈ Zd we can define unambiguously
ζα as ζn for any n for which [n]d = α.

Let f : Zd → C be a function. The (discrete) Fourier transform of f is the
function Ff : µd → C given by

Ff (ζ) =
∑
α∈Zd

f(α) · ζα.
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Remark 7.3.1. By identifying {0, . . . , d−1} with µd via k 7→ ζk1 and also writ-
ing f(n) = f([n]d) we obtain the perhaps more recognizable to some formula:

Ff (k) =
∑

0≤j≤d−1

f(j) · e
2πi·jk
d .

Theorem 7.3.2 (Parseval’s identity).

1. Let f, g : Zd → C. Then we have∑
α∈Zd

f(α)g(α) =
1

d
·
∑
ζ∈µd

Ff (ζ)Fg(ζ).

2. Let f ∈ Zd → C. Then we have∑
α∈Zd

|f(α)|2 =
1

d
·
∑
ζ∈µd

|Ff (ζ)|2.

Proof. The second part follows from the first by substituting g := f , so let us
prove the first part. Notice that if we fix g, both sides are linear in f . Similarly,
if we fix f both sides are conjugate-linear in g. Therefore, we reduce to the case

f = δα, g = δβ .

We calculate
Fδα(ζ) =

∑
γ∈Zd

δα(γ) · ζγ = ζα.

The left hand sides of the equation to be established is equal to δα,β . The right
hand side is equal to

1

d

∑
ζ∈µd

ζα · ζβ =
1

d

∑
ζ∈µd

ζα−β = δα,β ,

where the last equality is by the Lemma that follows.

We have used the following lemma:

Lemma 7.3.3. Let α ∈ Zd. Then∑
ζ∈µd

ζα = δα,[0]d · d.

Proof. If α = [0]d, the the sum is a sum of d ones, so the claim is clear. Suppose
then that α 6= [0]d. We have:∑

ζ∈µd

ζα =
∑
ζ∈µd

(ζ1 · ζ)α = ζα1
∑
ζ∈µd

ζα.

Since ζα1 6= 1, we obtain that our sum must be equal to zero.



56 CHAPTER 7. QUADRATIC RESIDUE CLASSES

7.4 Algebraic numbers and integers

Definition 7.4.1. Let c ∈ C. The number c is called algebraic if there exists
a non-zero polynomial P ∈ Q[X] such that P (c) = 0. Thus, concretely, c is
algebraic if there exists n ≥ 1 and a0, . . . , an−1 ∈ Q such that

cn + an−1c
n−1 + . . .+ a1c+ a0 = 0.

If c is not algebraic, it is called transcendental.

Example 7.4.2. Every rational number is algebraic. The number
√

2 is alge-
braic, since it is a root of the polynomial Z2 − 2. For q ∈ Q, the number e2πi·q

is algebraic.

Example 7.4.3. It was proven that the numbers π and e are transcendental.

Definition 7.4.4. Let c ∈ C. The number c is called an algebraic integer if
there exists n ≥ 1 and a0, . . . , an−1 ∈ Z such that

cn + an−1c
n−1 + . . .+ a1c+ a0 = 0.

Lemma 7.4.5. A number q ∈ Q is an algebraic integer if and only if it is an
integer (i.e. lies in Z).

Proof. Clearly, if q ∈ Q is an integer then since q is a root of X − q, we obtain
that q is an algebraic integer. Conversely, assume that q ∈ Q is an algebraic
integer. So, there exist n ∈ Z≥1 and a0, . . . , an−1 ∈ Z such that

qn + an−1q
n−1 + . . .+ a1q + a0 = 0.

Write q = r
s in reduced terms, so r, s ∈ Z and s > 0 and gcd(r, s) = 1. Then we

have
rn + an−1r

n−1s+ . . .+ a1rs
n−1 + a0s

n = 0.

If a prime p divides s, we obtain from this equation that it also divides r. Since
r and s are relatively prime, this is not possible, so no prime divides s, which
implies that s = 1. Hence q = r ∈ Z, i.e. q is an integer.

Lemma 7.4.6. Let c ∈ C be algebraic. Then there exists d ∈ Z≥1 such that dc
is an algebraic integer.

Proof. There exists n ∈ Z≥1 and a0, . . . , an−1 ∈ Q such that

cn + an−1c
n−1 + . . .+ a1c+ a0 = 0.

There exists e ∈ Z≥1 such that eai ∈ Z for all 0 ≤ i ≤ n − 1. Then, setting
d := en, we have:

(dc)n + (an−1d)dn−1 + . . .+ (a1d
n−1)c+ a0d

n = 0

which shows that dc is an algebraic integer.
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Proposition 7.4.7. Let c, d ∈ C. If both c and d are algebraic (resp. algebraic
integers) then c+ d and cd are algebraic (resp. algebraic integers).

Proof. Omitted.

Remark 7.4.8. Let c1, c2 ∈ C be algebraic integers. We say that c1|c2 if there
exists an algebraic integer e ∈ C such that c2 = ec1. Let d ∈ Z≥1. For algebraic
integers c1, c2 ∈ C, we say that c1 ≡d c2 if d|c2 − c1. Then (we will need this
observation in the proof of the quadratic reciprocity law using Gauss sums) if
c1, c2 ∈ Z and c1 ≡d c2 using that definition, we in fact have c1 ≡d c2 using
our standard definition. Indeed, The former says that there exists an algebraic
integer e such that c2−c1 = ed, while the latter says that there exists an integer
e such that c2− c1 = ed. But, if e is an algebraic integer satisfying c2− c1 = ed,
we have that e is rational, and then, by lemma 7.4.5, we have that in fact e ∈ Z.

7.5 Gauss sums

Throughout, we fix an odd prime p.

We define G : µp → C as
G := F( ·

p)
,

the Fourier transform of the Legendre symbol. Thus, concretely:

G(ζ) =
∑
α∈Zp

(
α

p

)
· ζα.

The expression/number G(ζ) is called a Gauss sum.

Lemma 7.5.1. Let ζ ∈ µp and let [0]p 6= α ∈ Zp. Then

G(ζα) =

(
α

p

)
G(ζ).

Proof. We have

G(ζα) =
∑
β∈Zp

(
β

p

)
ζαβ =

∑
β∈Zp

(
α−1β

p

)
ζα(α

−1β) =

(
α−1

p

) ∑
β∈Zp

(
β

p

)
ζβ =

(
α

p

)
G(ζ).

Corollary 7.5.2. G(1) = 0.

Proof. Let α ∈ Z×p be a non-square. We have then

G(1) = G(1α) =

(
α

p

)
G(1) = −G(1)

so 2G(1) = 0, and thus G(1) = 0.
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Lemma 7.5.3. Let 1 6= ζ ∈ µp. Then

|G(ζ)|2 = p.

Proof. Notice that by Lemma 7.5.1 one has |G(ζ)|2 = |G(ζ ′)|2 for all ζ, ζ ′ ∈ µp
which are not 1 (and by Corollary 7.5.2, |G(1)|2 = 0). Denote by a the common
value of |G(ζ)|2 for 1 6= ζ ∈ µp (we want to show that a = p). By Parseval’s
identity we have :

(p− 1)a =
∑
ζ∈µp

|G(ζ)|2 = p ·
∑
α∈Zp

|
(
α

p

)
|2 = p(p− 1)

and hence a = p.

Claim 7.5.4. Let 1 6= ζ ∈ µp. one has

G(ζ)2 = (−1)
p−1
2 p.

Proof. We have

G(ζ)2 = G(ζ) ·G(ζ) = G(ζ) ·G(ζ−1) =

(
−1

p

)
G(ζ) ·G(ζ) =

=

(
−1

p

)
|G(ζ)|2 =

(
−1

p

)
p = (−1)

p−1
2 p.

Finally, we can prove Gauss’s quadratic reciprocity theorem and the supple-
mentary law.

Proof (of Gauss’s quadratic reciprocity theorem). We study now G(ζ)q modulo
q. One one hand, we have

G(ζ)q =

∑
α∈Zp

(
α

p

)
ζα

q

≡q
∑
α∈Zp

((
α

p

)
ζα
)q

=
∑
α∈Zp

(
α

p

)
(ζq)α = G(ζq) =

(
q

p

)
·G(ζ).

On the other hand, we have:

G(ζ)q = (G(ζ)2)
q−1
2 ·G(ζ) = (−1)

p−1
2

q−1
2 p

q−1
2 ·G(ζ) ≡q (−1)

p−1
2

q−1
2 ·
(
p

q

)
·G(ζ).

Comparing the two expressions, we deduce(
q

p

)
·G(ζ) ≡q (−1)

p−1
2

q−1
2 ·

(
p

q

)
·G(ζ).

We now argue that we can cancel G(ζ) from both sides. Indeed, G(ζ)2 is
an integer which is prime to q, hence it admits an inverse m modulo q, so
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multiplying by G(ζ) ·m the two sides of the equation has the effect of canceling
G(ζ). Thus, we get (

q

p

)
≡q (−1)

p−1
2

q−1
2 ·

(
p

q

)
.

From this follows (
p

q

)
= (−1)

p−1
2

q−1
2 ·

(
p

q

)
.

Proof (of the supplementary law). Let ζ ∈ µ8 be primitive; For concretenss, say

ζ = e
2πi
8 . Notice that ζ2 = i and therefore ζ−2 = −i and so ζ2 + ζ−2 = 0.

Denoting
g := ζ + ζ−1

(some version of Gauss sums) we obtain

g2 = (ζ + ζ−1)2 = ζ2 + ζ−2 + 2 = 2.

Now we calculate, quite similarly to previously:

gp = g · (g2)
p−1
2 = g · 2

p−1
2 ≡p g ·

(
2

p

)
.

On the other hand, we have:

gp = (ζ + ζ−1)p ≡p ζp + ζ−p.

If p ≡8 ±1 this last expression is equal to g. If p ≡8 ±3, the last expression is
equal to

ζ3 + ζ−3 = ζ4 · ζ−1 + ζ−4 · ζ = −ζ−1 − ζ = −g.

Thus, overall, we obtain

g ·
(

2

p

)
≡p g · εp

where for convenience we denote

εp =

{
1 if p ≡8 ±1

−1 if p ≡8 ±3
.

Now, since g2 = 2 as in the previous proof we can cancel g and obtain(
2

p

)
≡p εp

and thus (
2

p

)
= εp,

as desired.
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7.6 Another proof of Gauss’s quadratic reciprocity
theorem

It seems that the following proof is due to G. Rousseau, and then independently
due to D. Kunisky.

Fix distinct odd primes p, q ∈ Z≥1.

Recall the Chinese remainder theorem bijection, applied to invertible residue
classes:

crt×p,q : Z×pq
∼−→ Z×p × Z×q

given by α 7→ (frgtpqp (α), frgtpqq (α)) or more concretely [n]pq 7→ ([n]p, [n]q). In
what follows, to simplify notation, we will abuse notation and identify Z×pq with
Z×p ×Z×q (in other words, instead of writing (crt×p,q)

−1(β, γ), we will simply write
(β, γ)).

For an odd integere d ∈ Z≥3, we define an equivalence relation on Z×d given
by α ∼ β if α = β or α = −β. We will be interested in sets of representatives
for the equivalence classes. One such set we define as follows:

Hd :=
{

[k]d : k ∈ {1, . . . , d− 1

2
}, gcd(k, d) = 1

}
.

We will now describe three sets of representatives for the equivalence classes
in the case d := pq:

1. We take Hpq.

2. We take Hp
pq := (crt×p,q)

−1(Hp × Z×q
)
.

3. We take Hq
pq := (crt×p,q)

−1(Z×p ×Hq

)
.

We will now compute, for each such set H,

crt×p,q
( ∏
α∈H

α
)
∈ Z×p × Z×q .

It is clear that these will differ by ±, i.e. for two such (α1, β1) and (α2, β2), one
has either α1 = α2 and β1 = β2, or α1 = −α2 and β1 = −β2. By observing
the signs, we will obtain Gauss’s quadratic reciprocity law. For simplicity of
notation, denote P := p−1

2 and Q := q−1
2 .

(1) The result for Hpq we calculate as follows. We need to calculate the
product of numbers between 1 and pq−1

2 which are relatively prime to pq,
modulo p (and analogously modulo q). First, those which are relatively
prime to p, but not to q, are (notice that pq−1

2 = Pq +Q):

q, 2q, . . . , P q.
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Those which are relatively prime to p are (notice that we have pq−1
2 =

Qp+ P ):

1, . . . , p− 1; p+ 1, . . . , p+ (p− 1); . . . ;Qp+ 1, . . . , Qp+ P.

Thus, the desired residue class modulo p is

[P ! · qP ]−1p · [(p− 1)!Q−1 · P !]p = [−
(
−1

q

)(
q

p

)
]p

(the equality by Wilson’s theorem and Euler’s criterion). Thus, the thing
to be computed is equal to(

[−
(
−1

q

)(
q

p

)
]p, [−

(
−1

p

)(
p

q

)
]q

)
.

(2) The result for Hp
pq is(

[(P !)q−1]p, [((q − 1)!)P ]q

)
=

(
[(−1)PQ

(
−1

q

)
]p, [

(
−1

p

)
]q

)
(the equality in the q-coordinate is by Wilson’s theorem and Euler’s cri-
terion, while the equality in the first coordinate is by noticing that since
(P !)q−1 = ((P !)2)Q ≡p ((−1)P · (p− 1)!)Q and thus by Wilson’s theorem
and Euler’s criterion ≡p (−1)PQ

(−1
q

)
).

(3) The result for Hq
pq is, analogously to the previous case,(

[

(
−1

q

)
]p, [(−1)PQ

(
−1

p

)
]q

)
.

Notice that the p-coordinate of (3) differs from that of (1) by −
(
q
p

)
. The

q-coordinate of (2) differs from that of (1) by −
(
p
q

)
. Finally, (3) differs from (2)

by (−1)PQ. Therefore, we obtain:

(−1)PQ · (−
(
p

q

)
) = −

(
q

p

)
or (

p

q

)
=

(
q

p

)
· (−1)PQ

which is Gauss’s quadratic reciprocity law.
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Chapter 8

Gaussian integers

8.1 Gaussian integers

Similalry to the case of integers, we have the following definitions:

Definition 8.1.1.

1. a ∈ Z[i] is said to be invertible (or a unit) if there exists a b ∈ Z[i] such
that ab = 1. Such a b is unique if exists, and written then a−1.

2. a ∈ Z[i] is said to divide b ∈ Z[i] if there exists c ∈ Z[i] such that b = ac.
We write a|b if a divides b.

3. a, b ∈ Z[i] are said to be associate if there exists an invertible u ∈ Z[i] such
that a = bu. We will write a ∼ b for a and b being associate. Equivalently,
a and b are associate if a|b and b|a. Being associate is an equivalence
relation. An element is associate to 1 if and only if it is invertible.

4. a ∈ Z[i] is said to be prime if a is not invertible and all divisors of a are
either associate to a or invertible.

Definition 8.1.2.

1. The norm of a ∈ Z[i] is defined to be N(a) := |a|2 ∈ Z≥0. Explicitly,
writting a = n+mi, we have N(a) = n2 +m2.

2. The conjugate of a ∈ Z[i] is defined to be, writing a = n + mi, a :=
n−mi ∈ Z[i].

Lemma 8.1.3.

1. Let a ∈ Z[i]. Then a = 0 if and only if N(a) = 0.

2. One has N(1) = 1.

3. Let a, b ∈ Z[i]. One has N(ab) = N(a)N(b).

63
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4. Let a ∈ Z[i]. One has a · a = N(a).

5. Let a ∈ Z[i].Then a is invertible if and only if N(a) = 1.

Proof.

1. Easy.

2. Easy.

3. Easy.

4. Easy.

5. Suppose that a is invertible. Then 1 = N(1) = N(aa−1) = N(a)N(a−1).
Since the norms are elements of Z≥1, this implies N(a) = 1. Conversely,
suppose that N(a) = 1. Then a · a = N(a) = 1 and hence a is invertible,
with inverse a.

Proposition 8.1.4. The units of Z[i] are 1,−1, i,−i.

Proof. Clearly those are units. Conversely, given n+mi ∈ Z[i] a unit, one has
1 = N(n + mi) = n2 + m2. But this can only happen if n2 = 0,m2 = 1 or
n21,m2 = 0, or put differently n = 0,m ∈ {1,−1} or n ∈ {1,−1},m = 0, from
which the claim is clear.

8.2 Division with remainder

Proposition 8.2.1. Let a, b ∈ Z[i], and b 6= 0. Then there exists a pair (q, r) ∈
Z[i]2 such that N(r) < N(b) and a = qb+ r. Given this, one has b|a if and only
if r = 0.

Proof. First, given such (q, r), if r = 0 then clearly b|a. Conversely, if b|a, then
b|(a − qb) = r and so N(b)|N(r). Since N(r) < N(b), this can happen only if
N(r) = 0, so r = 0.

Now let us proof the existence of such (q, r). We consider the complex
number a

b ∈ C. It is easy to see that there exists q ∈ Z[i] such that
∣∣a
b − q

∣∣ < 1.
Then setting r := a− qb ∈ Z[i], we have

N(r) = |r|2 = |a− qb|2 =
∣∣b(a

b
− q
)∣∣2 = |b|2 ·

∣∣a
b
− q
∣∣2 < |b|2 = N(b).
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8.3 Ideals

We define ideals as in the case of Z:

Definition 8.3.1. An ideal I ⊂ Z[i] is a subset such that:

1. 0 ∈ I.

2. Let a, b ∈ I. Then a+ b ∈ I.

3. Let a ∈ I and b ∈ Z[i]. Then ab ∈ I.

As for Z, given a1, . . . , an ∈ Z[i] we define an ideal

(a1, . . . , an) := {b1a1 + . . .+ bnan : b1, . . . , bn ∈ Z[i]}.

We have a claim similar to the one we had for Z:

Theorem 8.3.2 (Principal ideal theorem). Let I ⊂ Z[i] be an ideal. Then there
exists a ∈ Z[i] such that I = (a). Also, one has (a) = (b) if and only if a ∼ b.

Proof. The uniqueness claim: For an element a ∈ Z[i] and an ideal I ⊂ Z[i], one
checks easily that one has a ∈ I if and only if (a) ⊂ I. Therefore, for a, b ∈ Z[i]
one has a|b if and only if (b) ⊂ (a). Therefore a ∼ b, i.e. a|b and b|a, if and only
if (a) ⊂ (b) and (b) ⊂ (a), i.e. if and only if (a) = (b).

Now we proceed to the existence claim. Let I ⊂ Z[i] be an ideal. If I = {0}
then I = (0) and we are done. So suppose that I 6= {0}.Consider an element
0 6= a ∈ I with minimal possible N(a). Clearly (a) ⊂ I and we will show that
I ⊂ (a), so then I = (a) and we will be done. Thus, let b ∈ I (we want to deduce
that b ∈ (a)). We perform division with remainder and obtain b = qa+ r with
N(r) < N(a). We have r = b − qa ∈ I. Then by the minimality assumption,
we must have r = 0. Therefore b = qa, i.e. b ∈ (a).

8.4 gcd

We define the gcd as for Z:

Definition 8.4.1. Let a, b ∈ Z[i]. Then c ∈ Z[i] is said to be a gcd of a and b
if c|a and c|b, and for every d ∈ Z[i] such that d|a and d|b one has d|c.

Then it is easy to see that if c is a gcd of a and b, then an arbitrary element
d is a gcd of a and b if and only c ∼ d. We show the existence of a gcd’s by
using ideals (an approach using the Euclidean algorithm is also possible).

Claim 8.4.2. Let a, b ∈ Z[i]. By the principal ideal theorem, we can write
(a, b) = (c) for some c ∈ Z[i]. Then c = gcd(a, b). In particular, the gcd of a
and b can be expressed as da+ eb for some d, e ∈ Z[i].
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Proof. a ∈ (c) and therefore c|a. Analogously, c|b. If f |a and f |b, we want to
show that f |c. But notice that we can write c = da + eb for some d and e by
the definition of the ideal (a, b). Then clearly f |da+ eb = c.

For a, b ∈ Z[i], we write gcd(a, b) = c in case c is a gcd of a and b. As before,
we define:

Definition 8.4.3. Let a, b ∈ Z[i]. We say that a and b are relatively prime if
gcd(a, b) = 1.

For example, it is easy to see that a prime element a ∈ Z[i] is not relatively
prime to an element b ∈ Z[i] if and only if a|b.

8.5 Unique factorization

To not make a confusion with the primes in Z, which can be interpreted as
elements of Z[i] but about whose primeness as such we have not yet meditated,
we will denote primes in Z[i] in the style p, q etc.

Proposition 8.5.1.

1. For every a ∈ Z[i] there exists a (possibly empty) list of prime elements
p1, . . . , pn ∈ Z[i] such that

a ∼ p1 · . . . · pn.

2. If for two lists of primes p1, . . . , pn and q1, . . . , qm one has

p1 · . . . · pn ∼ q1 · . . . · qm,

then for every prime elemetn p ∈ Z[i], the number of 1 ≤ i ≤ n such that
p ∼ pi is equal to the number of 1 ≤ j ≤ m such that p ∼ qj.

Proof. (complete)

8.6 Splitting

Let p ∈ Z≥1 be a prime. We consider now p as an element of Z[i], and study
whether it is prime as an element of that ring. We have N(p) = p2. Therefore,
in the prime decomposition of p in Z[i] there are either 1 or 2 primes. There
are therefore three possibilities:

1. p stays prime in Z[i]: p is a prime in Z[i].

2. p splits in Z[i] and more specifically splits completely : p is associate to a
product of two non-associate primes.

3. p splits in Z[i] and more specifically ramifies: p is associate to the square
of a prime.
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Theorem 8.6.1. Let p ∈ Z≥1 be a prime. The following are equivalent:

1. p splits in Z[i].

2. p is the sum of two squares in Z.

3. Either p = 2 or p ≡4 1.

4. [−1]p is a square.

Proof. (1) =⇒ (2): Let a+ bi be a prime factor of p. Then, since N(p) = p2,
we must have a2 + b2 = N(a+ bi) = p.

(2) =⇒ (3): The only square in Z4 are [0]4 and [1]4, so the implication is
easy to check.

(3) =⇒ (4): We studied this.

(4) =⇒ (1): There exists n ∈ Z such that n2 ≡p −1. Now we have two
elements in Z[i] whose square modulo p is −1, and which do not differ by ±1:
n and i. We have n2 − i2 ≡p 0 and so (n− i)(n+ i) ≡p 0, i.e. p|(n− i)(n+ i),
but: neither p|n− i nor p|n+ i (since n 6≡p ±i). This implies that p is not prime
in Z[i], by definition, and so splits in Z[i], by definition.

For completeness, we also want to see:

Claim 8.6.2. Among the primes in Z, 2 is the only one which ramifies in Z[i].

Proof. First, we have 2 = (1 + i)(1− i) and notice that (1− i) = (−i) · (1 + i),
so 1− i ∼ 1 + i, therefore 2 ramifies in Z[i].

Now, if conversely p ∈ Z≥1 is a prime which ramifies in Z[i], we write a+ bi
for a prime factor of p. Then as we said above, we have p = N(a+ bi) = a2 + b2.
Therefore p = (a+ bi)(a− bi), and this is the prime decomposition of p in Z[i].
Clearly both a 6= 0 and b 6= 0. We want now to see that if a− bi ∼ a+ bi then
p = 2. Indeed, one easily sees that this implies that b ∈ {a,−a}. But then ia
divides a+bi, and since a+bi is prime this is only possible if a ∈ {1,−1}, which
implies that a+ bi ∈ {1 + i, 1− i}, and then p = 2.

8.7 Sum’s of two squares

Let us reiterate what we got in Theorem 8.6.1.

Corollary 8.7.1 (Fermat’s theorem). Let p ∈ Z≥1 be a prime. Then p is a
sum of two integer squares if and onyl if p = 2 or p ≡4 1.

We want now to characterize all integers n ∈ Z≥1 which are sums of two
integer squares.

Lemma 8.7.2. Let p ∈ Z≥1 be a prime, and assume that p ≡4 3. If, for
a, b ∈ Z, one has p|a2 + b2, then p|a and p|b.
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Proof. We say in Theorem 8.6.1 that p stays prime in Z[i]. Therefore, p|a2 + b2,
which can be rewritten as p|(a + bi)(a − bi), implies that p|a + bi or p|a − bi.
Both are equivalent to p|a and p|b.

Theorem 8.7.3. Let n ∈ Z≥1. Denoting by ordp(n) the exponent of p in the
prime decomposition of n, we have that n can be written as the sum of two
squares if and only if every prime p ∈ Z≥1 such that p ≡4 3, satisfies 2|ordp(n).

Proof. If the condition 2|ordp(n) is satisfied for all primes congruent to 3 modulo
4, then n is the product of numbers which are either squares or primes congruent
to 2 or 1 modulo 4. We already know that each such is a sum of two integer
squares, and since the product of sums of two squares is again a sum of two
squares, the desired conclusion is clear.

Let us assume conversely that n can be written as the sum of two squares.
We proceed by induction on n.If n = 1 or n is a prime, we already know the
claim. If all the prime factors of n are congruent to 2 or 1 modulo 4, the claim
is clear. Suppose therefore that there exists a prime factor p of n which is
congruent to 3 modulo 4. Write n = a2 + b2 for a, b ∈ Z. Then p|n = a2 + b2

and by the previous lemma we have p|a and p|b. Therefore p2|a2+b2 = n. Hence
we can write n

p2 = (ap )2 + ( bp )2. Therefore, by induction, all the exponents of
primes congruent to 3 modulo 4 in the prime decomposition of n

p2 are even, and
thus this also holds for n.



Chapter 9

Continued fractions

9.1 Continued fractions

Definition 9.1.1. A real continued fraction is a sequence (n0;n1, n2, . . .) where
there can appear either finitely many terms after the semi-colon, or infinitely
many, and where n0 ∈ R and n1, . . . , nk ∈ R≥1. We will say that the real
continued fraction is simply a continued fraction if all the ni are integers. The
associated value of a finite real continued fraction (n0;n1, . . . , nk) (by abuse of
language, also called a finite real continued fraction) is

〈n0;n1, . . . , nk〉 := n0 +
1

n1 + 1
n2+

1

n3+

... 1
nk−1+ 1

nk

.

In other words, we define recursively

〈n0; 〉 := n0

and

〈n0;n1, . . . , nk+1〉 := n0 +
1

〈n1;n2, . . . , nk〉
.

9.2 The continued fraction associated to a real
number

Let us describe how to associate a continued fraction to a real number. For a
0 6= x ∈ R we denote by bxc the biggest integer not bigger than x.

Let a ∈ R. Set a0 := a. Suppose that we have already constructed
n0, n1, . . . , nk−1 ∈ Z and a0, . . . , ak ∈ R with ni ≥ 1 and ai > 1 whenever
i > 0, such that:

a = 〈n0;n1, . . . , n`−1, a`〉
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for all 0 ≤ ` ≤ k (clearly we have just done so for k := 0). Then we define
nk := bakc. If ak is an integer (so nk = ak), we stop here. In particular, in that
case a is rational, as

a = 〈n0;n1, . . . , nk〉.

Otherwise, we set ak+1 := 1
ak−nk ∈ R>1 and continue recursively.

Suppose that a is rational. We write a in reduced form a = m−2

m−1
(so

m−2,m−1 ∈ Z and m−1 ≥ 1). Apply the Euclidean algorithm: Define mi

recursively, for i ≥ 0:

mi−2 = qimi−1 +mi (qi, ni ∈ Z, 0 ≤ mi < mi−1)

stopping when mi = 0. Set k ∈ Z≥0 to be the number at which we stop,
so mk = 0. Notice that qi = bmi−2

mi−1
c for all 0 ≤ i ≤ k. Therefore, we verify

recursively that ni defined above is equal to qi, for 0 ≤ i ≤ k and that ai defined
above is equal to mi−2

mi−1
for 0 ≤ i ≤ k. Indeed, for i = 0 this is clear, and we have

established that for some i < k, then

ai+1 =
1

ai − ni
=

1

( mi
mi−1

)
=
mi−1

mi

and
ni = baic = bmi−1

mi
c = qi.

We deduce that the continued fraction associated to a real number a is finite
if and only if a is rational.

Example 9.2.1. write down example of golden section

9.3 Partial convergents

Let (n0;n1, . . .) be a real continued fraction (finite or not - if not, we will denote
by k ∈ Z≥0 the last integer for which nk is still defined). We will define ri and
si recursively. Namely, set

r−2 = 0, r−1 = 1

and
ri = niri−1 + ri−2

for 0 ≤ i recursively (if the real continued fraction is finite, we only continue till
i = k). Also, set

s−2 = 1, s−1 = 0

and
si = nisi−1 + si−2

for 0 ≤ i ≤ k rescursively (if the real continued fraction is finite, we only continue
till i = k). Note that s0 = 1, s1 = n1 and si ≥ si−1 + 1 for i ≥ 2, so we see
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in particular that si ≥ i for all 0 ≤ i. Also, note that if we are dealing with a
continued fraction (i.e. all the ni are integers) then all ri and si are integers as
well.

Claim 9.3.1. For 0 ≤ ` (if the real continued fraction is finite, then we also
assume ` ≤ k) one has

〈n0;n1, . . . , n`〉 =
r`
s`
.

Proof. For ` = 0 this is immediately checked. Recursively, assume that we are
given ` ≥ 1 and we know this claim for ` − 1 (for all real continued fractions).
We then calculate:

〈n0;n1, . . . , n`〉 = 〈n0;n1, . . . , n`−2, n`−1 +
1

n`
〉 =

(
n`−1 + 1

n`

)
· r`−2 + r`−3(

n`−1 + 1
n`

)
· s`−2 + s`−3

=

=
(n`−1n` + 1)r`−2 + n`r`−3
(n`−1n` + 1)s`−2 + n`s`−3

=
n`(n`−1r`−2 + r`−3) + r`−2
n`(n`−1s`−2 + s`−3) + s`−2

=
n`r`−1 + r`−2
n`s`−1 + s`−2

=
r`
s`
.

Claim 9.3.2. For 0 ≤ ` (if the real continued fraction is finite, then we also
assume ` ≤ k) one has

r`s`−1 − s`r`−1 = (−1)`+1.

Proof. For ` = 0 this is immediately checked. Then, assuming this holds for
some `, we perform the induction step:

r`+1s`−s`+1r` = (n`r`+r`−1)s`−(n`s`+s`−1)r` = r`−1s`−s`−1r` = −(−1)`+1 = (−1)`+2.

Corollary 9.3.3. Suppose that our real continued fraction is a continued frac-
tion (i.e. all ni are integers). For 0 ≤ ` (if the real continued fraction is finite,
then we also assume ` ≤ k) one has s` > 0 and gcd(r`, s`) = 1. Thus,

〈n0;n1, . . . , n`〉 =
r`
s`

is a reduced expression.

Proof. We have already noted above that s` that s` > 0. From the formula in
Claim 9.3.2 it is clear that gcd(r`, s`) = 1.

Corollary 9.3.4. For 0 ≤ ` (if the real continued fraction is finite, then we
also assume ` ≤ k) one has

r`
s`
− r`−1
s`−1

=
(−1)`+1

s`s`−1
.

In particular we have, for 2 ≤ `:∣∣r`
s`
− r`−1
s`−1

∣∣ ≤ 1

`(`− 1)
.
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Corollary 9.3.5. Suppose that our (n0;n1, . . .) is the continued fraction asso-
ciated to an a ∈ R (which might be finite or infinite, depending on whether a is
rational or not). For 1 ≤ ` (if the real continued fraction is finite, then we also
assume ` ≤ k) one has ∣∣a− r`

s`

∣∣ ≤ 1

(`+ 1)`
.

Proof. If ` is the last integer for which n` is still defined, then a = r`
s`

and the

claim is clear. Otherwise, consider the real continued fraction (n0;n1, . . . , n`, a`+1

and the corresponding sequences

r0, . . . , r`, r
′
`+1

and
s0, . . . , s`, s

′
`+1.

We then have ∣∣a− r`
s`

∣∣ =
∣∣r′`+1

s′`+1

− r`
s`

∣∣ ≤ 1

(`+ 1)`
.

9.4 Convergence

Definition 9.4.1 (Convergence of a sequence).

Theorem 9.4.2. Let a ∈ R be irrational, and let (n0;n1, . . .) be the associated
continued fraction. Then

a = lim
k→∞

〈n0;n1, . . . , nk〉.

Proof. By the above, we have∣∣a− 〈n0;n1, . . . , nk〉
∣∣ =

∣∣a− rk
sk

∣∣ ≤ 1

(k + 1)k

and so the claim is clear.

9.5 Periodicity

9.6 Good approximation

Proposition 9.6.1. Let a ∈ R and d ∈ Z≥1. Then there exists a reduced
fraction n

m such that 0 < m ≤ d and∣∣∣∣a− n

m

∣∣∣∣ ≤ 1

m(d+ 1)
.
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Proof. Denote by (n0;n1, . . .) the continued fraction associated to a (which
might be finite or infinite) and by r0, . . . and s0, . . . the corresponding sequences.
If there does not exists ` ≥ 0 for which s` is defined and s` > d, then we
must have that the continued fraction is finite (and so a is rational) so, if it is
(n0;n1, . . . , nk), we have

a = 〈n0;n1, . . . , nk〉 =
rk
sk

and so ∣∣a− rk
sk

∣∣ = 0

and sk ≤ d, and thus we are done.

We therefore now assume that there exists ` ≥ 0 for which s` is defined and
s` > d. Let us understand now by ` the minimal such `. Notice that ` > 0 (as
s0 = 1) and s`−1 ≤ d, s` ≥ d+ 1. We have:∣∣a− r`

s`

∣∣ ≤ ∣∣r`−1
s`−1

− r`
s`

∣∣ =
1

s`−1s`
≤ 1

s`−1(d+ 1)

so m := s`−1 is as we want.

9.7 Sums of two squares

We want to show that a prime p ∈ Z≥1 which is congruent to 1 modulo 4 can
be written as a sum of two integer squares. We learned that [−1]p is a square,
so there exists an integer 0 < n < p such that n2 ≡p −1. Then for all m, k ∈ Z
we have m2 + (nm+ pk)2 ≡p m2 + (nm)2 = m2(n2 + 1) ≡p 0. Therefore, if we
can find m, k ∈ Z such that 0 < m <

√
p and 0 < nm + pk <

√
p, the number

m2 + (nm+ pk)2 will be both divisible by p and lying in (0, 2p), so will must be
equal to p, showing that p can be written as the sum of two integer squares.

We can rewrite the inequalities as searching for m, k ∈ Z such that 0 < m <√
p and 0 < |np + k

m | <
1

m
√
p . By the above Proposition, setting a := n

p and

d := b√pc, we can find k,m ∈ Z with 0 < m ≤ b√pc such that

∣∣n
p

+
k

m

∣∣ ≤ 1

m(b√pc+ 1)
.

The first inequality implies 0 < m <
√
p and the second inequality implies

∣∣n
p

+
k

m

∣∣ < 1

m
√
p

so we get what we wanted.
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Chapter 10

Some amusements

10.1 Perfect nubmers and Mersenne primes

Definition 10.1.1. A number n ∈ Z≥1 is said to be perfect if it is equal to the
sum of its positive divisors, except itself:

n =
∑

1≤d<n
d|n

d.

Example 10.1.2. The number 6 is perfect:

6 = 1 + 2 + 3.

Definition 10.1.3. A number n ∈ Z≥1 is said to be triangular, if it is of the

form 1 + 2 + . . .+ k = k(k+1)
2 for some k ∈ Z≥1.

Definition 10.1.4. A prime p is said to be a Mersenne prime, if it is equal to
2n − 1 for some n ∈ Z≥1.

Theorem 10.1.5 (Euclid-Euler). The even perfect number are exactly the tri-
angular numbers 1 + 2 + . . .+ p where p is a Mersenne prime. Equivalently, but
less juicy, of the form

2n−1(2n − 1)

where n > 1 and 2n − 1 is prime.

Remark 10.1.6. It is not known whether there are infinitely many Mersenne
primes or not (there are 51 known Mersenne primes, as of December 2018);
Thus, it is not known whether there are infinitely many even perfect number or
not. In addition, it is not known if there are any odd perfect numbers.

To prove the theorem, we would like to study some important multiplicative
functions.
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Definition 10.1.7. A function f : Z≥1 → Z≥1 is said to be multiplicative if

f(nm) = f(n)f(m)

whenever m,n ∈ Z≥1 are relatively prime.

Definition 10.1.8. Define

σk(n) =
∑
d∈Z≥1

d|n

dk.

Remark 10.1.9. For example, σ0(n) is equal to the number of divisors of n,
while σ1(n) is equal to the sum of divisors of n.

Claim 10.1.10. The functions σk are multiplicative.

Proof. For n ∈ Z≥1, denote byDn ⊂ Z≥1 the set of divisors of n. Letm,n ∈ Z≥1
be relatively prime. It is easy to see that one has a bijection

Dm ×Dn → Dmn

given by (a, b) 7→ ab. Therefore:

σk(mn) =
∑

d∈Dmn

dk =
∑

a∈Dm,b∈Dn

(ab)k =

( ∑
a∈Dm

ak

)
·

( ∑
b∈Dm

bk

)
= σk(m)·σk(n).

Proof (of Theorem 10.1.5). Assume first that n is such that 2n − 1 is prime.
We want to show that m := 2n−1(2n − 1) is perfect. We need to show that
σ1(m) = 2m. Indeed:

σ1(m) = σ1(2n−1)σ1(2n−1) = (1+2+. . .+2n−1)·(1+(2n−1)) = (2n−1)·2n = 2m.

Conversely, let m be an even perfect number. We can write m = 2k` with
odd `. We easily see that ` 6= 1. We have

2k+1` = 2m = σ1(m) = (2k+1 − 1) · σ1(`).

Therefore 2k+1 − 1|`. If 2k+1 − 1 6= ` we have

σ1(`) ≥ `+ 1 +
`

2k+1 − 1
so

(2k+1 − 1)σ1(`) ≥ (2k+1 − 1)(`+ 1 +
`

2k+1 − 1
) = 2k+1`+ 2k+1 − 1 > 2k+1`.

This is a contradiction, therefore we must have 2k+1 − 1 = `. Thus we obtain

(`+ 1)` = ` · σ1(`)

so σ1(`) = `+ 1. Therefore ` is prime.
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10.2 Uncategorized amusements

Proposition 10.2.1. Let n ∈ Z≥1. Then n is a square if and only if σ0(n) is
odd.

Proof. Write n = pe11 . . . perr . Then

σ0(n) = (e1 + 1) . . . (er + 1).

Therefore, σ0(n) is odd if and only if all ei’s are even, which clearly happens if
and only if n is a square.


