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1 Introduction, conventions, notations, etc.

These notes are very preliminary, contain a lot of unfinished things, etc.! I don’t
claim originality etc.!

2 Basic representation theory

In this section, we discuss the basics of representation theory of finite groups.

Throughout this section, we fix a group G and a ground field k (so that all
vector spaces are k-vector spaces, etc.).

2.1 G-sets and G-representations

2.1.1

Recall that groups originated as the collections of symmetries of objects. At
its barest, an object is a set X with some extra structure and a symmetry is a
bijection X → X which preserves the extra structure. Then we expect that the
identity idX : X → X is a symmetry, if σ, τ : X → X are symmetries then so
is σ ◦ τ , and if σ : X → X is a symmetry then so is σ−1. In other words, we
expect the set of symmetries to form a subgroup of the group of all bijections
X → X under composition.
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Example 2.1. We can consider the empty extra structure on the set {1, . . . , n}.
Then the group of symmetries is Sn, the group of bijections {1, . . . , n} → {1, . . . , n}
under composition. More generally, for a set X, we will denote by SX the group
of bijections X → X under composition.

Example 2.2. We can consider the extra structure on {1, . . . , n} to be the
subset {1, . . . ,m}. So symmetries are the bijections {1, . . . , n} → {1, . . . , n}
which preserve the subset {1, . . . ,m}. We obtain a subgroup of Sn isomorphic
to Sm × Sn−m.

Example 2.3. Let V be a k-vector space. The extra structure on V of a linear
vector space specifies a subgroup GL(V ) ⊂ SV , consisting of the linear automor-
phisms of V .

2.1.2

So, groups are an abstraction of collections of symmetries. A reversal of this is
then, for our abstract group G, to search for objects of which it can be thought
of as a collection of symmetries.

Definition 2.4. A G-set is a pair consisting of a set X and a group homomor-
phism ρ : G→ SX .

Remark 2.5. Equivalent to the data of ρ is the data of a map a : G×X → X
such that

• a(1, x) = x for all x ∈ X.

• a(g1g2, x) = a(g1, a(g2, x)) for all g1, g2 ∈ G, x ∈ X.

The relation is ρ(g)(x) = a(g, x). One usually abbreviates gx := a(g, x), so that
a is implicit.

Remark 2.6. The data of ρ or a as above is also said to be an action of G
on X. Usually ρ or a will be implicit for us in the notation (in the same way
as when we speak of a group G, implicit is the multiplication operation ×).

Example 2.7. Let V be a finite-dimensional vector space over R, equipped with
an inner product ⟨·, ·⟩. Let

S := {v ∈ V | ||v|| = 1} ⊂ V.

Let O(V ) ⊂ GL(V ) be the subgroup consisting of the isometries - linear auto-
morphisms T satisfying ⟨Tv1, T v2⟩ = ⟨v1, v2⟩ for all v1, v2 ∈ V . Then Each
T ∈ O(V ) preserves S, and we obtain an action of O(V ) on S, making S an
O(V )-set.

Example 2.8. Let H ⊂ G be a subgroup. Then we can make G/H to be a
G-set by defining g(g′H) := gg′H.
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Definition 2.9. Let X and Y be G-sets. A morphism of G-sets (or G-
morphism) X → Y is a map f : X → Y such that f(gx) = gf(x) for all
g ∈ G, x ∈ X.

Notation 2.10. Given G-sets X and Y , we will denote by MapsG(X,Y ) the
set of morphisms of G-sets from X to Y .

Remark 2.11. One has the notion of isomorphism of G-sets - a morphism of G-
sets which admits an inverse morphism of G-sets. One checks that a morphism
of G-sets is an isomorphism of G-sets if and only if it is bijective.

Exercise 2.1. Let X be a G-set. Suppose that the action of G on X is transitive,
meaning that X is non-empty and for every x1, x2 ∈ X there exists g ∈ G such
that gx1 = x2. Fix some x0 ∈ X. Let

StabG(x0) := {g ∈ G | gx0 = x0} ⊂ G

(this is called the stabilizer of x0 in G). Then StabG(x0) is a subgroup of G.
Show that we have naturally an isomorphism of G-sets G/StabG(x0) ∼= X.

Example 2.12. Let us return to our example of O(V ) acting on S. One checks

that this action is transitive. Fix s0 :=


0
...
0
1

 ∈ S and denote by W ⊂ V

the orthogonal complement to the span of s0. Then StabO(V )(s0) is naturally
isomorphic to O(W ). One has O(V )/StabO(V )(s0) ∼= S as O(V )-sets, but one
sometimes writes O(V )/O(W ) ∼= S by slight abuse of notation (meaning that
the reader should understand how O(W ) is realized as a subgroup of O(V )), or
even simply O(n)/O(n− 1) ∼= Sn, where n := dimV .

2.1.3

Following a recurrent theme in mathematics, one makes a linear version of G-
sets.

Example 2.13. Consider the action of S2 on {1, 2} as above. It is transitive,
so in some sense “indecomposable”. But the action of (12) squared is equal
to the identity, so satisfies the equation x2 − 1 = 0, and we want to exercise
our reflex of breaking into the eigenspaces with eigenvalues 1 and −1. Namely,
one is tempted to consider formal linear combinations of the points 1 and 2 -
so δ1 + δ2 will be an eigenvector for (12) with eigenvalue 1 and δ1 − δ2 will be
an eigenvector for (12) with eigenvalue −1. So linearization will allow us to
decompose further a situation which seemed indecomposable.

Definition 2.14. A G-representation (or a representation of G) is a pair
consisting of a k-vector space V and a group homomorphism ρ : G → GL(V ).
We again keep ρ implicit usually. If V and W are G-representations, a mor-
phism of G-representations (or G-morphism) V → W is a linear map
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T : V →W such that T (gv) = gT (v) for all g ∈ G, v ∈ V (or in the more explicit
ρ-language, we write (V, ρ), (W,π) and then T should satisfy T ◦ρ(g) = π(g)◦T
for all g ∈ G).
Notation 2.15. GivenG-representations V andW , we will denote by Hom(V,W )
the vector space of linear homomorphisms from V to W , and by

HomG(V,W ) ⊂ Hom(V,W )

the subspace of morphisms of G-representations.

Remark 2.16. Again we have the notion of an isomorphism ofG-representations
- a morphism of G-representations which admits an inverse morphism of G-
representations. Again, one can check that a morphism of G-representations is
an isomorphism of G-representations if and only if it is bijective.

Example 2.17. We make kn a representation of Sn by setting

σ

 x1
...
xn

 :=

 xσ−1(1)

...
xσ−1(n)

 .

Example 2.18. More generally, let X be a G-set. Consider the k-vector space
Funk(X) of functions X → k. We make Funk(X) a G-representation by setting

(gf)(x) := f(g−1x)

(here g ∈ G, f ∈ Funk(X), x ∈ X). Consider also the k-vector space k[X]
which has basis (δx)x∈X , where δx is a formal symbol created for each x. Then
we make k[X] a G-representation by associating to g ∈ G the unique linear
automorphism of k[X] for which

δx 7→ δgx

(here g ∈ G, x ∈ X).

Exercise 2.2. Let X be a finite set. Then we have a natural isomorphism
of k-vector spaces Funk(X) ∼= k[X]. If X is a G-set, this isomorphism is an
isomorphism of G-representations.

Example 2.19. Let V be a k-vector space. The trivial G-representation struc-
ture on V is given by associating to g ∈ G the linear automorphism of V which
is the identity automorphism. The trivial representation of G is k together
with the trivial G-representation structure.

Example 2.20. Let χ : G→ k× be a character (i.e. a homomorphism). Then
we can make k a G-representation by setting

gc := χ(g)c

(here g ∈ G, c ∈ k). Let us denote this representation by kχ.

Exercise 2.3. Show that associating to a character χ : G→ k× the 1-dimensional
G-representation kχ sets a bijection between the set of characters G → k× and
the set of isomorphism classes of 1-dimensional G-representations.

5



2.2 Some notions and constructions

2.2.1

Definition 2.21. Let V be a G-representation. A subspace W ⊂ V is called a
G-subrepresentation if gw ∈W for all g ∈ G,w ∈W . In such a case, we can
naturally view W as a G-representation by itself (in the ρ-notation, we have
(V, ρ) and we now consider (W,ρW ) where ρW is the linear automorphism of W
given by ρW (g)(w) := ρ(g)(w)).

Example 2.22. Let kn be the representation of Sn as above. Consider the

subspace W ⊂ kn consisting of vectors

 x1
...
xn

 for which x1 + . . . + xn = 0.

Then W is a G-subrepresentation of kn.

Definition 2.23. Let V be aG-representation andW ⊂ V aG-subrepresentation.
Then we can consider the quotient G-representation V/W - so the quotient
vector space, with the G-action given by

g(v +W ) := gv +W

(here g ∈ G, v ∈ V ).

Definition 2.24. Let V be a G-representation. We say that V is irreducible
(or simple) if V ̸= 0 and for every G-subrepresentation W ⊂ V we have either
W = 0 or W = V . We say that V is indecomposable if V ̸= 0 and if
W1,W2 ⊂ V are G-subrepresentations such that V =W1⊕W2, then necessarily
W1 = 0 or W2 = 0 (and then W1 = V ).

Remark 2.25. Clearly an irreducible representation is indecomposable. We
will see later that if, for example, the characteristic of k is zero, then the converse
is also true.

Example 2.26 (of an indecomposable representation which is not irreducible).
Let us consider the action of S2 on k2 as above. Let us here consider the case
when k has characteristic 2. Then k2 is not an irreducible S2-representation,
because we have the subrepresentation W consisting of vectors whose sum of
entries is zero. However, this is an indecomposable representation. Indeed, let
L be a 1-dimensional representation of S2. Then (12) ∈ S2 acts on L by a scalar
which squares to 1. Since k has characteristic 2, this scalar is itself 1. Hence
the S2-action on L is the trivial one. If k2 would have been reducible, it would
necessarily decompose as a direct sum k2 =W1 ⊕W2 of two subrepresentations
which are 1-dimensional. Then since each elements of S2 acts trivially on W1

and on W2, it is clear that it acts trivially on the whole k2. But (12) does not
act trivially on k2.

Definition 2.27. Let V1, V2 be G-representations. We can construct the direct
sum G-representation V1 ⊕ V2. It is the direct sum of vector spaces, and the
G-action is given by

g(v1, v2) := (gv1, gv2).
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Remark 2.28. Of course, as it is already in linear algebra, the relation to
the previous notion of direct sum is as follows. If V is a G-representation and
W1,W2 ⊂ V are G-subrepresentations such that V =W1 ⊕W2, then we have a
natural isomorphism between the just defined W1 ⊕W2 and V .

Definition 2.29. Let V1, V2 be G-representations, and let T : V1 → V2 be a
morphism of G-representations. We define the kernel

Ker(T ) := {v1 ∈ V1 | T (v1) = 0}.

Then Ker(T ) is a G-subrepresentation of V1. We define the image

Im(T ) := {v2 ∈ V2 | ∃v1 ∈ V1 s.t. T (v1) = v2}.

Then Im(T ) is a G-subrepresentation of V2. We define the cokernel

coKer(T ) := V2/Im(T ).

2.3 Semisimplicity

2.3.1

Definition 2.30. Let V be a G-representation. We say that V is semisimple
if for every G-subrepresentation W ⊂ V there exists a G-subrepresentation
W ′ ⊂ V such that V =W ⊕W ′.

Remark 2.31. As is known from linear algebra, for every G-subrepresentation
W ⊂ V (or any subspace W ⊂ V ) there exists a subspace W ′ ⊂ V such
that V = W ⊕W ′ (we say that W ′ is a complementary subspace). So the
matter here is in finding a complementary subspace which happens to be a
G-subrepresentation.

Remark 2.32. Regarding the above distinction between irreducible and inde-
composable representations, notice that clearly a semisimple indecomposable
representation is irreducible. Example 2.26 provides an indecomposable repre-
sentation which is not irreducible, so in particular not semisimple.

2.3.2

Theorem 2.33 (Maschke’s theorem). Suppose that G is finite, and suppose
that the characteristic of the field k does not divide |G|. Then every finite-
dimensional G-representation is semisimple.

First proof of Maschke’s theorem. Let V be a finite-dimensionalG-representation,
it will be convenient to denote by ρ : G→ GL(V ) the implicit homomorphism.
Let W ⊂ V be a G-subrepresentation. As mentioned above, by linear algebra
we know that there exists a subspace W ′ ⊂ V such that V = W ⊕W ′ (but
W ′ is not necessarily a G-subrepresentation). Let us consider the linear endo-
morphism P : V → V which is the projection on W along W ′. In other words,
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P is characterized by P (w + w′) = w whenever w ∈ W,w′ ∈ W ′. Let us now
consider the following endomorphism Q : V → V :

Q :=
1

|G|
∑
g∈G

ρ(g) ◦ P ◦ ρ(g)−1.

We claim that Q is a projection operator on W . Indeed, first we check
that Q(w) = w for all w ∈ W . We have ρ(g)−1(w) = ρ(g−1)(w) ∈ W
and therefore P (ρ(g)−1(w)) = ρ(g)−1(w) and therefore ρ(g)(P (ρ(g)−1(w))) =
ρ(g)(ρ(g)−1(w)) = w, so Q(w) = 1

|G|
∑
g∈G w = w. Next, we notice that the

image of Q is contained in W - this is clear as the image of P is W and the
ρ(g)’s preserve W .

We now claim that Q is a morphism of G-representations: For h ∈ G we
have

Q◦ρ(h) =

 1

|G|
∑
g∈G

ρ(g) ◦ P ◦ ρ(g)−1

◦ρ(h) = 1

|G|
∑
g∈G

ρ(g)◦P◦ρ((h−1g)−1) = . . .

(we substitute hg for g in the sum)

. . . =
1

|G|
∑
g∈G

ρ(hg) ◦ P ◦ ρ(g−1) = ρ(h) ◦ 1

|G|
∑
g∈G

ρ(g) ◦ P ◦ ρ(g)−1 = ρ(h) ◦Q.

So, Q : V → V is a projection operator onW which is also a morphism of G-
representations. But then V =W⊕Ker(Q) and Ker(Q) is aG-subrepresentation
of V , so we get a complementary subrepresentation as desired.

2.3.3

Let us conceptualize a bit the various ingredients of this proof.

Definition 2.34. Let V and W be G-representations. On the vector space
Hom(V,W ) of linear homomorphisms from V to W we define a structure of a
G-representation by defining

(gϕ)(v) := gϕ(g−1v)

(here g ∈ G,ϕ ∈ Hom(V,W ), v ∈ V ). Let us denote g ⋆ ϕ for the result of
acting by g on ϕ in this representation, to not be confused with the composition
ρ(g) ◦ ϕ.

Definition 2.35. Let V be a G-representaiton. The subspace of invariants is
defined as

V G := {v ∈ V | gv = v ∀g ∈ G} ⊂ V.

Then V G is a G-subrepresentation of V .
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Definition 2.36. Let V be a G-representation and suppose that the character-
istic of k does not divide |G|. Define the averaging operator AvGV : V → V
by:

AvGV (v) :=
1

|G|
∑
g∈G

gv.

Then AvGV is the identity on V G, and also Im(AvGV ) = V G. In other words, AvGV
is a projection operator on V G.

Remark 2.37. Notice that T ∈ Hom(V,W ) is a morphism of G-representations
if and only if g ⋆ T = T for all g ∈ G. In other words,

HomG(V,W ) = Hom(V,W )G.

Remark 2.38. Thus, in the above proof, we consider the G-representation
Hom(V, V ) and the element P ∈ Hom(V, V ). We then considerQ := AvGHom(V,V )(P ).

Then Q ∈ Hom(V, V )G = HomG(V, V ) and we also checked that if P was a pro-
jection operator on a G-subrepresentation W , then Q will also be a projection
operator on W .

2.3.4

Second proof of Maschke’s theorem. This proof works when k = R or k = C.
Let us consider an arbitrary inner product ⟨−,−⟩0 on V . We then define a new
inner product by

⟨v1, v2⟩ :=
1

|G|
∑
g∈G
⟨gv1, gv2⟩0.

The inner product ⟨−,−⟩ is then G-invariant, in the sense that, for h ∈ G:

⟨hv1, hv2⟩ =
1

|G|
∑
g∈G
⟨ghv1, ghv2⟩0 = . . .

(we substitute gh−1 for g in the sum)

. . . =
1

|G|
⟨gv1, gv2⟩0 = ⟨v1, v2⟩.

Let U be the orthogonal complement, with repsect to ⟨−,−⟩, to W in V . So
V =W ⊕U , and it is left to show that U is a G-subrepresentation of V . Indeed,
if u ∈ U and g ∈ G then for any w ∈W we have

⟨w, gu⟩ = ⟨gg−1w, gu⟩ = ⟨g−1w, u⟩ = 0

(since g−1w ∈W ). Hence gu is perpendicular to W with respect to ⟨−,−⟩, i.e.
gu ∈ U .
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Remark 2.39. In the proof appeared he theme of positivity. Notice that it is
clear that the average of a positive-definite bilinear form is positive-definite, and
in particular non-degenerate. However, it is not true that the average of a non-
degenerate form is necessarily non-degenerate. On the other hand, of course,
positive structures are only available when working over a very restricted class
of fields (such as R and C).

2.3.5

Third proof of Maschke’s theorem. Consider the projection p : V → V/W . We
want to show that there exists a G-morphism ι : V/W → V such that p ◦ ι =
IdV/W (then the image of ι will be a G-subrepresentation of V which is com-
plementary to W ). Stating more generally, given a surjective morphism of
G-representations p : V → Z, and a G-representation U , we would like to show
that HomG(U, V ) → HomG(U,Z) (given by composing with p) is surjective.
This map is the restriction of the more general map Hom(U, V ) → Hom(U,Z)
given by composition with p. The latter map, one immediately checks, is a mor-
phism of G-representations, and it is surjective by linear algebra. We therefore
recast the problem as follows: Given G-representations V and W and a sur-
jective G-morphism p : V → W , the induced morphism V G → WG (obtained
by restriction) is surjective as well. Indeed, let w ∈ WG. Let v ∈ V be such
that p(v) = w. Then p(AvGV (v)) = AvGW (p(v)) = AvGW (w) = w, so AvGV (v) is a
preimage of w under our V G →WG.

2.4 Decomposition into irreducibles

We suppose throughout this subsection that G is finite and the characteristic of
k does not divide |G|.

2.4.1

Lemma 2.40. Let V be a finite-dimensional G-representation. Then there
exist irreducible G-representations E1, . . . , Er such that V ∼= E1 ⊕ . . .⊕ Er (as
G-representaitons).

Proof. The proof is by induction on the dimension of V . If dimV = 0 then
the empty family of Ei’s (r := 0) will do. Now for the induction step, if V is
irreducible then r := 1, E1 := V will do. If V is not irreducible, we can find
a G-subrepresentation W ⊂ V such that W ̸= 0 and W ̸= V . By Maschke’s
theorem, we can find a G-subrepresentation U ⊂ V such that V =W⊕U . Then
U ̸= V since W ̸= 0, and so by the induction hypothesis we can find irreducible
G-representations E1, . . . , Er and F1, . . . , Fm such that

W ∼= E1 ⊕ . . .⊕ Er, U ∼= F1 ⊕ . . .⊕ Fm.

Then
V ∼= E1 ⊕ . . .⊕ Er ⊕ F1 ⊕ . . .⊕ Fm.
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2.4.2

We now naturally would like to understand the uniqueness in the above decom-
position. For that, we first show:

Lemma 2.41 (Schur’s lemma). Let E and F be irreducible G-representations.
Let T : E → F be a morphism of G-representations. Then either T = 0
or T is an isomorphism. In particular, if E and F are not isomorphic, then
HomG(E,F ) = 0.

Proof. Let T : E → F be a non-zero morphism of G-representations - we want
to show that T is an isomorphism. Consider Ker(T ) ⊂ E (recall that it is a G-
subrepresentation). Since T is non-zero, Ker(T ) ̸= E. But since E is irreducible,
this implies Ker(T ) = 0. So T is injective. Now consider Im(T ) ⊂ F (recall that
it is a G-subrepresentation). Since T is non-zero, Im(T ) ̸= 0. But since F is
irreducible, this implies Im(T ) = F . So T is surjective. Thus, T is injective and
surjective, so bijective, and hence an isomorphism of G-representations.

2.4.3

A small “by the way”:

Exercise 2.4. Show that every irreducible G-representation is finite-dimensional
(recall that now we assume that G is finite). So we don’t need to say “finite-
dimensional irreducible G-representation” each time, and can simply say “irre-
ducible G-representation” without ambiguity.

Claim 2.42. Let V be a finite-dimensional G-representation. Let

E1, . . . , Er

and
F1, . . . , Fm

be irreducible G-representations such that

V ∼= E1 ⊕ . . .⊕ Er

and
V ∼= F1 ⊕ . . .⊕ Fm.

Then for every irreducible G-representation E, the number of 1 ≤ i ≤ r for
which Ei is isomorphic to E is equal to the number of 1 ≤ j ≤ m for which Fj
is isomorphic to E, both numbers being equal to

dimHomG(V,E)

dimHomG(E,E)
.

Proof. Let us denote d := dimHomG(E,E) (of course, d ∈ Z≥1 since at least the
identity endomorphism is a G-morphism). For an irreducible G-representation
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F , dimHomG(E,F ) is equal to 0 if F is not isomorphic to E (by Schur’s lemma)
and to d if F is isomorphic to E. Therefore:

dimHomG(V,E) = dim (HomG(E1 ⊕ . . .⊕ Er, E)) =

= dim (HomG(E1, E)⊕ . . .HomG(Er, E)) =

= dimHomG(E1, E) + . . .+ dimHomG(Er, E) =

= d · |{1 ≤ i ≤ r | Ei isomorphic to E}|.

Thus we obtain

|{1 ≤ i ≤ r | Ei isomorphic to E}| = dimHomG(V,E)

d

and the claim follows.

Definition 2.43. Let V be a finite-dimensional G-representation and E an
irreducible G-representation. To define the multiplicity of E in V , denoted
[V : E], write V ∼= E1⊕. . .⊕Er where the Ei’s are irreducible G-representaitons
and then the multiplicity is set to be the number of 1 ≤ i ≤ r for which Ei is
isomorphic to E. By the above claim, this does not depend on the choice.

Remark 2.44. A “more correct” approach to multiplicity, which would work
for finite-dimensional representation of any group over any field, is to consider
Jordan-Holder series for the representation and the resulting subquotients.

2.4.4

Let us here also briefly introduce isotypic components. Given a finite-dimensional
G-representations V and an irreducible G-representation E, we consider the
subrepresentation of V which is the sum of all irreducible subrepresentations
isomorphic to E. This is the isotypic component VE .

Lemma 2.45. Write V = E1⊕ . . .⊕Er where the Ei’s are irreducible subrepre-
sentations of V . Then VE is equal to the sum of the Ei’s which are isomorphic
to E.

Proof. Clearly the sum of the Ei’s which are isomorphic to E is contained in VE .
To show the inclusion in the other direction, let F ⊂ V be an irreducible sub-
representation which is isomorphic to E. We need to show that F is contained
in the sum of the Ei’s which are isomorphic to E. For this, it is enough to show
that given an Ei which is not isomorphic to E, the composition of the inclusion
F → V with the projection V → Ei (arising from the direct sum decomposition
V = E1 ⊕ . . . ⊕ Er) is zero. But this composition is a G-morphism F → Ei
between irreducible G-representations, and therefore, by Schur’s lemma, it is
either an isomorphism or zero. Since F and Ei are not isomorphic, it must be
zero, as desired.

12



Remark 2.46. We thus see that although a decomposition of V into a direct
sum of irreducible representations is not unique, if we gather all the irreducible
representations appearing in the decomposition according to isomorphism, we
do obtain a decomposition (into isotypic components) which does not depend
on any choice.

Exercise 2.5. Let V be a finite-dimensional G-representation and let E be
an irreducible G-representation. Show that there exists a unique G-morphism
V → V which is a projection onto VE. Equivalently, there exists a unique G-
subrepresentation of V which is complementary to VE. When we decompose V
as a direct sum of irreducible G-subrepresentations, describe this complementary
subrepresentation as the direct sum of all the irreducible summands in the chosen
decomposition which are not isomorphic to E.

Exercise 2.6. Let V be a finite-dimensional G-representation. We had the
projection AvGV onto the subspace V G of G-invariants, which is a G-morphism.
Notice that V G can be interpreted as Vk1 , the isotypic component of V cor-
responding to the trivial irreducible representation. Use the previous exercise
to understand what the kernel of AvGV is. Let us note that we therefore get a
concrete formula for the G-morphic projection onto the isotypic component cor-
responding to the trivial representation. One can ask whether there are similar
formulas for othe irreducible representations. We will later see that the theory
of characters provides such formulas.

2.4.5

Lemma 2.47 (Schur’s lemma, continued). Suppose that k is algebraically closed.
Let E be an irreducible G-representation. Then EndG(E) := HomG(E,E) is
equal to k · IdE.

Proof. Let T ∈ EndG(E). Since k is algebraically closed, T admits an eigenvalue
c ∈ k, i.e. T − c · IdE is not invertible. But T − c · IdE is a G-endomorphism,
and therefore by Schur’s lemma T − c · IdE = 0, i.e. T = c · IdE .

Corollary 2.48. Suppose that k is algebraically closed. Let V be a finite-
dimensional G-representation and E an irreducible G-representation. Then

[V : E] = dimHomG(V,E).

Proof. We saw above that

[V : E] =
dimHomG(V,E)

dimEndG(E)

and we saw just now that EndG(E) = k · IdE so dimEndG(E) = 1.

13



2.4.6 The regular representation

Definition 2.49. The regular G-set is G with the standard G-action by mul-
tiplication: ρ(g)(h) := gh where g, h ∈ G. The regular G-representation is
obtained from this by consdering k[G] as above. Thus, k[G] has basis (δh)h∈G
and the structure of G-representation on it is by ρ(g)(δh) = δgh where g, h ∈ G.

Remark 2.50. Recall from linear algebra that given a set X and a vector space
V , we have an isomorphism of vector spaces

Hom(k[X], V ) ∼= Maps(X,V )

where on the left we consider linear homomorphisms and on the left we considers
arbitrary maps, and the vector space structures are the natural ones, by adding
and multiplying by scalar in V . The isomorphism is obtained by sending T :
k[X]→ V to f : X → V given by f(x) := T (δx).

Lemma 2.51. Let X be a G-set and V a G-representation. The above isomor-
phism of vector spaces

Hom(k[X], V ) ∼= Maps(X,V )

restricts to an isomorphism of vector spaces

HomG(k[X], V ) ∼= MapsG(X,V ).

Proof. Left as an exercise.

Proposition 2.52. Let E be an irreducible G-representation. Then the multi-
plicity [k[G] : E] of E in the regular representation of G is equal to dimE

dimEndG(E) .

In particular, if k is algebraically closed, then the multiplicity [k[G] : E] is equal
simply to dimE.

Proof. We have

[k[G] : E] =
dimHomG(k[G], E)

dimEndG(E)
=

dimMapsG(G,E)

dimEndG(E)
= . . .

(notice that we have a natural isomorphism of vector spaces MapsG(G,E) ∼= E
given by sending f to f(1))

. . . =
dimE

dimEndG(E)
.

Corollary 2.53. There are finitely many isomorphism classes of irreducible
G-representations.

14



Proof. From the above, every irreducible G-representations appears with non-
zero multiplicity in the regularG-representation, but as the regularG-representation
is finite-dimensional, clearly only finitely many irreducible G-representations, up
to isomorphism, have non-zero multiplicity in it.

Corollary 2.54 (basic formula). Suppose that k is algebraically closed. Let
E1, . . . , Er be a list of all the irreducible G-representations, each appearing once,
up to isomorphism. Then

|G| = (dimE1)
2 + . . .+ (dimEr)

2.

Proof. We have

|G| = dim k[G] =
∑

1≤i≤r

[k[G] : Ei] · dimEi =
∑

1≤i≤r

dimEi · dimEi.

2.4.7

Let us consider the example of the group S3. We assume that k is an alge-
braically closed field of characteristic not dividing |S3|, i.e. not 2 or 3. We
have two characters S3 → k× and therefore two 1-dimensional representations
of S3, up to isomorphism - the trivial representation and the sign representation
corresponding to sgn : S3 → {±1} ⊂ k×. We have therefore

6 = |S3| = 12 + 12+?2 + . . . .

We see that the only possibility is that there is one more irreducible represen-
tation, of dimension 2. To find it, we can consider our k3 with the usual per-
mutation representation of S3. As mentioned above, we have a 2-dimensional
subrepresentation W ⊂ k3 consisting of the vectors the sum of whose entries
is equal to 0. One checks that this is an irreducible representation (left as an
exercise).

2.5 The group algebra

2.5.1

For us, a ring will be possibly non-commutative, but always with 1.

Definition 2.55. A k-algebra is a ring A which is also a k-vector space, such
that the multiplication A×A→ A is k-bilinear.

Remark 2.56. Let A be a k-algebra. Then we have a map k → A given by
c 7→ c · 1 (where 1 is the unit in the ring A). This map is injective, so we can
think of k as sitting inside A. In fact, we can equivalently define a k-algebra
as a ring A together with a ring homomorphism k → Z(A), where Z(A) is the
center of A.
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2.5.2

Definition 2.57. Let R be a ring. A (left) R-module is an abelian group M
together with an action map R ×M → M (we again abbreviate rm for the
result of applying this action map to (r,m)), such that

• 1m = m for all m ∈M .

• r(m1 +m2) = rm1 + rm2 for all r ∈ R and m1,m2 ∈M .

• (r1 + r2)m = r1m+ r2m for all r1, r2 ∈ R and m ∈M .

• (r1r2)m = r1(r2m) for all r1, r2 ∈ R and m ∈M .

Remark 2.58. By an R-module, unless specified otherwise, we will mean a left
R-module.

Definition 2.59. Let R be a ring and letM,N be R-modules. Amorphism of
R-modules (or R-morphism) fromM to N is a abelian group homomorphism
T :M → N such that T (rm) = rT (m) for all r ∈ R,m ∈M .

Remark 2.60. We skip the explicit repetition of notions such as submodules,
direct sums, kernels, etc. These are defined as in previous frameworks.

Remark 2.61. Let now A be a k-algebra. Let M be an A-module. Then M
becomes naturally a k-vector space, since k ↪→ Z(A) ⊂ A. But also, a lot of
times we are already given a k-vector space M , and then if we give M an A-
module structure, or suppose given toM an A-module structure, we will always
implicitly mean that the given k-vector space structure of M and that obtained
from the A-module structure are the same (unless specified otherwise in rare
cases). In other words, if M carries its own k-vector space structure and is an
A-module, the action map A×M →M is always supposed to be k-bilinear.

2.5.3

Definition 2.62. The group algebra of G, denoted k[G] is, as a k-vector space,
k[G] as above (i.e. the vector space whose basis is (δg)g∈G), with the ring
structure characterized as the unique k-bilinear pairing k[G] × k[G] → k[G]
sending (δg, δh) to δgh.

Lemma 2.63. Let A be a k-algebra. Then we have a natural bijection

Hom(k[G], A) ∼= Hom(G,A×).

Here on the left we consider morphisms of k-algebras. On the right we consider
morphisms of groups. The bijection is given by sending α on the left to g 7→
α(δg) on the right.

Proof. Left as an exercise.
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Corollary 2.64. Let V be a k-vector space. Then we have a natural bijection
between structures of a G-representation on V and of a k[G]-module on V .

Proof. We interpret G-representation structures on V as group homomorphisms
G → End(V )× = GL(V ). We interpret k[G]-module structures on V as k-
algebra homomorphisms k[G]→ End(V ). We now use the previous lemma.

Exercise 2.7. Let V,W be two G-representations, so also k[G]-modules as ex-
plained above. Then a linear map T : V →W is a morphism of G-representations
if and only if it is a morphism of k[G]-modules.

Remark 2.65. To summarize, k[G] is the “linear envelope” of G, and to study
G-representations over k is the same as to study k[G]-modules.

2.6 The non-commutative Fourier transform

We assume throughout this subsection that G is finite and the characteristic of
k does not divide |G|.

2.6.1

Definition 2.66. A ring R is said to be a division ring if for every r ∈ R, if
r ̸= 0 then r is invertible in R. A k-algebra A is said to be a division algebra
if it is, as a ring, a division ring.

We can restate part of Schur’s lemma as follows:

Lemma 2.67 (Schur’s lemma, continuation). Let E be an irreducible G-representation.
Then EndG(E) is a division algebra (the multiplication giving it an algebra struc-
ture is of course composition of linear endomorphisms).

Proof. This immediately follows from Schur’s lemma, as stated above.

Let us, although it is not strictly necessary at this point, deduce Lemma
2.47 from Lemma 2.67. First, we have the following lemma:

Lemma 2.68. Let A be a finite-dimensional division k-algebra, and B ⊂ A a
k-subalgebra. Then B is also a division k-algebra.

Proof. Let b ∈ B and suppose that b ̸= 0. We want to show that b is invertible
in B. Let m ∈ k[x] be the minimal polynomial of the linear map A→ A given
by a 7→ ba. Then m(b) = 0 (check!). We write m(x) = xn(x)+c (where n ∈ k[x]
and c ∈ k) and notice that c ̸= 0, because the linear map a 7→ ba is invertible (as
b has an inverse in A). Therefore 0 = m(b) can be rewritten as b·(−c−1n(b)) = 1
and of course also (−c−1n(b)) · b = 1, so −c−1n(b) is an inverse of b in B.

Next, we have the following claim:

Claim 2.69. Suppose that k is algebraically closed, and let A be a finite-
dimensional division k-algebra. Then A = k.
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Proof. Let a ∈ A. Denote by B ⊂ A the k-subalgebra generated by a (this
is the linear span of 1, a, a2, . . .). Then by the above lemma, B is a division
k-algebra itself. However, B is also commutative. Therefore B is a field. B is
a finite extension field of k, so since k is algebraically closed, we have B = k.
Therefore a ∈ k. As a was arbitrary, we obtain A = k.

Finally, we can deduce Lemma 2.47 from Lemma 2.67. The latter shows
that EndG(E,E) is a division k-algebra. Since it is finite-dimensional, we just
saw that, assuming that k is algebraically closed, we have EndG(E,E) = k.

2.6.2

Modules over division rings behave similarly to modules over a field (i.e. vector
spaces). But one of course has to be careful that there are left modules and right
modules (as we said, when we say “module” we mean implicitly “left module”).
In particular, if D is a division ring and V is a D-module, then there exists a
family (ei)i∈I of non-zero elements in V such that

V = ⊕i∈ID · ei

(we say then that (ei)I is a basis for V over D). If V is finitely generated over
D, then I must be finite. More generally, if W ⊂ V is a D-submodule and we
are already given a basis (ei)i∈I of W , we can find a family (ei)i∈J of elements
in V such that (ei)i∈I

∐
J is a basis of V . The proofs are the same as in the

case when D is a field. One also shows in the same way as for fields that |I| is
independent of the choices, and this is called the dimension of V over D. If D
is a k-algebra, we have the formula (usually the student sees it when discussing
towers of field extensions, but the proof is the same):

dimk V = dimD V · dimkD.

2.6.3

Let R be a ring and M an R-module. Let us denote S := EndR(M). Then S
is a ring, and we can consider M as an S-module. We have a canonical ring
homomorphism R→ EndS(M), simply given by the R-module structure on M .
Thus, S consists of endomorphisms of the abelian group M which commute
with those coming from R, and therefore, tautologically, the endomorphisms
that come from R commute with those from S.

2.6.4

Let E be an irreducible G-representation. We denote DE := EndG(E) (recall
that DE is a division k-algebra by Schur’s lemma). Then as just explained, we
have a natural k-algebra morphism

FE : k[G]→ EndDE
(E).
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2.6.5

Let us denote by
E1, . . . , Er

an exhaustive list of irreducible G-representations (by exhaustive we mean that
the representations in the list are pairwise non-isomorphic and that every irre-
ducible G-representation is isomorphic to one in the list). We gather the FEi

’s
into one k-algebra morphism

F : k[G]→
∏

1≤i≤r

EndDEi
(Ei).

One might call F the non-commutative Fourier transform (we will try later
to see why this name).

Proposition 2.70 (A case of the Artin-Wedderburn theorem). The k-algebra
homomorphism F is an isomorphism.

Proof. We will show that F is an isomorphism by showing that it is injective
and that the source and target have the same dimension over k.

First let us show that F is injective. Let a ∈ k[G] and suppose that F(a) = 0.
This means that a acts by zero on every irreducible G-representation. But then
it acts by zero on every finite-dimensional G-representation, as every finite-
dimensional G-representation is a direct sum of irreducible G-representations.
In particular, a acts by zero on k[G], the regular representation. This means
ab = 0 for all b ∈ k[G], and so a = a · 1 = 0.

Now we want to show that the dimensions over k of the source and target of
F match. The dimension of the source is |G|. Let us abbreviate ei := dimk Ei
and di := dimkDEi

. Given finitely generated modules E and F over a division
k-algebra D of finite-dimension, we have

dimk HomD(E,F ) = dimD E · dimk F =
dimk E

dimkD
· dimk F =

dimk E · dimk F

dimkD
.

Indeed, choosing a basis v1, . . . , vr of E overD, we can construct an isomorphism
of k-vector spaces

HomD(E,F )
∼→ F⊕r

by sending T to (T (v1), . . . , T (vr)). We thus obtain:

dimk EndDEi
(Ei) =

(dimk Ei)
2

dimkDEi

= e2i /di.

Therefore we need to show that

|G| =
∑

1≤i≤r

e2i
di
.
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And indeed:

|G| =
∑

1≤i≤r

[k[G] : Ei] · dimk Ei =
∑

1≤i≤r

ei
di
· ei

where the formula [k[G] : Ei] = ei/di we have seen in Proposition 2.52.

Remark 2.71. Suppose that k is algebraically closed (this is the most impor-
tant case). Then the DEi

’s are all equal to k, and we obtain an isomorphism of
k-algebras

F : k[G]
∼−→

∏
1≤i≤r

Endk(Ei).

One says: The group algebra is a product of matrix algebras.

2.6.6

Let us extract the commutative consequence of the non-commutative Fourier
transform, by passing to the centers of the k-algebras which are the domain and
target of F.

Exercise 2.8. Identifying k[G] with Funk(G) (by sending f ∈ Funk(G) to∑
g∈G f(g) · δg ∈ k[G]), the center Z(k[G]) gets identifies with the subspace

Funk(G)
cl ⊂ Funk(G) consisting of functions f for which f(hgh−1) = f(g) for

all g, h ∈ G (equivalently, f(gh) = f(hg) for all g, h ∈ G) - this subspace is
called the subspace of class functions, and we will return to it later, when
discussing character theory.

Exercise 2.9. Let D be a division ring and V a finite-dimensional D-module.
Then the morphism of rings Z(D) → Z(EndD(V )) (given by sending z to the
endomorphism of V given by v 7→ zv) is an isomorphism. To show this, we can
first understand that, once we choose a basis for V over D, we can construct
an isomorphism of EndD(V ) sith the ring of (n× n)-matrices over Dop, where
n := dimD V and Dop denotes the ring opposite to D (i.e. same set, same

addition and multiplication is given by d1
new∗ d2 := d2

old∗ d1). Then it is an easy
exercise to show that a matrix which commutes with all others is necessarily
scalar, and furthermore, this scalar in Dop must in fact lie in the center. Note
that Z(D) ∼= Z(Dop).

Corollary 2.72 (basic formula). Suppose that k is algebraically closed. The
cardinality of the set of isomorphism classes of irreducible G-representations is
equal to the cardinality of the set of conjugacy classes in G.

Proof. By Exercise 2.8, the dimension of the center of the domain of F is the
number of conjugacy classes in G. By Exercise 2.8, the dimension of the center
of the target of F is, in notation from above,

∑
1≤i≤r dimZ(DEi

). This holds in
general, but if k is also algebraically closed as we assume now, then DEi

= k and
the last sum becomes equal to r, the number of irreducible G-representations,
up to isomorphism.
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Remark 2.73. Thus, let us repeat the two most basic numeric facts. Given a
finite group G and an algebraically closed field k whose characteristic does not
divide |G|, and denoting by d1, . . . , dr the dimensions of the various irreducible
G-representations over k (up to isomorphism), we have that r, the number of
irreducible G-representations, is equal to the number of conjugacy classes in G,
while

∑
1≤i≤r d

2
i is equal to the number of elements in G.

Remark 2.74. Let us mention an interesting extrapolation of the two basic
numeric facts (although we will not need it at all), due to Frobenius. We define
the ”zeta function” of G to be

ζG(s) :=
∑

1≤i≤r

d−si .

Then we saw that ζG(0) is equal to the number of conjugacy classes in G, while
ζG(−2) is equal to the number of elements in G. One has

ζG(−2 + 2n) =
1

|G|2n−1
|c−1
n (1)|

for n ∈ Z≥0, where cn : G2n → G is given by

cn(x1, y1, . . . , xn, yn) := [x1, y1] · . . . · [xn, yn].

2.6.7

Given an irreducible G-representation E, there is a unique element eE ∈ k[G]
which acts by identity on E and by 0 on any irreducible G-representation which
is not isomorphic to E. Indeed, this is clearly simply the element for which
F(eE) = (Ti)1≤i≤r where Ti = IdEi for the i for which Ei is isomorphic to
E, and Ti = 0 for other i’s. Notice that eE is a central idempotent in k[G],
i.e. eE ∈ Z(k[G]) and e2E = eE . Notice that the action by eE on any finite-
dimensional G-representation V is the unique G-morphic projection onto the
isotypic component VE we talked about before. Thus the question we had
before, about a formula for this projection, can be restated as asking a formula
for eE , i.e. to describe the scalars cg such that eE =

∑
g∈G cg · δg. As we said,

we will return to this when we study character theory.

2.6.8

Let us consider again S3 (and work over C). Choosing a basis for the standard
representation E := {(x1, x2, x3)t | x1 + x2 + x3 = 0} of before, we obtain an
isomorphism of C-algebras

C[S3] ∼= C× C×M2(C)

corresponding to the exhaustive list of irreducible representations C1, Csgn and
E. We will not do it now, but one can see that (1, 0, 0) on the right corresponds
to

eC1
=

1

6
· δid +

1

6
· δ(123) +

1

6
· δ(132) +

1

6
· δ(12) +

1

6
· δ(23) +

1

6
· δ(13)

21



on the left, (0, 1, 0) on the right corresponds to

eCsgn
=

1

6
· δid +

1

6
· δ(123) +

1

6
· δ(132) −

1

6
· δ(12) −

1

6
· δ(23) −

1

6
· δ(13)

on the left, (0, 0, 1) on the right corresponds to

eE =
2

3
· δid −

1

3
· δ(123) −

1

3
· δ(132)

on the left.

2.7 The case of a commutative G, the Fourier transform

We assume throughout this subsection that G is finite and commutative, and
that k is algebraically closed with characteristic not dividing |G|.

2.7.1

We start with the following basic claim:

Claim 2.75. Let E be an irreducible G-representation. Then dimE = 1.

Proof. We show first that every element in G acts on E by a scalar. Denote by
ρ : G → Gl(E) the representation. Let g ∈ G. Since k is algebraically closed,
there exists an eigenvalue λ ∈ k of ρ(g). Let Eg,λ ⊂ E be the λ-eigenspace of
ρ(g). Then for every h ∈ G, since h commutes with g, ρ(h) commutes with ρ(g)
and hence by linear algebra ρ(h) preserves Eg,λ. Therefore Eg,λ is a non-zero
G-subrepresentation of E. Hence we must have Eg,λ = E, i.e. ρ(g) is λ · IdE .

As all the elements of G act on E by scalar, every linear subspace of E is
invariant under the G-action, i.e. is a G-subrepresentation, and hence E must
be 1-dimensional in order to be irreducible.

Let us denote by Chk(G) the set of characters of G, i.e. group homomor-
phisms G→ k×. Combining the claim with Exercise 2.3, we obtain:

Corollary 2.76. The family

(kχ)χ∈Chk(G)

is an exhaustive family of irreducible G-representations (i.e. no two G-representations
in this family are isomorphic, and every irreducible G-representation is isomor-
phic to one from the family).

Remark 2.77. If k is not algebraically closed, the claim is not true in general.
For example, we can look at the group µ3 of third roots of unity in C (it is a
cyclic group of order 3), and k = R. Then we can consider C as a 2-dimensional
R-vector space, and µ3 acts on C by usual multiplication. Then C viewed as a
2-dimensional µ3-representation over R is irreducible.
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2.7.2

Let us now combine this with Proposition 2.70. We obtain:

Corollary 2.78 (Fourier transform). We have an isomorphism of k-algebras

F : k[G]
∼−→ Funk(Chk(G)).

Here the algebra structure on the right hand side is pointwise multiplication.
The isomorphism sends ∑

g∈G
cg · δg

to the function on Chk(G) whose value on χ is∑
g∈G

cg · χ(g).

Exercise 2.10. Compare roughly with the “usual” Fourier transform you might
have already seen. (maybe insert a few details)

2.7.3

A natural question is to find the inverse of F. For this, it is enough to ask,
fixing χ ∈ Chk(G), what is the element eχ ∈ k[G] for which F(eχ)(χ) = 1 and
F(eχ)(θ) = 0 for χ ̸= θ ∈ Chk(G). We claim that

eχ =
1

|G|
∑
g∈G

χ(g)−1 · δg.

In terms of terminology, this is Fourier inversion, or the formula for the projector
on the isotypic component, or the formula for the idempotent, etc. So let
θ ∈ Chk(G). The scalar by which eχ acts on kθ is

1

|G|
∑
g∈G

χ(g)−1θ(g) =
1

|G|
∑
g∈G

(θχ−1)(g).

We want to show that this is 1 if θ = χ and 0 otherwise. Setting µ := θχ−1, we
then want to show that ∑

g∈G
µ(g)

is equal to |G| if µ = 1 and to 0 otherwise. The first case is clear. Let us assume
then that µ ̸= 1. This means that there exists g0 ∈ G such that µ(g0) ̸= 1.
Then ∑

g∈G
µ(g) =

∑
g∈G

µ(g0g) =
∑
g∈G

µ(g0)µ(g) = µ(g0)
∑
g∈G

µ(g).

Therefore
(1− µ(g0))

∑
g∈G

µ(g) = 0.
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Since 1− µ(g0) ̸= 0, we can divide by it and obtain∑
g∈G

µ(g) = 0,

as desired.

Notice also that, for g ∈ G, δg acts on kχ by the scalar χ(g), and so

F(δg) = (χ(g))χ∈Chk(G) ;

applying F−1, we obtain

δg =
∑

χ∈Chk(G)

χ(g) · eχ.

2.7.4

We can therefore summarize that we have two bases for k[G] - the “geomet-
ric” basis (δg)g∈G and the “spectral” basis (eχ)χ∈Chk(G)

1. The change-of-basis
matrices are

eχ =
∑
g∈G

1

|G|
χ(g)−1 · δg,

δg =
∑

χ∈Chk(G)

χ(g) · eχ.

Consider, for g0 ∈ G, the linear operators

Shiftg0 : k[G]→ k[G], Shiftg0(δg) := δg·g0 ,

and

Collapseg0 : k[G]→ k[G], Collapseg0(δg) =

{
δg if g = g0

0 if g ̸= g0
.

Then the geometric basis diagnolizes the Collapse operators (and therefore,
taking linear combinations, all the operators of multiplying pointwise by a given
function on G), while the spectral basis diagnolizes the Shift operators. Notice
that to define the Collapse operators we didn’t need to know the group structure
on the set G, while to define the Shift operators, we need to know the groups
structure2.

1“geometric” since the geometry inside the group G comes into play - isolating one of the
g ∈ G is like pinpointing a locus in G as a geometric object, and “spectral”, roughly, because
irreducible representations are possible “eigenvalues” or “wave frequencies” - isolating one of
the χ ∈ Chk(G) is like pinpointing a specific wave component of the overall signal (maybe
can explain better).

2So, again intuitively speaking, the spectral basis should be a basis consisting of elements
which are hopefully “almost left unchanged” when you shift them on the group.
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2.7.5

Let us indicate “the” application for the Fourier transform for finite abelian
groups:

Theorem 2.79 (Dirichlet, 1837). Let d ∈ Z≥1 and let a ∈ Z. Assume that a
and d are relatively prime. Then there exist infinitely many primes which are
congruent to a modulo d.

The difficulty here (so to speak) is that to be congruent to a is an additive
condition, while to be prime is a multiplicative condition.

One recasts the problem into the following shape. We consider the group
(Z/dZ)× of invertible elements in the ring Z/dZ of residues modulo d. Given
a function f ∈ FunC((Z/dZ)×), we extend it to a function on Z/dZ by setting
it to be equal to zero at the remaining elements (by abuse of notation we will
denote this extension by f again). We then consider the formal series

Mf (s) :=
∑

p prime

f([p]d)

ps

where [−]d : Z → Z/dZ denotes the canonical projection. Here, let us assume
that s is a real parameter.

Let us note that the series Mf (s) converges absolutely when s > 1, because
it is dominated by a constant (the maximum of absolute values of the values of
f) times the series

∑
n∈Z≥1

n−s.

Now, denoting by δa the function on (Z/dZ)× which is equal to 1 at [a]d and
to 0 everywhere else, the theorem will clearly follow if we can see that Mδa(s)
is unbounded as s tends to 1 from the right.

The behavior of Mf (s) as s tends to 1 from the right does not seem to be
tractable for f being δa. The main point is that it is tractable for f being
a character χ : (Z/dZ)× → C× (i.e. a group homomorphism). We have the
following proposition:

Proposition 2.80. Let χ ∈ ChC((Z/dZ)×). If χ ̸= 1, then |Mχ(s)| is bounded
as s tends to 1 from the right. If χ = 1, then Mχ(s) is unbounded as s tends to
1 from the right.

Let us see that this proposition implies the theorem. Indeed, our Fourier
theory gives:

δa =
1

|(Z/dZ)×|
∑

χ∈ChC((Z/dZ)×)

χ(a)−1 · χ.

In particular, when we write δa as a linear combination of the characters, the
trivial character 1 appears with non-zero coefficient. Therefore it is clear from
the proposition that Mδa(s) is unbounded as s tends to 1 from the right (as
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Mδa(s) is a finite sum of functions, one of which is unbounded, while all others
are bounded).

We now will see how the multiplicative property of the functions χ, being
aligned with the multiplicative nature of the primes, allows to transform the
study of the series Mχ(s) into the study of series running over Z≥1, so over a
set whose structure is much more simpler than that of the structure of the set
of primes.

Recall that for x ∈ {z ∈ C | |z| < 1}) we can consider the absolutely
converging − log(1− x) =

∑
m∈Z≥1

xm/m. We assume that the values of f are

bounded in absolute value by 1, and want to replace ap(s) :=
f([p]d)
ps in the sum

defining Mf (s) by − log(1−ap(s)). We therefore want to consider the series we
obtain by considering the absolute values of the differences:

∑
p prime

|− log(1− ap(s))− ap(s)| =
∑

p prime

∣∣∣∣∣∣
∑

m∈Z≥2

ap(s)
m

m

∣∣∣∣∣∣ ≤
∑

p prime

∑
m∈Z≥2

1

m · psm
≤

≤
∑

p prime

∑
m∈Z≥2

1

pm
=

∑
p prime

1

p2
· 1

1− 1
p

≤ 2
∑

p prime

1

p2
≤ 2

∑
n∈Z≥1

1

n2
.

From this, we deduce that, if the values of f are bounded in absolute value by
1, then Mf (s) is bounded/unbounded as s tends to 1 from the right if and only
if

ℓf (s) :=
∑

p prime

− log

(
1− f([p]d)

ps

)
is so. Exponentiating, we need to investigate whether

Lf (s) :=
∏

p prime

1

1− f([p]d)
ps

is bounded/unbounded as s tends to 1 from the right. Now, if we take f to
be a character χ, then by the unique decomposition of natural numbers into
products of primes, we obtain

Lχ(s) =
∑
n∈Z≥1

χ([n]d)

ns
.

By further analyzing Lχ(s), one shows that L1(s) tends to +∞ as s tends to 1
from the right (this is easy to show, using the divergence of the harmonic series)
and this implies that ℓ1(s) is unbounded as s tends to 1 from the right. Also,
one shows that if χ ̸= 0 then Lχ(s) tends to a particular value Lχ(1) in C as
s tends to 1 from the right (this is relatively easy to show). Then it is more
difficult to show that Lχ(1) ̸= 0 (after all the framework was internalized, this
is the main technical point, on which everything depends), and this implies that
ℓχ(s) is bounded as s tends to 1 from the right.
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3 Semisimple modules and rings

In this section, we focus on studying a class of rings (called semisimple rings)
which have the behavior giving rise to an Artin-Wederburn theorem similar
to Proposition 2.70 (the non-commutative Fourier transform being an isomor-
phism).

Throughout this section, R is a fixed ring (recall, for us a ring is unital (has
1) but is not necessarily commutative). Also, recall that by default an R-module
for us means a left R-module.

3.1 Some finiteness properties of modules and rings

3.1.1

There are two basic properties of modules, named after two persons.

Definition 3.1. Let M be an R-module. We say that M is Noetherian
(resp. Artinian) if for every increasing (resp. decreasing) infinite sequence of
R-submodules

M1 ⊂M2 ⊂ . . . (resp. . . . ⊂M2 ⊂M1)

in M , there exists r0 ∈ Z≥1 such that Mr =Mr0 for r ≥ r0.

Remark 3.2. We can slightly restate the properties. An R-module M is
Noetherian if there are no strictly increasing infinite sequences of submodules

M1 ⊂M2 ⊂ . . . ,

where “strictly” means that Mi ̸= Mi+1 for every i ≥ 1. The restatement in
the Artinian case is analogous.

Example 3.3. Suppose that R is a k-algebra for some field k. Then every R-
module which is finite-dimensional as a k-vector space is both Noetherian and
Artinian. Indeed, R-submodules are in particular k-subvector spaces and the
chain conditions are satisfied for subvector-spaces of a finite-dimensional vector
space by dimension consideration.

Remark 3.4. Although the conditions of being Noetherian and Artinian look
similar, to be Artinian is a much more restrictive condition in practice.

The essence of Noetherianity is not hard to understand concretely:

Lemma 3.5. Let M be an R-module. Then M is Noetherian if and only if
every R-submodule in M is finitely generated.

Proof. Suppose that M is Noetherian and let N ⊂ M be an R-submodule.
Suppose, to arrive to a contradiction, that N is not finitely generated. Then
given elements v1, . . . , vr ∈ N , we have Rv1 + . . .+ Rvn ̸= N and therefore we
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can find an element vr+1 ∈ N such that Rv1 + . . . + Rvr+1 strictly contains
Rv1 + . . .+ Rvr. Therefore, we can construct a sequence v1, v2, . . . of elements
in N such that, denoting Nr := Rv1 + . . . + Rvr, we have a strictly increasing
sequence N1 ⊂ N2 ⊂ . . ., contradicting the Noetherian property of M .

Suppose conversely that every R-submodule of M is finitely generated. Let
M1 ⊂ M2 ⊂ . . . be an increasing sequence of R-submodules in M . Denote
N := ∪r≥1Mr. Then N is finitely generated by assumption. Therefore there
exist v1, . . . , vs ∈ N such that N = Rv1+ . . .+Rvs. We can find r0 large enough
so that v1, . . . , vs all belong to Mr0 . Then N belongs to Mr0 (so N =Mr0) and
therefore Mr belongs to Mr0 for all r, so Mr =Mr0 for all r ≥ r0, showing that
M is Noetherian.

3.1.2

Lemma 3.6. Let M be an R-module and N ⊂ M a submodule. Then M is
Noetherian (resp. Artinian) if and only if N and M/N are.

Proof. Let us consider the Noetherianity for example. If M is Noetherian then
it is clear that N and M/N are Noetherian, since the partially ordered sets
of submodules of N and submodules of M/N are embedded in the partially
ordered set of submodules of M (the second by sending a submodule of M/N
to its inverse image under the canonical projection M →M/N). Let us assume
now that N and M/N are Noetherian. Let

M1 ⊂M2 ⊂ . . .

be an increasing sequence of submodules in M . Considering the increasing
sequence of submodules

M1 ∩N ⊂M2 ∩N ⊂ . . .

in N , there exists r0 such that Mr ∩N =Mr0 ∩N for r ≥ r0. Considering the
increasing sequence of submodules

M1 +N

N
⊂ M2 +N

N
⊂ . . .

inM/N , there exists r1 such that Mr+N
N =

Mr1
+N

N for r ≥ r1. Therefore, setting
r2 = max{r0, r1}, for r ≥ r2 we haveMr∩N =Mr2∩N andMr+N =Mr2+N ,
and from this one deduces Mr =Mr2 .

Remark 3.7. Of course, the last lemma implies that a finite direct sum of
Noetherian (resp. Artinian) modules is Noetherian (resp. Artinian). Indeed,
given a direct sum M1⊕M2, we have the submodule M1⊕ 0 in M1⊕M2 which
is isomorphic to M1, and the quotient by it is isomorphic to M2.
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3.1.3

We have the following definitions for a ring:

Definition 3.8. We say that R is left Noetherian (resp. left Artinian) if
R is Noetherian (resp. Artinian) as a left R-module.

Remark 3.9. Notice that when we consider R as a left R-module, the R-
submodule of R are left ideals in R.

Example 3.10. If R is a finite-dimensional k-algebra, then R is left Noetherian
and left Artinian. This follows from Example 3.3.

Exercise 3.1. Show that R is left Noetherian (resp. left Artinian) if and only
if all finitely generated (left) R-modules are Noetherian (resp. Artinian).

3.2 Simple and semisimple modules

3.2.1

As for representations, we have the notion of irreducibility:

Definition 3.11. Let M be an R-module. Then M is said to be simple, or
irreducible, ifM ̸= 0 and for every R-submodule N ⊂M one has either N = 0
or N =M .

Exercise 3.2. Show that associating to a maximal left ideal I ⊂ R the R-
module R/I, we obtain a surjective map from the set of maximal left ideals in
R to the set of isomorphism classes of simple R-modules. Also, show that if R
is commutative then this map is also injective, so a bijection.

Let us record here Schur’s lemma again:

Lemma 3.12 (Schur’s lemma). Let E and F be simple R-modules. Then every
R-module morphism T : E → F is either 0 or an isomorphism. In particular,
EndR(E) is a division ring.

Proof. The proof is as before.

3.2.2

We gave the definition of a semisimple representation; that of a semisimple
module is the same:

Definition 3.13. Let M be an R-module. Then M is said to be semisimple
if for every R-submodule N ⊂ M there exists an R-submodule L ⊂ M such
that M = N ⊕ L.

Lemma 3.14.

1. The direct sum of a finite collection of semisimple modules is semisimple.
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2. A submodule of a semisimple module is semisimple.

3. A quotient module of a semisimple module is semisimple.

Proof.

1. It is enough to consider two semisimple R-modules M1,M2 and to show
that M1 ⊕M2 is semisimple. Let N ⊂ M1 ⊕M2 be a submodule. We
can think about M1 and M2 as submodules of M1 ⊕M2 (by inclusions
m1 7→ (m1, 0) and m2 7→ (0,m2)), and we also can think about M1 as a
quotient module ofM1⊕M2, by using the projection on the first coordinate
p1 : M1 ⊕ M2 → M1 (given by p1(m1,m2) = m1). Since M1 and M2

are semisimple, we can find submodules N1 ⊂ M1 and N2 ⊂ M2 such
that M1 = p1(N) ⊕ N1 and M2 = (N ∩M2) ⊕ N2. We now claim that
M = N ⊕ (N1 ⊕N2).

Indeed, let us first see that N ∩ (N1 ⊕N2) = 0. Let n ∈ N ∩ (N1 ⊕N2).
Then p1(n) ∈ p1(N)∩N1 = 0 and therefore p1(n) = 0. Therefore n ∈M2.
So n ∈ (N ∩M2) ∩N2 = 0 so n = 0.

Second, we need to check that M = N + (N1 ⊕N2). Let m = (m1,m2) ∈
M . Then we can write m1 = p1(m) as p1(n) + n1 for some n ∈ N and
n1 ∈ N1. This means that p1(m − (n + n1)) = 0 so m − (n + n1) ∈ M2.
Therefore we can find n′ ∈ N ∩M2 and n2 ∈ N2 such that m− (n+n1) =
n′ + n2. So m = (n + n′) + n1 + n2 and n + n′ ∈ N,n1 ∈ N1, n2 ∈ N2,
showing that m ∈ N + (N1 ⊕N2) as desired.

2. Let M be a semisimple module and L ⊂ M a submodule. We want to
show that L is semisimple. Let N ⊂ L be a submodule. We can find a
submodule N ′ ⊂ M such that M = N ⊕N ′. We now leave to the reader
to check that L = N ⊕ (L ∩N ′).

3. LetM be a semisimple module and L ⊂M a submodule. We want to show
that M/L is semisimple. Let N ⊂M/L be a submodule. Let Ñ ⊂M be
the preimage of N under the natural projection map p :M →M/L. Since

M is semisimple, we can find a submodule N ′ ⊂M such thatM = Ñ⊕N ′.
We now leave to the reader to check that M/L = N ⊕ p(N ′).

Remark 3.15. In the above lemma, it is also true that an infinite direct sum
of semisimple modules is semisimple. However, this more general statement will
use Zorn’s lemma, and we leave it as an optional exercise.

3.2.3

The relation between semisimplicity and simplicity is as follows:

Claim 3.16. Let M be a finitely generated R-module. The following are equiv-
alent:
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1. M is semisimple.

2. M can be written as a finite direct sum of simple modules.

Proof. Suppose that M can be written as a finite direct sum of simple modules.
Since a simple module is clearly semisimple, and a finite direct sum of semisimple
modules is semisimple, we obtain that M is semisimple.

Suppose now that M is semisimple. Then every submodule of M is isomor-
phic to a quotient module of M , and therefore is finitely generated, as M is.
Therefore, M is Noetherian. So every submodule of M is again semisimple and
Noetherian.

We now claim that any non-zero submodule ofM contains a maximal proper
submodule3. Indeed, let N ⊂ M be a non-zero submodule. We can pick any
proper submodule N1 ⊂ N (for example, 0). If N1 is not a maximal proper
submodule of N , we can pick another proper submodule N2 ⊂ N such that
N1 ⊂ N2. This will stop eventually because N is Noetherian, and we deduce
that N must contain a maximal proper submodule.

If M is zero, the claim is clear (M can be written as an empty direct sum of
simple modules). Otherwise, we can find a maximal proper submodule N1 ⊂M
and choose a complementary submodule E1 ⊂M , so that M = N1 ⊕E1. Since
N1 is a maximal proper submodule of M , E1 is simple. If N1 is zero, we are
done. Otherwise, we again choose a maximal proper submodule N2 ⊂ N1 and a
complement N1 = N2 ⊕ E2, where E2 is again simple. Continuing like this, we
obtain simple submodules E1, E2, . . . in M , and a strictly increasing sequence
of submodules

E1, E1 ⊕ E2, . . .

Since M is Noetherian, this must stop after finitely many times, meaning that
we will find M = E1 ⊕ . . .⊕ Er, as desired.

Remark 3.17. In the above claim, we can drop the assumption that M is
finitely generated, but then also drop the requirement that the direct sum is
finite. However, this more general statement will use Zorn’s lemma, and we
leave it as an optional exercise.

3.2.4

Let us prove the following finiteness result:

Proposition 3.18. Suppose that R is left Artinian. Then the set of isomor-
phism classes of simple R-modules is finite.

Proof. We will proceed via proof by contradiction. Assume that we are given
an infinite sequence E1, E2, . . . of simple R-modules, pairwise non-isomorphic

3A submodule is said to be proper if it is not equal to the whole module.
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(we want to arrive to contradiction). Choose non-zero ei ∈ Ei for each i. Let
Ii denote the annihilator of ei, i.e.

Ii := {x ∈ R | xei = 0} ⊂ R.

Then Ii is a left ideal in R and we have a natural R-module isomorphism
R/Ii ∼= Ei. We claim that, for any n, In+1 does not contain I1 ∩ . . . ∩ In.
Having demonstrated that, we obtain a strictly decreasing sequence

. . . ⊂ I1 ∩ I2 ∩ I3 ⊂ I1 ∩ I2 ⊂ I1,

contrary to the Artinian property.

So it is left to show that In+1 does not contain I1 ∩ . . .∩ In. Suppose to the
contrary that I1 ∩ . . . ∩ In ⊂ In+1. Notice that the R-module morphism

R→ E1 ⊕ . . .⊕ En

given by x 7→ (xe1, . . . , xen) factors via an injective R-modules morphism

R/(I1 ∩ . . . ∩ In) ↪→ E1 ⊕ . . .⊕ En.

Since E1⊕ . . .⊕En is semisimple (as a finite direct sum of simple modules), we
can find a complementary module, and using it a surjection

E1 ⊕ . . .⊕ En ↠ R/(I1 ∩ . . . ∩ In).

Notice now that by our assumption we have a surjection

R/(I1 ∩ . . . ∩ In) ↠ R/In+1
∼= En+1,

so overall we obtain a surjection

E1 ⊕ . . .⊕ En ↠ En+1.

In particular, this is not zero and hence one of the factors Ei → En+1, for some
1 ≤ i ≤ n, must be not zero. By Schur’s lemma, we then have Ei ∼= En+1,
obtaining a contradiction.

Remark 3.19. We saw above that the set of isomorphism classes of irreducible
G-representations over a field k, when G is finite and the characteristic of k does
not divide |G|, is finite. The last proposition shows that again, and even allows
to drop the condition on k (as k[G] is left Artinian, being a finite-dimensional
k-algebra).

3.3 Semisimple rings

3.3.1

Definition 3.20. The ring R is said to be (left) semisimple if R, as a (left)
R-module, is semisimple.
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Lemma 3.21. The ring R is semisimple if and only if all finitely generated
R-modules are semisimple.

Proof. Since R is a finitely generated R-module, one direction is obvious. For
the other, assume that R is semisimple. Let M be a finitely generated R-
module. This means that we can find a surjective morphism of R-modules
Rn →M for some n ∈ Z≥0, identifying M with a quotient of Rn. We saw that
semisimplicity of modules is preserved under finite direct sums and quotients,
so M is semisimple as a quotient of a finite direct sum of copies of R.

Remark 3.22. In the above lemma, we can drop the finitely generated condi-
tion, i.e. if R is semisimple then all R-modules are semisimple. But the proof
of that requires Zorn’s lemma.

Example 3.23. Let G be a finite group and k a field whose characteristic
does not divide |G|. Then Maschke’s theorem says that all k[G]-modules which
are finite-dimensional as k-vector spaces are semisimple, and in particular k[G]
itself, viewed as a (left) k[G]-module, is semisimple. Hence the k-algebra k[G]
is semisimple.

Example 3.24. Let D be a division ring. Then D is semisimple. Indeed, D
viewed as a (left) D-module is simple, i.e. admits no submodules except 0 and
D. From a different perspective, we can see that every D-module is semisimple
by “completing a basis” as mentioned in §2.6.2.

Example 3.25. Let D be a division ring and V a finite-dimensional D-module.
Then EndD(V ) is a semisimple ring. Indeed, let us fix a basis e1, . . . , en for the
D-module V . For 1 ≤ i ≤ n, let us consider the subset Li ⊂ EndD(V ) consisting
of T for which T (ej) = 0 for j ̸= i. Then Li is a left ideal in EndD(V ) (in
other words, it is a EndD(V )-submodule of EndD(V ) viewed as a left EndD(V )-
module). We have EndD(V ) = L1 ⊕ . . . ⊕ Ln (check is left as an exercise).
Finally, each Li is a simple EndD(V )-module. Indeed, given any two T1, T2 ∈
Li, both non-zero, we can find S ∈ EndD(V ) such that S(T1(ei)) = T2(ei) (this
is seen as in linear algebra, by completing to a basis). Then ST1 and T2 are
equal to ei and are equal on all other ej (both being equal to zero on them), and
therefore ST1 = T2. In other words, we explained that the action of EndD(V )
on Li ∖ {0} is transitive, and therefore, it is immediate to see, Li is a simple
EndD(V )-module.

Remark 3.26. Given a division ring D, we consider the Dop-module V :=
(Dop)n, and then EndDop(V ) ∼= Mn×n(D), the ring of n by n matrices over
D. So a restatement of the previous example is that matrix rings over division
algebras are semisimple.

Exercise 3.3. Let R1 and R2 be semisimple rings. Show that R1 × R2 is also
a semisimple ring.
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3.3.2

Claim 3.27. Suppose that R is semisimple. Then R is left Noetherian and left
Artinian.

Proof. Since R is semisimple and R is obviously finitely generated as an R-
module, Claim 3.16 shows that R can be written as a finite direct sum of simple
R-modules. Then Remark 3.7 Shows that R is a Noetherian R-module and an
Artinian R-module, as desired.

Corollary 3.28. Suppose that R is semisimple. Then the set of isomorphism
classes of simple R-modules is finite.

Proof. This follows from the last claim and Proposition 3.18.

3.4 The Artin-Wedderburn theorem

3.4.1

Claim 3.29 (Jacobson’s density theorem). Let M be a semisimple R-module.
Denote S := EndR(M). Let us be given T ∈ EndS(M) and v1, . . . , vn ∈ M .
Then there exists r ∈ R such that rvi = T (vi) for all 1 ≤ i ≤ n.

Proof. We first deal with the case n = 1. Since M is semisimple, we can write
M = Rv1⊕N for some R-submodule N ⊂M . The projection on Rv1 along N is
an element P ∈ S. Notice that PTv1 = TPv1 = Tv1 and therefore Tv1 ∈ Rv1,
so there exists r ∈ R such that Tv1 = rv1, as desired.

Let us now reduce the case of general n to that of n = 1. For this, we
consider the semisimple R-module Mn, the vector (v1, . . . , vn) ∈ Mn, and the
endomorphism T⊕n of Mn (given by T⊕n(m1, . . . ,mn) := (Tm1, . . . , Tmn)).
The ring of endomorphisms of Mn as an R-module is naturally identified with
the ring of (n × n)-matrices over S, and one readily checks that T⊕n com-
mutes with all the endomorphisms of Mn as an R-module. Therefore, by the
already established n = 1 case, we deduce that there exists r ∈ R such that
r(v1, . . . , vn) = T⊕n(v1, . . . , vn), so rvi = Tvi for all 1 ≤ i ≤ n.

Corollary 3.30. Let M be a semisimple R-module. Denote S := EndR(M).
Suppose that M is finitely generated as an S-module. Then the natural ring
morphism R→ EndS(M) is surjective.

3.4.2

For a simple R-module E, let us denote DE := EndR(E) and recall that DE is
a division ring by Schur’s lemma. Denote by

FE : R→ EndDE
(E)

the natural ring morphism given by the action of R on E.

We can now prove the Artin-Wedderburn theorem:
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Theorem 3.31. Assume that R is semisimple. There are finitely many simple
R-modules, up to isomorphism. Any simple R-module E is finite-dimensional4

over DE. Denote by
E1, . . . , Er

an exhaustive family of simple R-modules. The ring morphism

F : R→
∏

1≤i≤r

EndDEi
(Ei)

given by the product FE1 × . . .× FEr is an isomorphism.

Proof. We have already seen that R is left Artinian (Claim 3.27), and in par-
ticular the set of isomorphism classes of simple R-modules is finite (Corollary
3.28).

Let us show the injectivity of F. An element r ∈ R which maps under F to
zero, acts by zero on every simple R-module. Hence it acts by zero on every
R-module which can be written as a finite direct sum of simple R-modules, and
in particular it acts by zero on R itself (as R is semisimple). This last thing
means that rx = 0 for all x ∈ R, in particular for x = 1, which gives r = 0.

Let us now show the surjectivity of F. It basically follows from Corollary
3.30 applied to the R-module E1 ⊕ . . . ⊕ Er, but let us elaborate on this. We
consider the semisimple R-module

Ẽ := E1 ⊕ . . .⊕ Er.

We want to understand first S := EndR(Ẽ). As always with endomorphisms of
direct sums, we have an isomorphism

S = EndR(Ẽ) ∼=
∏

1≤i,j≤r

HomR(Ei, Ej),

given by sending an element (ϕi,j)1≤i,j≤r on the right to ϕ on the left given by

ϕ(e1, . . . , er) = (
∑
i

ϕi,1(ei), . . . ,
∑
i

ϕi,r(ei)).

However, from Schur’s lemma we have HomR(Ei, Ej) = 0 for i ̸= j. Therefore
we have

S = EndR(Ẽ) ∼=
∏

1≤i≤r

HomR(Ei, Ei) =
∏

1≤i≤r

DEi
.

Now we want to understand EndS(Ẽ). We have the ring morphism

EndDE1
(E1)× . . .× EndDEr

(Er)→ EndS(Ẽ)

4Recall that for a module over a division algebra, “finite-dimensional” is just a different
term for “finitely-generated”.
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given by sending (T1, . . . , Tr) on the left to T on the right given by T (e1, . . . , er) :=
(T1(e1), . . . , Tr(er)). We claim that this is an isomorphism (only surjectivity is

not immediately clear). Indeed, let T ∈ EndS(Ẽ). Define Ti ∈ EndDEi
(Ei) by

setting Ti(e) (where e ∈ Ei) to be the i-th component of T (0, . . . , e, . . . , 0) (here
the vector inside T has e at the i-th place). Consider the element Φi ∈ S given by
identity on the i-th component and zero everywhere else. We have Φi◦T = T◦Φi,
and seeing what it concretely gives yields T (e1, . . . , er) = (T1(e1), . . . , Tr(er)),
as desired.

So, we see that our map F is exactly identified with the map R→ EndS(Ẽ),

and so by Corollary 3.30 we will now that F is surjective if we can show that Ẽ
is finitely generated over S. Notice that, clearly, Ẽ = E1 ⊕ . . .⊕Er would be a
finitely generated S-module if we can show that each Ei is a finitely generated
DEi

-module.

It is left to show that, given a simple R-module E, E is finitely generated
as an DE-module. Notice that we can interpret

E ∼= HomR(R,E)

(where a morphism ϕ on the left maps to ϕ(1) on the right), and under this
interpretation the DE-module structure on E corresponds to the DE-module
structure on HomR(R,E) where given d ∈ DE and ϕ ∈ HomR(R,E) the result
of acting by d on ϕ is given by d ◦ ϕ. We can generalize it to considering any
R-module M , and then considering HomR(M,E) as a DE-module, where the
result of acting by d ∈ DE on ϕ ∈ HomR(M,E) is set to be d ◦ ϕ. Since
R is semisimple, it is isomorphic to a finite direct sum of simple R-modules.
Therefore, HomR(M,E) is isomorphic, as a DE-module, to a finite direct sum
of modules HomR(F,E), where F is a simple R-module. It is enough, therefore,
to show that such HomR(F,E) is a finitely generated DE-module. If F is not
isomorphic to E then HomR(F,E) is zero by Schur’s lemma and the claim is
clear. If F is isomorphic to E, then HomR(F,E) is isomorphic to HomR(E,E) =
DE , and this is a finitely generated DE-module (with generator 1).

Corollary 3.32 (Also Artin-Wederburn theorem). A ring is semisimple if and
only if it is isomorphic to a finite product of matrix rings over division algebras.

Proof. We just saw that a semisimple ring is isomorphic to a product of ma-
trix rings over division algebras. Conversely, we saw that a matrix ring over
a division algebra is semisimple, and that the product of semisimple rings is
semisimple.

Exercise 3.4. One can wonder, writing a semisimple ring R as a product
Mn1

(Dop
1 ) × . . . × Mnr

(Dop
r ) of matrix rings over division algebras, whether

(n1, D1), . . . , (nr, Dr) is a well-defined list, up two replacing Di’s by isomorphic
division rings, and order. Show that this is so, as follows. Show that the sim-
ple R-modules are Dni

i , where Mni(D
op
i ) acts on this by matrix multiplication,

and Mnj
(Dop

j ) for j ̸= i acts on this by zero. Therefore, understand that the
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(ni, Di)’s can be recovered by taking a simple R-module E, considering the di-
vision algebra D := EndR(E) and the dimension n of E over D, giving rise to
a pair (n,D). This description does not depend on the chosen decomposition.

3.5 The Jacobson radical

Looking at the “non-commutative Fourier transform” F, and at our establishing
its injectivity in certain cases, we see that it makes sense in general to ask about
the kernel - i.e. what elements in a ring R act by 0 on all simple R-modules -
those are the “ghosts” in terms of spectral analysis of R, so to speak.

3.5.1

Definition 3.33. The (left) Jacobson radical of R is the subset J(R) ⊂ R
consisting of x ∈ R such that for every simple R-module E one has xE = 0.

Lemma 3.34.

1. The Jacobson radical J(R) ⊂ R is a two-sided ideal in R.

2. The Jacobson radical J(R) is equal to the intersection of all maximal left
ideals in R.

3. Let x ∈ R. Then x ∈ J(R) if and only if, for all y ∈ R, 1 − yx is
left-invertible.

Proof.
1. Easy.
2. First, let us notice a few things about simple R-modules. Let E be a

simple R-module and 0 ̸= v ∈ E. We have a morphism of R-modules R → E
given by x 7→ xv. Since this morphism is non-zero, its image, a non-zero R-
submodule of the simple R-module E, must be the whole E. So our morphism
is surjective, and so it induces an isomorphism of R-modules E ∼= R/I, where
I ⊂ R is the kernel of the morphism, i.e. the annihilator of v. Notice that I is a
maximal left ideal in R. Conversely, if I ⊂ R is a maximal left ideal in R, then
R/I is a simple R-module and I is the annihilator of 1 + I ∈ R/I. Therefore,
we see that maximal left ideals in R can be characterized as annihilators of
non-zero elements in simple modules. From this, the claim is straightforward.

3. First, recall that an element in R will be left-invertible if and only if the
left ideal generated by it is the whole R or, equivalently, the element is not
contained in any maximal left ideal. Suppose that x ∈ J(R). Let y ∈ R. Then
1−yx is not contained in any left maximal ideal. Hence 1−yx is left-invertible.
Conversely, suppose that x /∈ J(R). Then there exists a maximal left ideal
I ⊂ R such taht x /∈ I. Then Rx+ I = R. Hence, there exist y ∈ R, z ∈ I such
that yx+ z = 1. Then 1− yx ∈ I and so 1− yx is not left-invertible.

Remark 3.35. Recall that if x ∈ R is nilpotent, then 1− x is invertible (with
inverse 1 + x + x2 + . . .). Thus nilpotent elements are “small”, or “negligible”
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elements, such that if you add them to 1 it stays invertible. So the criterion in
part 3 of the lemma can be vaguely thought of as saying that the elements of
J(R) are “negligible” in some algebraic sense (while the definition of J(R) is to
consist of elements which are “negligible” in a spectral sense).

3.5.2

Here is the relation between the Jacobson radical and semisimplicity:

Claim 3.36. The following are equivalent:

1. R is semisimple.

2. R is left Artinian and the Jacobson radical of R is equal to 0.

Proof. If R is semisimple, we have already seen that R is left Artinian. In terms
of F above, we see that J(R) is precisely the kernel of F, and so J(R) = 0 by one
part (the easier part) of the Artin-Wederburn theorem. Let us therefore now
assume thatR is left Artinian and that J(R) = 0, and show thatR is semisimple.
Since R is left Artinian, there exists a simple submodule (i.e. minimal left ideal)
I1 ⊂ R. Since J(R) = 0 and J(R) is the intersection of all maximal left ideals
in R, there exists a maximal left ideal m ⊂ R such that m does not contain
I1. Then m ∩ I1 = 0 since I1 is simple. Therefore R = I1 ⊕ m. If m = 0
then we are done, otherwise we can find a simple submodule I2 ⊂ m and find a
maximal left ideal n ⊂ R such that R = I2 ⊕ n. Then m = I2 ⊕ (n ∩m) and so
R = I1⊕ I2⊕ (n∩m). We can proceed, showing that if R = I1⊕ . . .⊕ Id⊕Jd+1

with I1, . . . , Id simple, then either Jd+1 = 0 or we can find a simple Id+1 ⊂ Jd+1

and a Jd+2 ⊂ Jd+1 such that R = I1 ⊕ . . .⊕ Id ⊕ Id+1 ⊕ Jd+2. Continuing, the
process must stop because Jd is a decreasing sequence of left ideals and R is left
Artinian. Hence we will eventually be able to write R as a finite direct sum of
simple R-modules, showing that R is semisimple.

Example 3.37. The examples of Z, or k[X] where k is a field, are of rings
whose Jacobson radical is zero, but are not semisimple (not left Artinian, in
fact).

Exercise 3.5. Show that (for any ring R) J(R/J(R)) = 0.

Corollary 3.38. Assume that R is left Artinian. Then R/J(R) is semisimple.

Proof. ClearlyR/J(R) is left Artinian, and by the exercise we have J(R/J(R)) =
0.

Corollary 3.39. Let R be a left Artinian ring. Let E1, . . . , Er be an exhaustive
family of simple R-modules. Then the ring morphism

F : R→
∏

1≤i≤r

EndDEi
(Ei)

given by the product FE1
× . . .× FEr

is surjective.

Proof. An exercise (deduce it from the isomorphism of the non-commutative
Fourier transform for R/J(R), which is a semisimple ring).
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3.5.3

Lemma 3.40 (A vesrion of Nakayama’s lemma). Let M be a finitely generated
R-module. IF J(R)M =M then M = 0.

Proof. Let v1, . . . , vn ∈ M be a set of generators of M as an R-module. We
can find elements x1, . . . , xn ∈ J(R) such that v1 = x1v1 + . . . + xnvn. Then
(1 − x1)v1 ∈ Rv2 + . . . + Rvn. Since 1 − x1 is left-invertible in R, we obtain
v1 ∈ Rv2 + . . . + Rvn. Therefore v2, . . . , vn is a set of generators of M as an
R-module. Continuing, we eventually find that M = 0 (check for yourself how
it ends in the case n = 1).

Remark 3.41. We have the following intuition. Suppose that R is commu-
tative. Then we have a ”space” X (formally, the spectrum of R), the ring of
functions on which is identified with R. For an ideal J ⊂ R, we have the “sub-
space” XJ ⊂ X (formally, closed subscheme), consisting of the points on which
functions from J are zero. Corresponding to a finitely-generated R-module M
is a “bundle” M on X (formally, a coherent sheaf on X), whose set of sections
over X is identified with M . Then M/JM has an interpretation as the set of
sections of M over XJ . Nakayama’s lemma then says that for J := J(R), if the
set of sections of M over XJ consists only of the zero section, then M = 0. This
means that XJ must be “almost” equal to X. Dually, that J must be “very
small” (close to being 0).

3.5.4

Claim 3.42.

1. Every nilpotent left ideal in R is contained in J(R).

2. Suppose that R is left Artinian. Then J(R) is nilpotent.

Proof.

1. Let I ⊂ R be a nilpotent left ideal in R. So In = 0 for some n ∈ Z≥1.
Let E be a simple R-module. If IE ̸= 0, then since E is simple we obtain
IE = E, and so inductively if IrE = E then Ir+1E = IIrE = IE = E.
In particular, 0 = InE = E - a contradiction. Therefore IE = 0. In other
words, the elements of I annihilate all simple R-modules, and therefore
I ⊂ J(R).

2. Let us consider the ideals J(R)n, for n ∈ Z≥1. These form a decreasing
sequence, and therefore, since R is left Artinian, there exists n0 ∈ Z≥1

such that J(R)n = J(R)n0 for all n ≥ n0. Let us denote I := J(R)n0 .
The proof will be complete if we show that I = 0. Notice that for any
n ∈ Z≥1 we have J(R)nI = J(R)nJ(R)n0 = J(R)n0+n = J(R)n0 = I (in
particular, J(R)I = I and I · I = I). Therefore, if I is finitely generated
then by Nakayama’s lemma we obtain I = 0, as desired. We now want to
proceed in general, not knowing apriori that I is finitely generated. Let us
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assume, to reach a contradiction, that I ̸= 0. Consider the family I of left
ideals J in R, for which IJ ̸= 0. The family J is not empty (as it contains
R itself) and therefore, since R is left Artinian, the family J contains
minimal elements, denote by J0 one such. Notice that IJ0 also lies in J

(since I(IJ0) = (I · I)J0 = IJ0 ̸= 0), and therefore by the minimality
of J0 we obtain IJ0 = J0. Then we also have J(R)J0 = J(R)(IJ0) =
(J(R)I)J0 = IJ0 = J0. Therefore, again, if we will see that J0 is a finitely
generated left ideal, then by Nakayama’s lemma we will obtain J0 = 0 - a
contradiction. It is therefore left to see that J0 is a finitely generated left
ideal. Since IJ0 ̸= 0, there exists x ∈ J0 such that Ix ̸= 0 and therefore
Rx ∈ J. By the minimality of J0, we have Rx = J0. So J0 is a finitely
generated left ideal.

Corollary 3.43. Suppose that R is commutative. Then J(R) contains all nilpo-
tent elements. If R is also Artinian, then J(R) consists precisely of all nilpotent
elements.

Remark 3.44. In fact, if R is commutative, the ideal of nilpotent elements can
be shown to be equal to the intersection of all prime ideals, while the Jacobson
radical, as we saw, is equal to the intersection of all maximal ideals. The above
corollary states that if R is Artinian, those coincide. But, in fact, those coincide
in much more cases. For example, in the case when R is finitely generated
over a field (the case most important to algebraic geometry). See the notion
of a Jacobson commutative ring as well as Hilbert’s Nullstellensatz for further
information.

Remark 3.45. We could have shown that over a semisimple ring, every module
is semisimple (we showed this for finitely generated modules, the general case
requires Zorn’s lemma). One also shows easily that a semisimple module is Ar-
tinian if and only if it is Noetherian. Equipped with this, we can show now that
a left Artinian ring is left Noetherian (!). Indeed, let R be a left Artinian ring.
Then we saw that J(R)n = 0 for some n ∈ Z≥1. To show that R is a Noetherian
R-module, it suffices to show that R/J(R), J(R)/J(R)2, . . . , J(R)n−1/J(R)n

are Noetherian R-modules. Notice that J(R) annihilates all these modules, and
therefore we can consider them as R/J(R)-modules, and it is clear that they are
Noetherian as R-modules if and only if they are Noetherian as R/J(R)-modules
(as the submodule partially ordered set does not change). Since R/J(R) is
semisimple, it is enough to show that they are Artinian R/J(R)-modules, which
is the same as showing that they are Artinian R-modules. But this is clear, since
they are all subquotients of the Artianian R-module R (a subquotient is a quo-
tient module of a submodule).

3.5.5

Suppose that R is a finite-dimensional algebra over a field k. Given x ∈ R, we
can consider the k-linear transformation mx : R → R given by mx(y) := xy.
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Let us denote by trR(x) the trace of mx. Then (x, y) 7→ trR(xy) is a symmetric
k-bilinear form on R. Recall that the radical, or kernel of this bilinear form
is then by definition

{x ∈ R | trR(xy) = 0 ∀y ∈ R}.

Claim 3.46. Suppose that R is a finite-dimensional algebra over a field k.
Then J(R) is contained in the radical of the symmetric k-bilinear form (x, y) 7→
trR(xy). In particular, if this k-bilinear form is non-degenerate then R is
semisimple.

Proof. Let x ∈ J(R). Then for any y ∈ R we also have xy ∈ J(R) and by Claim
3.42 we have that xy is nilpotent. Therefore mxy is nilpotent and therefore
trR(xy) = tr(mxy) = 0, so that x lies in the radical of our symmetric k-bilinear
form.

Remark 3.47. The converse of the claim is not true in general. Namely, we
can find a field k and a finite-dimensional k-algebra R, such that R is semisimple
but the symmetric k-bilinear form (x, y) 7→ trR(xy) on R is not non-degenerate.
Namely, we take k to be a field of positive characteristic p, and α ∈ k be an
element which has no p-th root in k. We then take R := k( p

√
α) (the field

extension of k of degree p). Then one can show that trR = 0, but R is of course
semisimple, being a field.

3.5.6

Let us reprove (once more) Maschke’s theorem using Claim 3.46.

Fourth proof of Maschke’s theorem. Recall that G is a finite group and k a
field whose characteristic does not divide |G|. We want to show that finite-
dimensional G-representations over k are semisimple. As we explained before,
we can think of G-representations over k as k[G]-modules. Certainly finite-
dimensional G-representations over k will be finitely generated k[G]-modules.
Hence, we would like to establish that k[G] is a semisimple k-algebra. By Claim
3.46 it is enough to show that the symmetric k-bilinear form (x, y) 7→ trk[G](xy)
on k[G] is non-degenerate. We have the k-basis (δg)g∈G for k[G]. It is easy to
see that trk[G](δg) is equal to 0 if g ̸= 1 and to |G| if g = 1. Therefore given
0 ̸= d =

∑
g∈G cg · δg ∈ k[G], and choosing h ∈ G such that ch ̸= 1, we have

trk[G](d ·δh−1) = |G| ·ch ̸= 0 (the inequality is since |G| is not equal to 0 in k, by
assumption). This shows that our symmetric bilinear form is non-degenerate,
as desired.

4 Tensor products

This is a short section introducing tensor products.
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4.1 Basic definition

4.1.1

Recall that given a ring R, we can talk about left R-modules (which we by
default call R-modules) and right R-modules. A right R-module is an abelian
group M equipped with a biadditive action map M × R → M (as usual, we
write the image of (m, r) simply as mr), such that m1 = m for all m ∈M and
m(r1r2) = (mr1)r2 for all m ∈M and r1, r2 ∈ R. Equivalently, this is the data
of a morphism of rings Rop → End(M). So, to give a right R-module is the
same as to give a left Rop-module.

4.1.2

Let R be a ring, letM be a left R-module and let N be a right R-module. Let A
be an abelian group. A biadditive map Φ : N ×M → A is said to be balanced
if

Φ(nr,m) = Φ(n, rm) ∀n ∈ N,m ∈M, r ∈ R.

4.1.3

Let R be a ring, let M be a left R-module and let N be a right R-module. We
will now describe an abelian group N⊗

R
M , equipped with a balanced biadditive

map Φuniv : N ×M → N ⊗
R
M , such that the following (called the universal

property of the tensor product) holds: Given an abelian group A and a
balanced map Φ : N ×M → A, there exists a unique abelian group morphism
T : N ⊗

R
M → A such that Φ = T ◦ Φuniv. In a diagram:

N ×M Φuniv
//

Φ

$$

N ⊗
R
M

∃!
��

A

.

One calls N⊗
R
M the tensor product of N andM over R. One should think of

Φuniv as part of the structure, but as a matter of usual abbreviation, one doesn’t
remember the piece of notation Φuniv, and one simply writes, given n ∈ N and
m ∈M , n⊗m for Φuniv(n,m) (it is an element of N ⊗

R
M).

In fact, the above property characterizes N ⊗
R
M in the following sense (it

is a basic sense to internalize, that of characterizing an object by an universal
property). Suppose that we are given two abelian groups C1 and C2 (here C
stands for “candidate”) together with balanced maps Φuniv1 : N ×M → C1 and
Φuniv2 : N ×M → C2, both satisfying the above property, i.e. for any abelian
group A and a balanced map Φ : N ×M → A, given i ∈ {1, 2} there exists a
unique abelian group morphism Ti : Ci → A such that Φ = Ti ◦ Φunivi . Then
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we claim that there exists a unique abelian group isomorphism ι12 : C1 → C2

such that Φuniv2 = ι12 ◦ Φuniv1 . Indeed, there exists a unique abelian group
morphism ι12 as desired, by the property of C1. We want to see that it is
an isomorphism. By the property of C2, there exists a unique abelian group
morphism ι21 : C2 → C1 such that Φuniv1 = ι21 ◦ Φuniv2 . If we consider the
composition ι21 ◦ ι12 : C1 → C1, it satisfies Φuniv1 = ι21 ◦ ι21 ◦ Φuniv1 , but also
the identity IdC1 satisfies Φuniv1 = IdC1 ◦Φuniv1 and therefore by the uniqueness
part of the property of C1 we must have IdC1

= ι21 ◦ ι12. Analogously, we find
IdC2

= ι12 ◦ ι21. Therefore ι12 and ι21 are mutually inverse, so isomorphisms.

In the above sense, we have already defined the abelian groupN⊗
R
M together

with a balanced biadditive map N ×M → N ⊗
R
M , and we only need to check

that a “model” for it exists. One then strives to work with N ⊗
R
M only using

the above universal property, without recourse to a specific model. This is a
very important ideology, but it might take time to get used to it, and we will
not stress it in this course.

4.1.4

Let R be a ring, letM be a left R-module and let N be a right R-module. Let us
now construct a “model” for N ⊗

R
M as above. We consider first the free abelian

group Z[N ×M ] with basis corresponding to the set N ×M (let us write δ(n,m)

for the element of the basis corresponding to an element (n,m) ∈ N ×M). We
then define N ⊗

R
M to be the quotient of Z[N ×M ] by the abelian subgroup

generated by all the following elements:

δ(n1+n2,m) − δ(n1,m) − δ(n2,m)

δ(n,m1+m2) − δ(n,m1) − δ(n,m2)

δ(nr,m) − δ(n,rm).

We define the map Φuniv : N ×M → N ⊗
R
M by simply sending (n,m) to the

image of δ(n,m) ∈ Z[N ×M ] in the quotient group N ⊗
R
M . It is an exercise now

to check that the desired universal property is satisfied.

4.2 Basic cases

4.2.1

Let R be a ring, let M be a left R-module and let N be a right R-module.
Suppose that we are given an R-basis (ei)i∈I for M , i.e. every element of M
can be written as

∑
i∈I ri · ei for a unique vector (ri)i∈I of elements in R, all

of which, except finitely many, are zero. We have a balanced map N ×M →⊕
i∈I N · “ei” (where the “ei” are just placeholders) given by (n,

∑
i∈I riei) 7→∑

i∈I nri · “ei”. We claim that this furnishes the tensor product N ⊗
R
M . In
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other words, one needs to check that given a balanced map Φ : N ×M → A,
there exists a unique abelian group morphism ϕ :

⊕
i∈I N · “ei”→ A such that

Φ(n,
∑
i∈I riei) = ϕ(

∑
i∈I nri · “ei”). Uniqueness is clear, as we see that we

must have ϕ(n · “ei”) = Φ(n, ei). Existence is also easily checked - we define
ϕ(
∑
i∈I ni · “ei”) :=

∑
i∈I Φ(ni, ei) and do the routine check that everything is

as desired.

4.2.2

Let R be a ring, let M be a left R-module and let N be a right R-module.
Let S be another ring, and suppose that N is also a left S-module, such that
(sn)r = s(nr) (in such a situation, one says that N is an (S,R)-bimodule).
We then give N ⊗

R
M the structure of a left S-module as follows. Let s ∈ S,

and consider the map N ×M → N ⊗
R
M given by (n,m) 7→ (sn) ⊗m. Then

one checks that this is a balanced map, and therfore we obtain a unique abelian
group morphism N ⊗

R
M → N ⊗

R
M satisfying n ⊗m 7→ (sn) ⊗m. We let this

be the action of s on N ⊗
R
M , and check (using the universal property etc.) that

this gives N ⊗
R
M the structure of a left S-module.

Similarly, if M is a right S-module such that (rm)s = r(ms), then N ⊗
R
M

gets equipped with a structure of a right S-module.

4.2.3

Let R,S be rings and let ι : R → S be a ring morphism. Let M be a left
R-module. A very important construction is base change - a left S-module
S ⊗
R
M . Here , in order to form the tensor product, S is considered as a right

R-module by s∗r := sι(r) (one usually abuses notation and denotes this simply
as sr). Since S is also a left S-module in the standard way, and we have the
commutation (s′s)ι(r) = s′(sι(r)) by the associativity of S, by the construction
of §4.2.2 we obtain a left S-module structure on S ⊗

R
M .

Example 4.1. Suppose that (ei)i∈I is a basis of M as an R-module. Then
(1⊗ ei)i∈I is a basis of S ⊗

R
M as an S-module. This follows from §4.2.1.

Example 4.2. The first example of base change that a student usually sees is
complexification. Given an R-vector space V , we can form the C-vector space
C ⊗

R
V . If (ei)i∈I is a R-basis for V , then (1 ⊗ ei)i∈I is a C-bsasis for C ⊗

R
V .

So we just allowed formally to multiply basis elements by complex numbers, but
in a way that is a-priori canonical, not depending on a choice of a basis.

Example 4.3. Of course the previous example generalizes as follows. If k ⊂ K
is a field extension, then given a k-vector space V we can consider the K-vector
space K ⊗

k
V . If (ei)i∈I is a k-basis for V , then (1 ⊗ ei)i∈I is a K-basis for

K ⊗
k
V .
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4.2.4

Let R be a commutative ring. Then every left R-module M we can consider as
a right R-module by defining mr := rm, and vice versa. We will think via this
identification in what follows. Let M and N be R-modules. Then N ⊗

R
M , is

naturally an R-module, as follows. We use the construction of §4.2.2, with S :=
R. Then N is a left R-module and (r1n)r2) = r1(nr2), and therefore we obtain
a left R-module structure on N ⊗

R
M . Similarly we obtain a right R-module

structure on N ⊗
R
M by using the right R-module structure of M , but these are

identified: r(n⊗m) = (rn)⊗m = (nr)⊗m = n⊗ rm = n⊗mr = (n⊗m)r.

Notice that given an R-module U , an R-bilinear map N ×M → U is in par-
ticular balanced. We can formulate the following universal property (exercise).
Given an R-module U and a R-bilinear map Φ : N ×M → U , there exists a
unique R-module morphism T : N ⊗

R
M → U such that T (n⊗m) = Φ(n,m) for

all (n,m) ∈ N ×M .

In other words, for modules over a commutative ring R, we can character-
ize the tensor product of R-modules working exclusively with R-modules, not
mentioning abelian groups.

4.2.5

A very common case is of vector spaces over a field k. Since k is a commutative
ring, the previous construction gives, given k-vector spaces V andW , a k-vector
space V ⊗

k
W . To explain V ⊗

k
W more concretely, one has the following property.

Let (ei)i∈I be a k-basis for V and (fj)j∈J a k-basis forW . Then (ei⊗fj)(i,j)∈I×J
is a k-basis for V ⊗

k
W . To show this, construct a vector space V ⊗

k

′ W with

basis “ei⊗fj” (paramterized by I×J), construct the map V ⊗W → V ⊗
k

′W as

the unique bilinear map sending (ei, fj) to ei“⊗ ”fj , and check that it satisfies
the universal property (it is an exercise to understand the details).

4.2.6

(maybe add tensor product of rings/algebras)

4.3 Basic properties

4.3.1

Let k be a field, and let V and W be k-vector spaces. We have a k-linear
map V ∗ ⊗

k
W → Homk(V,W ), corresponding to the k-bilinear map V ∗ ×W →

Homk(V,W ) defined by sending (α,w) ∈ V ∗ ×W to the endomorphism given
by sending v to α(v) · w.
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Claim 4.4. Suppose that V is finite-dimensional. Then the above k-linear map
V ∗ ⊗

k
W → Homk(V,W ) is an isomorphism.

Proof. Choose a basis (ei)i∈I for V and a basis (fj)j∈J for W . Let (e∗i )i∈I be
the basis of V ∗ which is dual to (ei)i∈I . Then (e∗i ⊗ fj)(i,j)∈I×J is a basis for
V ∗ ⊗

k
W . We want to check that the image of this basis under our map is a

basis for Homk(V,W ). This image is the family (Tij)(i,j)∈I×J where Tij is the
k-linear map sending ei to fj and ei′ to 0, for i′ ̸= i. By linear algebra, this is
indeed a basis for Homk(V,W ).

4.4 Tensor product of representaitons

Let G be a group and k a field. We will work with G-representations over k.

4.4.1

GivenG-representations V andW over k, let us define aG-representation V⊗
k
W .

As a vector space it is V ⊗
k
W , and we need to define the G-action. Let g ∈ G.

We have a k-bilinear map V ×W → V ⊗
k
W given by (v, w) 7→ (gv)⊗ (gw). We

obtain the corresponding k-linear map V ⊗
k
W → V ⊗

k
W , and let this be the

action of g. One checks that in this way we obtain a G-action.

4.4.2

Let us also introduce the dual, or contragradient, construction. Let V be a
G-representation. We define a G-representation V ∗. As a vector space it is V ∗,
and we need to define the G-action. Let g ∈ G and let α ∈ V ∗. We define gα
to be the functional given by v 7→ α(g−1v).

4.4.3

Let V and W be G-representations. We consider the above k-linear map V ∗ ⊗
k

W → Homk(V,W ). Notice that all ingredients have the structure of a G-
representation (we gave the dual space, the tensor product and the Hom-space
induced G-representation structures). One checks immediately that this k-linear
map is a G-morphism. In particular:

Corollary 4.5. Suppose that V is finite-dimensional. Then the G-representations
V ∗ ⊗

k
W and Homk(V,W ) are naturally isomorphic.

5 Character theory

Throughout this section, we fix a finite group G and a ground field k whose char-
acteristic does not divide |G|. Thus, all vector spaces, algebras, G-representations
etc. are over k.
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5.1 Definition and orthogonality

5.1.1

Definition 5.1. Let V be a finite-dimensional G-representation. The charac-
ter chV ∈ Funk(G) is defined by:

chV (g) := Tr (g ↷ V ) .

Definition 5.2. The space of class functions on G is the subspace

Funk(G)
cl ⊂ Funk(G)

consisting of the functions f which satisfy f(hgh−1) = f(g) for all g, h ∈ G
(equivalently, f(hg) = f(gh) for all g, h ∈ G).

Lemma 5.3. Let V be a finite-dimensional G-representation. Then chV ∈
Funk(G)

cl.

Proof. This is clear, as Tr(TST−1) = Tr(S) for linear endomorphisms T, S of a
finite-dimensional vector space.

Example 5.4. Let χ : G → k× be a character, i.e. a group homomorphism.
Then chkχ = χ. Notice that there might be a slight confusion in terminology due
to these two uses of the word “character”, which are related.

Example 5.5. Let X be a finite G-set. Recall the G-representation k[X]. Then
chk[X](g) is equal to the number of fixed points of the auto-bijection g gives on
X.

Exercise 5.1. Assume that k has characteristic 0 and let V be a finite-dimensional
k-vector space. Let T ∈ End(V ). Define a generating series

A(x) :=
∑
k≥0

Tr(T k)xk.

Denote n := dim(V ) and denote by pT the characteristic polynomial of T . Show
that

exp

∫
A(x)− n

x
=

1

xnpT (x−1)

or equivalently
d

dx
log

1

xnpT (x−1)
=
A(x)− n

x
.

Thus, knowing the traces of all powers is equivalent to knowing the characteristic
polynomial.
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5.1.2

We will now give several elementary calculations regarding the character, which
will help in establishing the orthogonality relations.

Definition 5.6. For functions f1, f2 ∈ Funk(G) let us define f1 · f2 ∈ Funk(G)
by

(f1 · f2)(g) := f1(g) · f2(g).

Lemma 5.7. Let V and W be finite-dimensional G-representations. Then

chV⊗
k
W = chV · chW .

Proof. Let (ei)i∈I be a k-basis for V and (fj)j∈J a k-basis for W . Then (ei ⊗
fj)(i,j)∈I×J is a k-basis for V ⊗

k
W . Let g ∈ G. Write gei =

∑
i′ ci,i′ei′ and

gfj =
∑
j′ dj,j′fj′ . Then

g(ei ⊗ fj) = (gei)⊗ (gfj) = (
∑
i′

ci,i′ei′)⊗ (
∑
j′

dj,j′fj′) =
∑
i′,j′

ci,i′dj,j′ · ei′ ⊗ fj′

and therefore

Tr(g ↷ V ⊗
k
W ) =

∑
i,j

ci,i ·dj,j = (
∑
i

ci,i) · (
∑
j

dj,j) = Tr(g ↷ V ) ·Tr(g ↷W ),

as desired.

Definition 5.8. For a function f ∈ Funk(G) let us define f
∗ ∈ Funk(G) by

f∗(g) := f(g−1).

Lemma 5.9. Let V be a finite-dimensional G-representation. Then chV ∗ =
ch∗V .

Proof. Let (ei)i∈I be a k-basis for V . Let (e∗i )i∈I be the corresponding dual
k-basis for V ∗. Let g ∈ G. Write g−1ei =

∑
i′ ci,i′ei′ . Then Tr(g−1 ↷ V ) =∑

i ci,i. On the other hand ge∗i sends to ei′ to e
∗
i (g

−1ei′) = ci′,i. Therefore we
also have Tr(g ↷ V ∗) =

∑
i ci,i.

Corollary 5.10. Let V and W be finite-dimensional G-representations. Then

chHom(V,W ) = ch∗V · chW .

Proof. This follows from the above lemmas and the isomorphism ofG-representations
V ∗ ⊗

k
W ∼= Homk(V,W ).

Definition 5.11. For a function f ∈ Funk(G) let us define Av(f) ∈ k by

Av(f) :=
1

|G|
∑
g∈G

f(g).
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Lemma 5.12. Let V be a finite-dimensional G-representation. We have

Av(chV ) = dimV G.

Proof. Recall the averaging operator AvGV : V → V given by

AvGV (v) :=
1

|G|
∑
g∈G

gv.

We saw before that AvGV is a projection operator on the subspace V G. Therefore
Tr(AvGV ↷ V ) = dimV G. But

Tr(AvGV ) =
1

|G|
∑
g∈G

Tr(g ↷ V ) =
1

|G|
∑
g∈G

chV (g).

Definition 5.13. Let us define a symmetric bilinear form ⟨−,−⟩ on Funk(G)
by

⟨f1, f2⟩ := Av(f∗1 · f2) =
1

|G|
∑
g∈G

f1(g
−1) · f2(g).

Collecting the last two lemmas, we obtain:

Claim 5.14. Let V and W be finite-dimensional G-representations. Then we
have

dimHomG(V,W ) = ⟨chV , chW ⟩.

Proof. We have HomG(V,W ) = Hom(V,W )G and therefore

dimHomG(V,W ) = dimHom(V,W )G = Av(chHom(V,W )) = Av(ch∗V · chW ).

5.1.3

Combining Claim 5.14 and Schur’s lemma, we obtain:

Proposition 5.15 (Orthogonality of characters). Let E and F be irreducible
G-representations. Then

⟨chE , chF ⟩ =

{
dE if E is isomorphic to F

0 if E is not isomorphic to F
,

where dE ∈ Z≥1 is the dimension of the division algebra EndG(E).

Proof. By Claim 5.14, we have ⟨chE , chF ⟩ = dimHomG(E,F ). By Schur’s
lemma, HomG(E,F ) is 0 if E is not isomorphic to F . If E is isomorphic to
F then once we choose an isomorphism E ∼= F we obtain an isomorphism
HomG(E,F ) ∼= HomG(E,E), and so the claim is clear.
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Here there is a danger, of dE being equal to zero in k. If k is algebraically
closed, the proposition is espeically nice:

Corollary 5.16. Assume that k is algebraically closed. Let E and F be irre-
ducible G-representations. Then

⟨chE , chF ⟩ =

{
1 if E is isomorphic to F

0 if E is not isomorphic to F
.

We also have the following corollary:

Corollary 5.17. Suppose that k is algebraically closed. Let E1, . . . , Er be
pairwise non-isomorphic irreducible G-representations. Then chE1 , . . . , chEr ∈
Funk(G)

cl are linearly independent.

Proof. If
∑
i cichEi

= 0 for scalars ci ∈ k then for a given 1 ≤ j ≤ r we have

0 = ⟨chEj ,
∑
i

cichEi⟩ =
∑
i

ci⟨chEj , chEi⟩ = cj .

5.1.4

Now we come to the main theorem about characters:

Theorem 5.18. Assume that k is algebraically closed. Let E1, . . . , Er be an
exhaustive family of irreducible G-representations (i.e. no two representations
in the family are isomorphic and every irreducible representation is isomorphic
to one from the family). Then chE1 , . . . , chEr form a basis for Funk(G)

cl.

Proof. We have already seen that chE1 , . . . , chEr are linearly independent. On
the other hand, we have already seen above that r, the number of irreducible G-
representations (up to isomorphism), is equal to the the dimension of Funk(G)

cl

(which is the number of conjugacy classes in G). Therefore our characters must
also span Funk(G)

cl.

Remark 5.19. One can see that if k is not algebraically closed, the characters
of an exhaustive list of irreducible representations are still linearly independent.
For example this can be seen by base changing to large enough field extension.
We omit the details for now (notice that if k is of characteristic zero then this
is clear by the same argument as we had above for an algebraically closed k).

5.1.5

Exercise 5.2. Let V and W be finite-dimensional G-representations. Then

chV⊕W = chV + chW ,

where for f1, f2 ∈ Funk(G) we define f1 + f2 ∈ Funk(G) by (f1 + f2)(g) :=
f1(g) + f2(g).
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Claim 5.20. Suppose that k has characteristic zero. Let V and W be finite-
dimensional G-representations. Then V is isomorphic to W (non-canonically)
if and only if chV = chW .

Proof. If V is isomorphic to W then clearly chV = chW . Conversely, suppose
that chV = chW . To show that V is isomorphic toW , it is enough to show that,
for every irreducible G-representation E, we have [V : E] = [W : E] (because
then V and W are both isomorphic to direct sums of irreducibles, with each
irreducible appearing the same number of times). We have:

[V : E] = dimHomG(V,E) = ⟨chV , chE⟩ =

= ⟨chW , chE⟩ = dimHomG(W,E) = [W : E].

This equality is in k, but since k has characteristic zero, this is a honest equality
of integers.

5.1.6

A classical problem, for a given finite group G, is to write the “character table”
over C. This means to make a table which describes the value of the character of
each irreducible representation at each conjugacy class. This implicitly requires
to first determine a parametrization of the irreducible representations. For
example, for S3 we will have (the horizontal labeling is of conjugacy classes in S3,
depicted by the cycle structure, while the vertical labeling is of the irreducible
representations, up to isomorphism):

(•)(•)(•) (••)(•) (• • •)
C1 1 1 1
Csgn 1 −1 1

Standard 2 0 −1

5.1.7

We assume that k is algebraically closed. A philosophy is that the representa-
tion theory of a given finite group G should be “the same” over any algebraically
closed field k whose characteristic does not divide |G|. From this, one can spec-
ulate that given an irreducible G-representation E over k, the characteristic of
k should not divide dimk E (because otherwise this would somehow distinguish
this characteristic from other ones, contrary to the philosophy). In other words,
dimk E should not be equal to zero in k:

Claim 5.21. Let E be an irreducible G-representation over k. Then the char-
acteristic of k does not divide dimk E.

Proof. Let us proceed by way of contradiction. Let f ∈ Funk(G)
cl, and let

d :=
∑
g∈G f(g) · δg ∈ Z(k[G]). The action of d on E provides an element

Td ∈ EndG(E). By Schur’s lemma, Td is a scalar multiple of the identity. Hence
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the trace of Td is a multiple of dimk E, which we assume to be zero in k. On
the other hand, we calculate

Tr(Td) =
∑
g∈G

f(g) · chE(g) = |G| · ⟨f∗, chE⟩.

Taking f := ch∗E we obtain that ⟨chE , chE⟩ = 0, contradicting that we know
⟨chE , chE⟩ = 1.

Having established that, if we believe the philosophy, we should then specu-
late that E has “existence” over all fields k as mentioned above, and therefore
that the primes that divide the dimension of E should divide |G|, in other words
we speculate that the dimension of E should divide a power of |G|. In fact, we
will see later that even more is true, namely that the dimension of E divides
|G| itself.

5.1.8

We again assume that k is algebraically closed. Recall that we defined, for
an irreducible G-representation E, an idempotent eE ∈ Z(k[G]), which acts
by identity on E and by 0 on any irreducible G-representation which is not
isomorphic to E. An alternative characterization is that eE is the unique element
in k[G] whose action on every finite-dimensional G-representation V is the G-
morphic projection onto VE . When G is commutative, we gave a formula for
eE before. We now consider the general case.

Claim 5.22.

eE =
dimk E

|G|
∑
g∈G

chE(g
−1) · δg.

Proof. Let F be an irreducible G-representation, and write ρ : k[G]→ Endk(F )
for the corresponding homomorphism. By Schur’s lemma, ρ(eE) is a scalar
multiple of the identity. Since we showed that dimk F is not equal to 0 in k, it
is enough to show therefore that Tr(ρ(eE)) is equal to 0 if F is not isomorphic
to E and to dimk(E) if F is isomorphic to E. We have:

Tr(ρ(eE)) =
dimk E

|G|
∑
g∈G

chE(g
−1) · Tr(ρ(g)) = dimk E

|G|
∑
g∈G

chE(g
−1) · chF (g) =

= dimk E · ⟨chE , chF ⟩,

and so the desired follows from orthogonality relations for characters.
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5.1.9

Let us here also make a comment regarding the case k = C. Then one can also
consider a Hermitian form ⟨−,−⟩hr on FunC(G):

⟨f1, f2⟩hr :=
1

|G|
∑
g∈G

f1(g) · f2(g).

This form is non-degenerate (i.e. a Hermitian inner product). We claim that
for finite-dimensional irreducible G-representations V,W we have

⟨chV , chW ⟩ = ⟨chV , chW ⟩hr.

In fact, this follows from the relation chW (g−1) = chW (g). To see this relation,
let us consider the eigenvalues (taken with algebraic multiplicity) (λi) of the
action of g on W . Those are all roots of unity (since g lies in a finite group, and
hence becomes 1 when raised to some power). The eigenvalues of the action of
g−1 on W are (λ−1

i ). We therefore get

chW (g−1) =
∑
i

λ−1
i =

∑
i

λi =
∑
i

λi = chW (g).

The bilinear product is better in that it is the one that generalizes to other
fields; The Hermitian product is better in that it is the one that generalizes to
representations of topological groups on Hilbert spaces.

5.1.10

A simple useful lemma which I didn’t find place/use for:

Lemma 5.23. The symmetric bilinear form ⟨−,−⟩ defined on Funk(G) is non-
degenerate, and its restriction to Funk(G)

cl is also non-degenerate.

Proof. Let f ∈ Funk(G). If ⟨f, f ′⟩ = 0 for all f ′ ∈ Funk(G), then in particular
⟨f, δ∗g⟩ = 0 for every g ∈ G, where δg being the function that equals to 1 at g

and to 0 at the rest of points. But we have ⟨f, δ∗g⟩ = 1
|G|f(g), so f(g) = 0 for

all g ∈ G, i.e. f = 0. This showed that ⟨,−,−⟩ is non-degenerate on Funk(G).

We want to show now that the restriction of ⟨−,−⟩ to Funk(G)
cl is also

non-degenerate. Let us consider the linear operator

Av : Funk(G)→ Funk(G)

given by

Av(f)(g) :=
1

|G|
∑
h∈G

f(hgh−1).
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One checks immediately that Av is a projection operator on Funk(G)
cl (in fact,

it is just oue usual projection operator, with respect to the action of G on
Funk(G) by conjugation). We also have the property

⟨Av(f), f ′⟩ = ⟨f,Av(f ′)⟩

for f, f ′ ∈ Funk(G). Let now f ∈ Funk(G)
cl be such that ⟨f, f ′⟩ = 0 for all

f ′ ∈ Funk(G)
cl. Then for every f ′ ∈ Funk(G) we have

⟨f, f ′⟩ = ⟨Av(f), f ′⟩ = ⟨f,Av(f ′)⟩ = 0

and so f = 0 by the non-degeneracy of ⟨−,−⟩ on Funk(G).

5.2 Integrality

Throughout this subsection, we assume that k is algebraically closed.

5.2.1

Let us recall the basics of integrality of elements in a ring.

Definition 5.24. Let R be a ring and a ∈ R. We say that a is integral (more
precisely, Z-integral) if there exists a monic polynomial f ∈ Z[X] such that
f(a) = 0.

Remark 5.25. Let R be a ring and S ⊂ R a subring. Let a ∈ S. Clearly
a is integral as an element of S if and only if a is integral as an element of
R. Therefore we will sometimes be loose and simply speak of a being integral,
without recourse to the containing ring.

Lemma 5.26. Let R be a ring and a ∈ R. Then a is integral if and only if the
Z[a] ⊂ R, the Z-span of {1, a, a2, . . .}, is a finitely generated Z-module.

Proof. Suppose that a is integral and f ∈ Z[X] a monic polynomial, say of de-
gree d, such that f(a) = 0. Then clearly ad lies in the Z-span of {1, a, . . . , ad−1}.
Then, by multiplying by a, we see that ad+1 lies in the Z-span of {a, . . . , ad}
and so in the Z-span of {1, . . . , ad−1}, and continuing like this by induction we
see that Z[a] lies in the Z-span of {1, . . . , ad−1}, so equal to it. Therefore it is a
finitely generated Z-module.

Now suppose conversely that Z[a] is a finitely generated Z-module. Then
clearly there exists d ∈ Z≥1 such that {1, . . . , ad−1} Z-spans Z[a], and therefore
in particular ad can be expressed as a Z-linear combination of the elements
{1, . . . , ad−1}, say ad = c0 · 1 + . . . + cd−1 · ad−1, so f(X) := (−c0) · 1 + . . . +
(−cd−1) ·Xd−1 +Xd is a monic polynomial satisfying f(a) = 0, as desired.

Corollary 5.27. Let R be a ring, and suppose that R is finitely generated as a
Z-module. Then all elements in R are integral.
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Proof. Use the previous lemma, recalling in addition that Z is Noethreian- a
submodule of a finitely generated Z-module is again finitely generated.

Claim 5.28. Let R be a commutative ring. Then the subset of integral elements
in R is a subring.

Proof. Clearly 0, 1 ∈ R are integral. Let a, b ∈ R be two integral elements, say ad

lies in the Z-span of {1, a, . . . , ad−1} and be lies in the Z-span of {1, b, . . . , be−1}.
Then it is immediate to see that Z[a, b] (the Z-span of {anbm}n,m∈Z≥0

) is gener-
ated as a Z-module by {anbm}0≤n≤d−1,0≤m≤e−1 (notice how commutativity is
used here), and so is a finitely generated Z-module. Therefore by the previous
corollary a+ b, a− b and ab, lying in Z[a, b], are integral.

Exercise 5.3. The subring of integral elements in Q is Z.

Remark 5.29. Let us also notice the obvious property, that if ϕ : R → S is
a morphism of rings and a ∈ R is an integral element, then ϕ(a) is an integral
element.

5.2.2

Lemma 5.30.

1. Let d =
∑
g∈G cg · δg ∈ k[G] and assume that all cg are integers. Then d

is integral.

2. Let d =
∑
g∈G cg · δg ∈ Z(k[G]). If cg are integral elements in k then d is

an integral element in Z(k[G]).

Proof.

1. Our element sits in the image of the obvious morphism of rings Z[G] →
k[G], so the claim follows from all elements of Z[G] being integral, which
in turn follows from Z[G] being a finitely generated Z-module.

2. Since Z(k[G]) is commutative, the integral elements in it form a subring.
Since our d is a sum of products of integral elements cg by integral elements
zC (the latter are integral by the previous item), the claim follows.

Lemma 5.31. Let V be a finite-dimensional G-representation. Then for every
g ∈ G, the element chV (g) ∈ k is integral.

Proof. Notice that since g to some power is equal to 1, so are the eigenvalues
of g ↷ V . Therefore all these eigenvalues are roots of unity, and thus clearly
integral. Therefore their sum, which is chV (g) = Tr(g ↷ V ), is integral.
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5.2.3

Here is the strengthening of Claim 5.21 that we promised:

Proposition 5.32. Let E be an irreducible G-representation. Then dimE di-
vides |G|.

Proof. We will only prove the proposition assuming that the characteristic of k
is 0 (check if one can eliminate this simply).

Let us denote by ρ : k[G]→ End(E) the k-algebra morphism corresponding
to the G-action on E. Recall the central idempotent

eE =
dimE

|G|
∑
g∈G

chE(g
−1) · δg ∈ Z(k[G]).

We saw that it acts as identity on E (in particular, recall that dimE is non-zero
in k). Therefore

d :=
∑
g∈G

chE(g
−1) · δg ∈ Z(k[G])

acts as multiplication by the scalar λ := |G|
dimE . Notice that d is integral by the

above lemmas, and therefore ρ(d) = λ · IdE is integral in k · IdE ⊂ End(E).
Therefore λ ∈ k, which is identified with ρ(d) via k ∼= k · IdE , is an integral

element. So |G|
dimE is an integral element in Q ⊂ k, and so lies in Z, meaning

that dimE divides |G|.

5.2.4

In fact, we can now, based on the previous result, formulate a stronger one:

Proposition 5.33. Let E be an irreducible G-representation. Then dimE di-
vides [G : Z(G)].

Remark 5.34. In fact, later we will see that given a normal abelian subgroup
A ⊂ G, the dimension of any irreducible representation divides [G : A].

To proof this proposition, we will need the following remark and exercise:

Remark 5.35. Let H1 and H2 be finite groups and let V1 and V2 be represen-
tations of H1 and H2. We can make V1 ⊗k V2 a representation of H1 ×H2 by
letting (h1, h2) acts by the endomorphism V1⊗k V2 → V1⊗k V2 characterized by
v1⊗v2 7→ h1v1⊗h2v2 (as always, this endomorphism exists by the universal prop-
erty of the tensor product as we have a bilinear form (v1, v2) 7→ h1v1 ⊗k h2v2).
Before, if we had representations V1 and V2 of a single groupH, we made V1⊗kV2
an H-representation. What is the relation? Here we made V1⊗kV2 an (H×H)-
representation. Restricting along the diagonal homomorphism H → H × H
(given by h 7→ (h, h)), we obtain our H-representation.
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Exercise 5.4. Let H1 and H2 be finite groups and let E1 and E2 be irreducible
representations of H1 and H2. Then E1⊗

k
E2 is an irreducible representation of

H1 ×H2.

Proof (Attributed by Serre to Tate). Let us write A := Z(G) for brevity. Let
m ≥ 1 and consider E⊗m = E ⊗k E ⊗k . . . ⊗k E as a representation of Gm =
G×G× . . .×G. By the above exercise, E⊗m is an irreducible representation of
Gm. Let us consider the subgroup Am ⊂ Am consisting of (a1, . . . , am) satisfying
a1 · a2 · . . . · am = 1. Since, by Schur’s lemma, A acts on E by scalars, so via a
character χ : A → k× (i.e. av = χ(a)v for a ∈ A, v ∈ E), we see that Am acts
trivially on E⊗m ((a1, . . . , am) acts by χ(a1) · . . . · χ(am) = χ(a1 · . . . · am) =
χ(1) = 1). Therefore, we can consider E⊗m as a representation of Gm/Am,
still irreducible. Hence (dimE)m divides |G|m/|A|m−1. Hence, given a prime
p and denoting, for an integer n, by vp(n) the amount of times p enters n,
we have mvp(dimE) ≤ mvp(|G|) − (m − 1)vp(|A|). Therefore vp(dimE) ≤
vp(|G|/|A|) + 1

mvp(|A|). Taking m → ∞, we obtain vp(dimE) ≤ vp(|G|/|A|).
As this holds for every prime p, we get that dimE divides |G|/|A|.

5.3 Burnside’s theorem

In this subsection, we prove Burnside’s theorem:

Theorem 5.36 (Burnside, 1904). If |G| is divisible by at most two prime num-
bers, then G is solvable.

This is a very nice illustration of representation theory of finite groups, since
the theorem statement does not mention representations at all, but the proof
will use representation theory.

5.3.1

For the next lemma, let us notice that an algebraic integer in C is simply a
different terminology for an integral element in C in our above sense.

Lemma 5.37. Let ζ1, . . . , ζn ∈ C× be roots of unity. Then:

1. The average ζ1+...+ζn
n has absolute value in [0, 1], and 1 is attained if and

only if ζ1 = ζ2 = . . . = ζn.

2. The average ζ1+...+ζn
n is an algebraic integer if and only if it is equal to 0

or ζ1 = ζ2 = . . . = ζn.

Proof. Item (1) is easy to imagine visually, we leave it as an exercise. Let us
show (2). By (1), it is enough to see that if our average a is an algebraic
integer if and only if its absolute value is either 0 or 1. Here we use very mild
field theory. Recall that we have conjugates of a (the elements in C which are
obtained as images of a under homomorphisms Q[a] → C of field extensions
over Q), and that the product N(a) of these conjugates lies in Q. Then clearly

57



all such conjugates are also algebraic integers, and hence their product N(a) is
an algebraic integer, and therefore simply an integer, as it lies in Q. Also, notice
that all the conjugates are also averages of roots of unity, and therefore by (1)
their absolute values lie in [0, 1], and so the absolute values of their product
N(a) lies in [0, 1]. Since N(a) is an integer, we obtain that its absolute value
is either 0 or 1. In the first case we get a = 0. In the second case, we get
|a| = 1.

5.3.2

From this previous lemma we will deduce the following one:

Lemma 5.38. Let E be an irreducible G-representation over C. Let g ∈ G and
suppose that |Cg| and dimE are relatively prime. Then either chE(g) = 0 or g
acts on E by a scalar.

Proof. Denote by ρ : k[G] → End(E) the morphism corresponding to E being
a G-representation. Denote d :=

∑
h∈Cg

δh ∈ Z(k[G]). Then ρ(d) is a scalar
multiply of the identity by Schur’s lemma. Since d is an integral element, its
image under ρ in C ∼= C · IdE ⊂ End(E) is an integral element, and this image
is

Tr(ρ(d))

dimE
=
|Cg| · chE(g)

dimE
.

Since |Cg| is relatively prime to dimE, we deduce that chE(g)
dimE is integral (a

small exercise - use that 1 can be expressed as a Z-linear combination of |Cg|
and dimE). Now notice that chE(g)

dimE is the average of the eignevalues of ρ(g),
and therefore by the previous lemma, we must have that either chE(g) = 0 or
all the eigenvalues of ρ(g) are equal, in which case ρ(g) is a scalar multiple of
the identity, as ρ(g) is diagnolizable.

5.3.3

From this last lemma, we deduce the following claim, in the statement of which
there is no mention of representation theory (!)5:

Claim 5.39. If G contains a conjugacy class in which the number of elements
is a positive power of a prime number, then G is not simple.

Proof. Let Cg ⊂ G be a conjugacy class whose order is a positive power of the
prime p. We will work with representations over C. It suffices to show that
there exists a non-trivial irreducible G-representation E on which elements in
Cg act by scalar (then taking two different elements g, h ∈ Cg we will have that
gh−1 acts by identity, and so the kernel of our ρ : G→ End(E) will be a normal
subgroup in G which is nor G neither {1}). Using the previous lemma, it is
enough to to show that there exists a non-trivial irreducible G-representation

5But one can say that representation theory always waited to appear, as the spectral dual
for our non-commutative group - it is not an ”unnatural over-construct”.
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E such that p does not divide dimE and chE(g) ̸= 0. We have the following
orthogonality relation: ∑

irreducible E

(dimE) · chE(g) = 0

(where we run over all irreducible representations, up to isomorphism). We
break it as follows:

1 +
∑

E s.t. p
divides dimE

(dimE) · chE(g) +
∑

non-trivial E s.t. p
does not divide dimE

(dimE) · chE(g) = 0.

We can consider this as an equation in the ring of algebraic integers, and talk
about divisibility in this ring. Since p is not a unit (does not divide 1), we see
that there exists a non-trivial E such that p does not divide (dimE) · chE(g),
in particular p does not divide dimE and (dimE) · chE(g) ̸= 0, so chE(g) ̸= 0,
as desired.

5.3.4

We now can prove Burnside’s theorem, Theorem 5.36.

Proof (of Theorem 5.36). From a basic course in group theory, it is known that
groups of prime power order are solvable. The theorem is therefore equivalent
to showing that there are no simple groups whose order is divisible by exactly
two primes. Let therefore H be a finite group whose order is divisible by exactly
two primes, p and q. If Z(H) is not trivial, then H is not simple and we are
done. Assume therefore that |Z(H)| = 1. Then The pq does not divide the sum
of numbers of elements in all the non-trivial conjugacy classes. Therefore there
must be a conjugacy class in which the number of elements is a power of p or a
power of q, and then by the previous claim H is not simple.

6 Induction

6.1 Categories and functors

We will familiarize ourselves with the basic language of category theory, be-
cause it seems a bit lacking to talk about induction without mentioning adjoint
functors.

6.1.1

A (k-linear) category is a collection C (elements of the collection are called ob-
jects) together with, for any two objectsM,N ∈ C, a k-vector space Hom(M,N) =
HomC(M,N) (called the Hom-space, or the space of morphisms), and for
any three objects M,N,L ∈ C a k-bilinear map

Hom(N,L)×Hom(M,N)→ Hom(M,L)
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(called the composition), such that composition is associative and has units
idM ∈ Hom(M,M) (we let the reader write down the meaning of this accu-
rately).

The datum α ∈ Hom(M,N) we also write α :M → N . The composition of
(β, α) ∈ Hom(N,L)×Hom(M,N) we denote β ◦ α ∈ Hom(M,L).

6.1.2

Given a group G and a field k, we can form the k-linear category Rep(G)
of G-representations over k (if we wamt to be more precise, we can denote it
Repk(G)). Here objects areG-representations over k, and for twoG-representations
over k the space HomRep(G)(M,N) is our HomG(M,N). Composition is defined
in the obvious way, as composition of transformations.

Similarly, given a k-algebra A, we can consider the k-linear category Mod(A)
of (left) A-modules.

6.1.3

Let C and D be k-linear categories. A (k-linear) functor F : C → D con-
sists of associating to any object M ∈ C an object F (M) ∈ D and also, to ob-
jectsM,N ∈ C associating a k-linear mapHomC(M,N)→ HomD(F (M), F (N))
(given α : M → N we denote by F (α) : F (M) → F (N) the image under
this map). This should satisfy the rules F (idM ) = idF (M) and F (β ◦ α) =
F (β) ◦ F (α).

We will only deal with k-linear functors between k-linear categories, so we
might omit the “k-linear” adjective, meaning it implicitly.

The datum of a functor F from C to D we also write F : C→ D.

6.1.4

Let F,G : C → D. A morphism σ : F → G is the data of, for any M ∈ C, a
morphism σM : F (M)→ G(M), such that, for any morphism α :M → N in C,
the following diagram commutes:

F (M)

F (α)

��

σM // G(M)

G(α)

��

F (N)
σN // G(N)

(the commutation of the diagram means G(α) ◦ σM = σN ◦ F (α)).
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6.1.5

Let C and D be k-linear categories and F : C → D a k-linear functor. Fix
U ∈ D. We can talk about morphisms from objects F (M) (where M ∈ C) to

U . Is there a “universal” one? That would be an object Ũ ∈ C equipped with a
morphism βuniv : F (Ũ)→ U , such that, for any object M ∈ C equipped with a

morphism β : F (M)→ U , there exists a unique morphism α :M → Ũ such that

β = βuniv ◦F (α). Such a pair (Ũ , βuniv) would be unique in the following sense.

Given two such pairs (Ũ1, β
univ
1 ) and (Ũ2, β

univ
2 ), by the universal property of Ũ1

we obtain a morphism ι21 : Ũ2 → Ũ1 (the unique one such that βuniv1 ◦F (ι21) =
βuniv2 ). Similarly, using the universal property of Ũ2, we obtain a morphism

ι12 : Ũ1 → Ũ2 (the unique one such that βuniv2 ◦ F (ι12) = βuniv1 ). Then,
since βuniv2 ◦ F (ι12 ◦ ι21) = βuniv2 and also βuniv2 ◦ F (idŨ2

) = βuniv2 , we see

that we must have, by the uniqueness part of the universal property of Ũ2,
that ι12 ◦ ι21 = idŨ2

. Similarly, we obtain that ι21 ◦ ι12 = idŨ1
. Hence, we

constructed a specific isomorphism between Ũ1 and Ũ2 (characterized as the

unique isomorphism ι12 : Ũ1 → Ũ2 satisfying βuniv2 ◦ F (ι12) = βuniv1 ).

Notice that we can also formulate the universal property by saying that,
given M ∈ C, the map

HomD(M, Ũ)
βuniv◦F (−)−−−−−−−−→ HomC(F (M), U)

is a bijection.

Suppose that for any U ∈ D there exists such a universal (Ũ , βunivU ). Given

a morphism β : U → V , we can consider the composition F (Ũ)
βuniv
U−−−−→ U

β−→ V .

By the universal property of Ṽ , there exists a unique morphism α : Ũ → Ṽ such
that

F (Ũ)

F (α)

��

βuniv
U // U

β

��

F (Ṽ )
βuniv
V // V

commutes.

We now define a functor C←− D : F r as follows. We set F r(U) := Ũ and for

a morphism β : U → V we set F r(β) : Ũ → Ṽ to be α as just described.

The functor F r is called the right adjoint of F .

We can characterize F r “in its totality” as follows. We are also given a
morphism of functors βuniv : F ◦ F r → IdD and demand that for M ∈ C and
U ∈ D we have that

HomC(M,F r(U))
F (−)◦βuniv

U−−−−−−−−→ HomD(F (M), U)

is a bijection.
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6.1.6

To summarize, one should internalize the following. Given F : C→ D, a right
adjoint of F is a functor C ←− D : F r together with a morphism of functors
βuniv : F ◦ F r → IdD, such that for M ∈ C and U ∈ D we have that

HomC(M,F r(U))
F (−)◦βuniv

U−−−−−−−−→ HomD(F (M), U)

is a bijection. Given two such right adjoints, one constructs a canonical isomor-
phims between them. In this sense the right adjoint is well defined, if it exists.
Or, one can say that it is well defined, whether it exists or not (and existence
would be an extra property it might have).

6.1.7

Similarly, one defines a left adjoint. Namely, given C←− D : G, a left adjoint
of G is a functor Gl : C → D together with a morphism of functors βuniv :
IdC → G ◦Gl, such that for M ∈ C and U ∈ D we have that

HomD(Gl(M), U)
βuniv
M ◦G(−)−−−−−−−−→ HomC(M,G(U))

is a bijection.

6.1.8

One can give an equivalent symmetric definition (showing that if F is left adjoint
to G then also G is right adjoint to F ) as follows. Given F : C → D and
C ←− D : G, an adjunction between F and G (realizing F as the left
adjoint of G and G as the right adjoint of F ) is the data, for M ∈ C and
U ∈ D, of a k-linear isomorphism

HomD(F (M), U)
γM,U−−−→ HomC(M,G(U))

which satisfies the following two “functoriality” properties. Given a morphism
α :M1 →M2, the following diagram should commute:

HomD(F (M2), U)
γM2,U

//

−◦F (α)

��

HomC(M2, G(U))

−◦α
��

HomD(F (M1), U)
γM1,U

// HomC(M1, G(U))

.

Similarly, given a morphism β : U1 → U2, an analogous diagram, which we leave
to the reader, should commute.

It is an exercise then to relate this to the above, i.e. to extract the morphisms
IdC → G ◦ F and F ◦G→ IdD, and so on.

In fact, I plan perhaps to skip in class the previous definition of adjoint
functors, and simply give the last one.
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6.1.9

Let us give an example of an adjunction. Let ι : B → A be a morphism of
k-algebras. We have the restriction functor, or forgetful functor resAB :
Mod(A) → Mod(B) which is the following. Given an A-module M , we can
consider it as a B-module by precomposing A → Endk(M) with ι : B → A. If
M → N is a morphism of A-modules, it will also be a morphism of B-modules
(when those are viewed as B-modules as just described). In this way we obtain
our functor. So, this is a “stupid”, or “easy”, or “straight-forward” functor.

Now the philosophy dictates that we can ask whether resAB has a left adjoint.

Consider the functor A ⊗
B
− : Mod(B) → Mod(A). It sends a B-module M

to the A-modules A ⊗
B
M . If we have a morphism M → N of B-modules, we

construct a morphism of A-modules α : A⊗
B
M → A⊗

B
N by sending a⊗m to

a⊗α(m) for a ∈ A,m ∈M (formalize for yourself the existence and uniqueness
of a morphism like that, using the universal property of the tensor product).

We claim that we can set A⊗
B
− and resAB in an adjunction. Namely, given

M ∈ Mod(B) and N ∈ Mod(A), we define an isomorphism

HomMod(A)(A⊗
B
M,N)→ HomMod(B)(M, resAB(N))

as follows. Given a morphism of A-modules α : A ⊗
B
M → N , we define a

morphism of B-modules β : M → N by β(m) := α(1⊗m). We can also define
a map in the other direction: Given a morphism of B-modules β : M → N
we define a morphism of A-modules α : A ⊗

B
M → N by α(a ⊗ m) := aβ(m)

for a ∈ A,m ∈ M (check for yourself that α is uniquely defined by this using
the universal property of the tensor product). One checks that these two are
mutually inverse, yielding the desired bijection. One then checks that it is
functorial as desired.

To summarize, base change is the left adjoint of the forgetful functor, and it
might seem more sophisticated than the forgetful functor, but the philosophy is
that they contain exactly the same information - each one is determined by the
other by adjunction.

6.1.10

We also have a right adjoint of the forgetful functor. Namely, we consider the
functor Mod(B)→ Mod(A) given by M 7→ HomB(A,M). Here A is considered
as a left B-module in the usual way via ι. HomB(A,M) is a left A-module by
setting (aϕ)(a′) := ϕ(a′a). Here we say that it is a functor without explaining
what it does to morphisms - it is assumed that the student checks how to fill in
all this (if not internalized this already).
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Now we should provide a functorial isomorphism, given M ∈ Mod(B) and
N ∈ Mod(A):

HomMod(B)(res
A
B(N),M)→ HomMod(A)(N,HomB(A,M)).

To a morphism of B-modules β : N →M we associate a morphism of A-modules
α : N → HomB(A,M) given by α(n)(a) = β(an). To a morphism of A-modules
α : N → HomB(A,M) we associate a morphism of B-modules β : N →M given
by β(n) := α(n)(1). One checks that these two are mutually inverse, yielding
the desired bijection. One then checks that it is functorial as desired.

6.2 Basics of induction

We fix a groups G,H and a ground field k, and a group morphism ι : H → G.

6.2.1

Corresponding to ι we have a k-algebra morphism k[H]→ k[G] (sending
∑
ch·δh

to
∑
ch · δι(h)). By abuse of notation we will denote it by ι as well. Since we

can identify Repk(G)
∼= Mod(k[G]) (and similarly for H), we already have three

functors at our disposal:

Rep(H)

indH
G

��

IndH
G

BB
Rep(G)

resGHoo .

Here resGH := res
k[G]
k[H], indHG is the left adjoint of resGH (so can be thought of

as k[G] ⊗
k[H]
−) and IndHG is the right adjoint of resGH (so can be thought of as

Homk[H](k[G],−)).

6.2.2

Usually one uses the terminology of restriction and induction when ι : H → G
is an inclusion. Let us assume so in what follows.

6.2.3

Let us first get a more concrete feeling of indHG . Let (gq)q∈G/H be a set of repre-
sentatives in G of the cosets in G/H (so gq ∈ q). We then have an isomorphism
of right k[H]-modules

k[G] ∼= ⊕q∈G/Hk[H]

given by sending (dq)q∈G/H on the right to
∑
q∈G/H δgq · dq on the left. We

therefore obtain, given a k[H]-module M , an isomorphism of k-vector spaces

k[G] ⊗
k[H]

M ∼=
(
⊕q∈G/Hk[H]

)
⊗
k[H]

M ∼= ⊕q∈G/H
(
k[H] ⊗

k[H]
M

)
∼= ⊕q∈G/HM
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which sends (mq)q∈G/H on the tight to
∑
q∈G/H δgq ⊗mq on the left.

Therefore, somewhat more concretely, we can think of indHG (M) as⊕q∈G/H“gq”M
(where we imagine “gq”m to be the result of acting by gq onm), and given g ∈ G,
to compute g(“gq”m) we write ggq = gq′h for q′ ∈ G/H and h ∈ H and then
g(“gq”m) = “gq′”(hm). So we have actions of h’s on m’s, and we add actions
of g’s on m’s in the “most economical” way (adding formal action one element
in a coset, and then the action of all other elements in that coset is already
determined).

In particular, we see that

dim(indHG (V )) = [G : H] · dimV.

Let us reiterate the structure of the induction. Suppose that we are given an
G-representation V , and an H-subrepresentation W ⊂ V . By adjunction, we
obtain a G-morphism indHGW → V . Then this is an isomorphism if and only if

V =
⊕

q∈G/H

gqW.

This is injective if and only if the subspaces (gqW )q∈G/H in V are linearly
independent (i.e. their sum in V is a direct sum).

6.2.4

Let us next get a more concrete feeling of IndHG . Given a k[H]-module M , we
can think of Homk[H](k[G],M) as a subspace of Homk(k[G],M). The latter
space we can identify with the space of maps from G to M (since we have a
basis of k[G] parametrized by elements of G). If we unfold the definitions, we
see that the subspace under question is the subspace of functions f : G → M
which satisfy f(hx) = hf(x) for all h ∈ H,x ∈ G. If we unfold the definitions,
we see that the G-action on this space is given by (gf)(x) = f(xg). So, to
summarize, we can think of IndHG (M) as being the space

IndHG (M) := {f : G→M | f(hx) = hf(x) ∀h ∈ H,x ∈ G},

and the G-action is given by

(gf)(x) := f(xg).

As an exercise, the reader should write again explicitly, using this last model,
the adjunction isomorphism

HomH(resGH(N),M) ∼= HomG(N, Ind
H
G (M)).

We will always think of IndHG in this functions-on-G model.
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6.2.5

These constructions shed light on some previous things. For example, the reg-
ular representation k[G] can be interpreted as ind1G(C), and the calculation of
how many times an irreducible G-representation appears in k[G] can be viewed
as using the adjunction of ind1G and resG1 .

6.2.6

We want to compare indHG and IndHG . We will show that we have morphism of
functors indHG → IndHG , which is an isomorphism when [G : H] is finite.

By adjunction, to define a morphism ofG-representations indHG (V )→ IndHG (V )
is the same as to define a morphism of H-representations V → IndHGV (here
we write IndHGV instead of resGHIndHGV by abuse of notation). We define such
a morphism by sending v ∈ V to the function on G sending h ∈ H to hv
and sending g ∈ G ∖ H to 0. Now, if [G : H] is finite, we define a morphism
IndHGV → indHGV as follows. Choose representatives (gq)q∈H\G in G for the

cosets in H\G. We send a function f in IndHGV to
∑
q∈H\G δg−1

q
⊗ f(gq). We

leave to the reader to check that indeed in this way we obtain a morphism
inverse to the previous one.

We therefore see that, if G/H is finite (which holds in our main case of
interest, when G is finite), there is in some sense no difference between indHG
and IndHG (one can think that the same functor is both a left adjoint and a
right adjoint of the restriction functor, i.e. it so happens that the left and right
adjoints of the restriction functor in that case are isomorphic in a specific way).

Let us try a more abstract approach (maybe it can be improved upon). Let
us work in the more general setup of a morphism of k-algebras B → A as above.
First, we have a morphism of A-modules, functorial in the B-module M :

HomB(A,B)⊗
B
M → HomB(A,M).

Here the right B-module structure on HomB(A,B) is thanks to the right B-
module structure on B and the left A-module structure on the whole left thing is
thanks to the left A-module structure on HomB(A,B). Namely, the morphism
is characterized by sending T ⊗m on the left to a 7→ (T (a)m) on the right.

Next, suppose also that we are given a morphism of left B-modules e : A→
B. We then construct a morphism of left A-modules and right B-modules

A→ HomB(A,B)

by sending a to the morphism sending a′ to e(a′a). We therefore obtain a
morphism of A-modules, functorial in the B-module M :

A⊗
B
M → HomB(A,B)⊗

B
M
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by applying the last morphism on the left tensor component. Composing, we
obtain a morphism of A-modules, functorial in the B-modules M :

A⊗
B
M → HomB(A,B)⊗

B
M → HomB(A,M).

If we want it to be an isomorphism, the easiest way would be to try both
morphisms to be isomorphisms separately.

We claim that the second arrow is an isomorphism if A is a free left B-module
of finite rank. Indeed, we can generalize the morphism, by considering for a left
B-module N the morphism of k-vector spaces, functorial in the B-modules M :

HomB(N,B)⊗
B
M → HomB(N,M).

When N is isomorphic to B, we leave to the reader to check that this morphism
is an isomorphism. Also, if this morphism is an isomorphism for some N1 and
N2, we leave to the reader to check that this morphism as an isomorphism
for N1 ⊕N2. Therefore, if N is a free B-module of finite rank, we see that the
morphism is an isomorphism. Since a morphism of A-modules is an isomorphism
if and only if it is an isomorphism of k-vector spaces, the claim follows.

The first arrow is an isomorphism if A→ HomB(A,B) is an isomorphism.

In our case we take A = k[G], B = k[H] ↪→ k[G], and e : k[G] → k[H]
sending δg to δg if g ∈ H and to 0 if g /∈ H.

6.3 Sample application to dimensions of irreducible rep-
resentations

Throughout this subsection, we fix a finite group G and an algebraically closed
ground field k whose characteristic does not divide |G|.

6.3.1

Let us prove here the following:

Claim 6.1. Let A ⊂ G be an abelian normal subgroup. Then the dimension of
any irreducible G-representation over k divides [G : A].

6.3.2

Let us interject with a small discussion around conjugation symmetry, which
will be useful in the following.

Definition 6.2.

1. Let θ : G′ → G be an isomorphism of groups. Let V be aG′-representation.
By θV we denote the G-representation which, as a vector space, is V (but
we write “θ”V , where “θ” is just a place holder for intuition), and the
G-action is given by

g ∗ “θ”v := “θ”(θ−1(g)v).
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2. Let θ : G → G be an automorphism. Let H ⊂ G be a subgroup. Then θ
induces an isomorphism H → θ(H) (we denote θ again by abuse of nota-
tion), and therefore given a representation V of H, we get a representation
θV of θ(H).

3. Let g0 ∈ G. Then we have the automorphism θg0 of G given by θg0(g) :=
g0gg

−1
0 . Given a subgroup H ⊂ G and a representation V of H, we denote

g0V := θg0V (so this is a representation of g0Hg
−1
0 ).

Exercise 6.1. Let V be a G-representation and let g0 ∈ G. Then the G-
representation g0V is isomorphic to the G-representation V .

Exercise 6.2. Let H ⊂ G be a subgroup and let θ be an automorphism of G.

Let V be an H-representation. Then ind
θ(H)
G (θV ) ∼= θ(indHGV ) (of course, this

is part of a general principal, that every natural construction will “transoport”

along isomorphisms). Let g0 ∈ G. Then ind
g0Hg

−1
0

G (g0V ) ∼= indHGV .

Exercise 6.3. Let H ⊂ G be a normal subgroup. Let V be a G-representation,
F ⊂ V an H-isotypic component, and g0 ∈ G. Then g0F is an H-isotypic
component in V as well: If F was the E-isotypic component of V , where E is
an irreducible representation of H, then g0F is the g0E-isotypic component of
V .

6.3.3

A piece of terminology: A representation is called isotypical if all irreducible
representations appearing in it are isomorphic, i.e. if it consists of one isotypic
component.

Lemma 6.3. Let H ⊂ G be a normal subgroup. Let E be an irreducible G-
representation. Let F ⊂ E be an H-isotypical component. Consider

K = {g ∈ G | gF = F} ⊂ G.

Then K is a subgroup of G containing H, and F is a K-subrepresentation of
G. Consider the G-morphism indKGF → E corresponding to the inclusion K-
morphism F → E. It is an isomorphism. The K-representation F is irreducible.

Proof. I is enough to establish that our morphism is injective, since E is irre-
ducible. As we explained above, for this it is enough to establish that, choosing
representatives (gq)q∈G/K in G for cosets in G/K, the subspaces (gqF )q∈G/K in
E are linearly independent. For this, it is enough to show that the subspaces
gqF are all distinct H-isotypic components in E, since isotypic components are
linearly independent. Indeed, recall first that gqF are H-isotypic components,
by Exercise 6.3 above. Second, if gqF = gq′F then g−1

q′ gqF = F , so g−1
q′ gq ∈ K

and so q′ = q.

We now show that F is an irreducible K-representation. If F is not an ir-
reducible K-representation, we can write F = F ′ ⊕ F ′′ where F ′ and F ′′ are
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non-zero K-subrepresentations. Then E ∼= indKG (F ) ∼= indKG (F ′) ⊕ indKG (F ′′),
contradicting E being irreducible (note to self: better to not assume semisim-
plicity where not needed, so better here to say that if F is not irreducible then
we take a non-trivial surjection F → F ′, and use indKG being right exact..).

Lemma 6.4. Let H ⊂ G be a normal subgroup. Let E be an irreducible G-
representation. Then either resGH(E) is isotypical or there exists a subgroup
H ⊂ K ⊂ G such that K ̸= G and E is isomorphic to a representation of the
form indKG (F ) where F is an irreducible representation of K.

Proof. Let F ⊂ resGH(E) be an isotypic component. Let us consider K := {g ∈
G | gF = F}. Then H ⊂ K ⊂ G and F is a K-subrepresentation of E. By
the previous lemma, the K-representation F is irreducible and the inclusion
of K-representations F → E gives rise, by adjunction, to a morphism of G-
representations indKG (F ) → E which is an isomorphism. We just need to see
that if K = G then resGH(E) is isotypical. This is clear, since if K = G then
F is a G-subrepresentation of E and therefore, sicne E is irreducible, we must
have F = E, i.e. E is isotypical as an H-representation.

6.3.4

Proof (of Claim 6.1). We proceed by induction on |G|. Applying Lemma 6.4 to
our situation (where H of the lemma is our A) we consider two cases. In the
first, resGA(E) is isotypical. Since A is abelian, an isotypical A-representation
is in fact a representation on which A acts by scalars. Denoting by ρ : G →
GL(E) the action map, we have therefore that ρ(A) lies in the center of ρ(G).
We can consider E as a representation of ρ(G), still irreducible obviously. By
Proposition 5.33 we see that dimE divides [ρ(G) : ρ(A)]. Since [ρ(G) : ρ(A)]
divides [G : A] we are done in this case. In the second case, E is isomorphic to a
representation indKG (F ) where A ⊂ K ⊂ G with K ̸= G and F is an irreducible
K-representation. By induction, we already know that dimF divides [K : A].
Therefore

dimE = dim(indKG (F )) = [G : K] · dimF | [G : K] · [K : A] = [G : A].

6.4 Another application - irreducible representations of
semidirect products A⋊H, with A commutative

Throughout this subsection, we let G = A ⋊ H, where A is a finite abelian
group and H a finite group, and k an algebraically closed ground field whose
characteristic does not divide |G|.

6.4.1

The group H acts on the group A by group automorphisms, and therefore it
also acts on the group Chk(A) of characters of A.
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6.4.2

For a G-representation V and for χ ∈ Chk(A), we denote

VA,χ = {v ∈ V | av = χ(a)v ∀a ∈ A} ⊂ V

(this is the isotypical component of resGAV corresponding to the irreducible A-
representation kχ). Let us also denote by supp(V ) ⊂ Chk(A) the subset con-
sisting of χ for which VA,χ ̸= 0. Notice that supp(V ) is a G-invariant subset of
Chk(A), and if V is finite-dimensional and non-zero then supp(V ) ̸= ∅. Further,
for χ ∈ Chk(A) we denote

Gχ := {g ∈ G | gχ = χ} ⊂ G

and we have Gχ = A⋊Hχ where

Hχ := {h ∈ H | hχ = χ} ⊂ H.

Since gVA,χ = VA,gχ, we see that if VA,χ ̸= 0 then

{g ∈ G | gVA,χ = VA,χ} = Gχ.

6.4.3

Lemma 6.5. Suppose that V is finite-dimensional and non-zero. Then V is
G-irreducible if and only if supp(V ) is G-transitive (i.e. consists of precisely
one G-orbit in Chk(A)) and, for one/all χ ∈ supp(V ), VA,χ is Hχ-irreducible.
In that case, the inclusion Gχ-morphism VA,χ → V induces a G-isomorphism

ind
Gχ

G (VA,χ)
∼−→ V .

Proof. Suppose that V is irreducible. Let χ ∈ supp(V ). Since V ′ :=
∑
g∈G gVA,χ =∑

g∈G VA,gχ is a non-zeroG-subrepresentation of V , we must have V ′ = V . Thus
supp(V ) = Gχ, i.e. a single G-orbit. Furthermore, Lemma 6.3 shows that VA,χ
is an irreducible Gχ-representation (and hence an irreducible Hχ representa-
tion, since A acts on VA,χ by scalars, and so Gχ-subrepresentations of VA,χ are
the same as Hχ-subrepresentations). Furthermore, that Lemma states that the

inclusion Gχ-morphism VA,χ → V induces a G-isomorphism ind
Gχ

G (VA,χ)
∼−→ V ,

as desired.
Conversely, suppose that supp(V ) is a single G-orbit, say Gχ, and that

VA,χ is Hχ-irreducible. Let V ′ ⊂ V be a non-zero G-subrepresentation. Then
supp(V ′) ̸= ∅. Since supp(V ′) ⊂ supp(V ) and it is G-invariant, we must have
supp(V ′) = supp(V ). So χ ∈ supp(V ′). Hence V ′ ∩ VA,χ ̸= 0. But V ′ ∩ VA,χ is
a Hχ-subrepresentation of VA,χ and therefore, since VA,χ is Hχ-irreducible, we
must have V ′∩VA,χ = VA,χ, i.e. VA,χ ⊂ V ′. But then, for every g ∈ G, we have
VA,gχ = gVA,χ ⊂ gV ′ = V ′. Therefore V =

∑
g∈G VA,gχ ⊂ V ′ and so V ′ = V ,

showing that V is indeed G-irreducible.
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6.4.4

Given χ ∈ Chk(A) and aHχ-representation F , let us consider theGχ-representation
Fχ, which is the same vector space as F , with the unique action of Gχ such that
Hχ acts as before while A acts by χ (check that it is indeed well-defined). From
the above Lemma we see that every irreducible G-representation is isomorphic

to ind
Gχ

G Fχ for some χ ∈ Chk(A) and Hχ-irrep. F . Conversely, let χ ∈ Chk(A)

and let F be a Hχ-irrep. We want to see that V := ind
Gχ

G Fχ is G-irreducible.
Let (hq)q∈G/Gχ

be a set of representatives in H for cosets in G/Gχ. Recall that

V =
⊕
q

hqFχ.

Notice that Fχ ⊂ VA,χ, but in fact we cliam that we have an equality. Indeed,
notice that for q ̸= Gχ we have hqFχ ⊂ VA,hqχ and hqχ ̸= χ, and from this
the claim follows. Thus we readily see that supp(V ) = Gχ and that VA,χ is an
irreducible Gχ-representation (and so an irreducible Hχ-representation).

6.4.5

It is now left to account for coincidences in the above recipe.

Let χ ∈ Chk(A) and F an irreducible Hχ-representation. Let h ∈ H. Then
we have

ind
Gχ

G (Fχ) ∼= ind
hGχh

−1

G (h(Fχ)) = ind
Ghχ

G ((hF )hχ).

This shows that in our recipe, it is enough, when we run over χ’s, to only
consider one χ in each H-orbit on Chk(A).

We now claim that different H-orbits in Chk(A) give different things, i.e.

that if ind
Gχ

G Fχ ∼= ind
Gχ′

G F ′
χ′ (in our usual notation here), then χ′ lies in the

sameH-orbit as χ. Indeed, from the analysis above we see that Gχ is recoverable

as supp(ind
Gχ

G (Fχ)).

Now, let F ′ be another irreducibleHχ-representation, and assume ind
Gχ

G Fχ ∼=
ind

Gχ

G F ′
χ. Then F ′ can be recovered as the (A,χ)-isotypic component on the

right, and so on the left, but F is also the (A,χ)-isotypic component on the
left. So F ′ and F are isomorphic (as Gχ-representations, and in particular
Hχ-representations).

6.4.6

To summarize, we can parametrize irreducible G-representations as follows. We
run over χ in Chk(A), but only one in each H-orbit. We then run over all irre-

ducible Hχ-representations F (up to isomorphism). We consider ind
Gχ

G F . This
gives all irreducible G-representations (up to isomorphism), without repetitions.
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6.4.7

Let us give an example. Let F be a finite field with q elements and consider
G := F ⋊ F×, where F× acts on F via multiplication (this is isomorphic to the
group of affine linear transformations of a one-dimensional vector space over
F). We will work over C. Given ψ ∈ ChC(F) and c ∈ F, we can construct
the character cψ as sending x to ψ(cx). It is known that this gives ChC(F)
the structure of a 1-dimensional vector space over F. In other words, if we fix
ψ0 ̸= 1, then c 7→ cψ0 is a bijection F → ChC(F). Recall that F× acts on our
F by multiplication, and so on ChC(F) it acts by c ∗ ψ = c−1ψ. We have two
orbits for that action - the singleton consisting of the trivial characters, and its
complement. So representatives for the orbits are 1 and ψ0. The stabilizer in
F× of 1 is the whole F×, while the stabilizer of ψ0 is the trivial subgroup. We
therefore obtain the following parametrization of irreducible representations of

G. For every character χ : F× → C× we have the character G → F× χ−→ C×

(where the first map is the standard projection), providing 1-dimensional ir-
reducible representations. In addition, we have the (q − 1)-dimensional irre-
ducible representation indFGCψ0 . Quick check that (some of) the numerics is
OK: (q − 1) · 12 + (q − 1)2 = q(q − 1) = |G|.

6.5 Characters of induced representations

Throughout this subsection, we fix a finite group G and an algebraically closed
ground field k, whose characteristic does not divide |G| (one can do things a bit
more generally, but let us not bother). We also fix a subgroup H ⊂ G.

6.5.1

We would like to figure out a linear map

funIndHG : Funk(H)cl → Funk(G)
cl

such that, for a finite-dimensional H-representation V , we will have

funIndHG (chV ) = chIndH
GV

.

In fact, it is clear that such a map exists and is unique, because the equality
holds for all finite-dimensional V if and only if it holds for all irreducible V , and
the vectors chV , as V runs over irreducible H-representations form a basis for
Funk(H)cl.

6.5.2

Notice that it is clear that for a finite-dimensional G-representation W we have

chresGHW = (chW )|H .
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(simply the restriction of a function). Recall that we saw that the symmetric
bilinear form ⟨−,−⟩ on Funk(G)

cl is non-degenerate (and similarly forH). Since
characters span the spaces of class functions, the equality

⟨chW , funIndHG (chV )⟩ = ⟨chW , chIndH
GV
⟩ = dimHomG(W, Ind

H
GV ) =

= dimHomH(resGHW,V ) = ⟨chresGHW , chV ⟩ = ⟨(chW )|H , chV ⟩

shows that we can characterize funIndHG as the operator which is adjoint to the
restriction operator (−)|H with respect to the bilinear forms we have for G and
H.

6.5.3

Let us now calculate the map funIndHG more explicitly. Notice that we can think
of our restriction map (−)|H : Funk(G)

cl → Funk(H)cl as the composition of
three maps

Funk(G)
cl → Funk(G)→ Funk(H)→ Funk(H)cl

where the first map is the inclusion, the second map is the restriction map,
and the third map is the H-conjugation averaging we have already encountered
before. Recall that also saw before that the conjugation averaging is adjoint to
the inclusion (with respect to our bilinear forms). We therefore see that our
funIndHG (χ) is the composition

Funk(H)cl → Funk(H)→ Funk(G)→ Funk(G)
cl,

were the first map is the inclusion, the second map is the adjoint to the re-
striction on all functions (not only class functions) and the third map is the
G-conjugation averaging. It is elementary (i.e. left as an exercise) to see that
the second map sends a function f ∈ Funk(H) to the function on G which sends

x to |G|
|H|f(x) if x ∈ H and to 0 otherwise. Therefore, we can calculate that

given f ∈ Funk(H)cl we have:

funIndHG (f)(x) =
1

|G|
∑

g∈G s.t. g−1xg∈H

|G|
|H|
·f(g−1xg) =

1

|H|
∑

g∈G s.t. g−1xg∈H

f(g−1xg).

Notice that if g ∈ G appears in the sum, i.e. g−1xg ∈ H, then gh also appears for
all h ∈ H, and the value is the same, as f is a class function: f((gh)−1x(gh)) =
f(h−1(g−1xg)h) = f(g−1xg). Therefore we can adjust for this redundancy and
finally write:

funIndHG (f)(x) =
∑

g∈G/H s.t. g−1xg∈H

f(g−1xg).

Here the meaning is that we choose a representative g ∈ G for an element in
G/H, and everything that appears in the formula (i.e. the condition g−1xg ∈ H
as well as the value f(g−1xg)) will not depend on this choice of representative.
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6.5.4

Let us re-interpret the formula as follows. We consider the G-set Y := G/H.
Denote y0 = H ∈ Y . Let again f ∈ Funk(H)cl. Let us consider the “stabilizers”
set

SY := {(x, y) ∈ G× Y | xy = y}.

Using f we obtain a function f̃ on SY as follows. Let (x, y) ∈ SY . Since the
action of G on Y is transitive, there exists t ∈ G such that ty0 = y. Then t−1xt
stabilizes y0, and so lies in H. We set f̃((x, y)) := f(t−1xt). One immediately

checks that, since f is a class function, the function f̃ is well-defined (i.e. there
was independence on the choice of t). We now reformulate (it is an easy exercise
to verify that this indeed is a reformulation):

funIndHG (f)(x) =
∑

y∈Y s.t. xy=y

f̃(x, y).

Thus, the formula for the character of induction is a “fixed point formula”.

6.5.5

Let us compute the character of the G := F⋊ F×-representation E := indFGCψ0

from the example in §6.4.7. Let g := (x, t) ∈ F ⋊ F×. Since {(0, s) : s ∈ F×}
form representatives for G/F, and since for s ∈ F× we have

(0, s)(x, t)(0, s−1) = (sx, t),

we obtain that chE(x, t) = 0 if t ̸= 1 and chE(x, t) =
∑
s∈F× ψ0(sx) if t = 1,

and so chE(0, 1) = q − 1 and chE(x, 1) = −1 for x ̸= 0.

6.6 Mackey’s theory

Throughout this subsection we fix a finite group G and an algebraically closed
ground field k whose characteristic does not divide |G|.

6.6.1

The basic motivation is that given a subgroup H ⊂ G, we would like to ob-
tain irreducible representations of G by inducing irreducible representations of
H. Notice first that every irreducible representation F of G appears as a sub-
representation of IndHGE, for some irreducible representation E of H. Indeed,
as resGHF ̸= 0, there exists an irreducible representation E of H and a surjec-
tion resGHF → E (we take the projection on a irreducible summand in resGHF ).

By applying adjunction, we obtain a non-zero map F → IndHGE. Since F is
irreducible, the non-zero map must be an injection.

Therefore, we get a strategy for how to construct irreducible representations
of G, given that we know irreducible representations of H: Consider the induc-
tions, study how they decompose into irreducibles, and what coincidences with
get in this process.
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The problem is that, if we take H = G then we clearly get nothing interest-
ing. If we take H = 1 then we get that every irreducible representation of G
appears in the regular representation, which we already exploited. The problem
with the latter is that IndHGE can be thought of as combining the information
of the H-representation E and the structure of the G-set G/H, and if G/H is
too big, its structure will be a (“geometric”) problem on its own, and we will
have trouble parametrizing into which irreducibles does IndHGE decompose. For
example, IndHGE will have almost no chance of being irreducible. So the point
is to look for H for which G/H is relatively small, so that we can expect to
understand how to decompose IndHGE into irreducibles.

So a basic motivating question would be, for example, given an irreducible
H-representation E, is IndHG (E) an irreducible representation of G? Notice
that a finite dimensional representation V of G is irreducible if and only if
dimHomG(V, V ) = 1. So we want to calculate

dimHomG(Ind
H
GE, Ind

H
GE) = dimHomH(resGHIndHGE,E).

Therefore we want to gain an understanding of resGHIndHGE, and it turns out

to make sense to investigate the more general expression resGKIndHGE, where
K ⊂ G is another subgroup.

6.6.2

Proposition 6.6. Let H,K ⊂ G. Choose representatives (gq)q∈H\G/K in G of
the double cosets in H\G/K (so gq ∈ q). We will construct an isomorphism of
functors

resGK ◦ Ind
H
G
∼=

⊕
q∈H\G/K

Ind
K∩g−1

q Hgq
K ◦ resg

−1
q Hgq

K∩g−1
q Hgq

◦ g
−1
q (−).

In other words, for every H-representation V we construct an isomorphism

resGKIndHG (V ) =
⊕

q∈H\G/K

Sq(V ) ∼=
⊕

q∈H\G/K

Ind
K∩g−1

q Hgq
K (res

g−1
q Hgq

K∩g−1
q Hgq

g−1
q V ),

and it is functorial in V .

Proof. Recall that resGKIndHG (V ) consists of functions f : G → V that satisfy
f(hx) = hf(x) for all x ∈ G and h ∈ H. The action of K on it is (kf)(x) =
f(xk).

Given q ∈ H\G/K, let us consider the subspace Sq(V ) ⊂ resGKIndHG (V )
consisting of those f for which f(x) = 0 if x /∈ q. It is clear that Sq(V ) is a

K-subrepresentation of resGKIndHG (V ). Also, it is clear that

resGKIndHG (V ) =
⊕

q∈H\G/K

Sq(V ).
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We want to understand more the K-representations Sq(V ). Clearly, Sq(V )
is isomorphic to the space of functions f : q → V which satisfy f(hx) = hf(x)
for x ∈ q and h ∈ H. Given f ∈ Sq(V ), we consider the function f ′ : K → V
given by f ′(k) := f(gqk). We obtain a linear map

Sq(V )→ Funk(K) : f 7→ f ′.

Notice that for k ∈ K and ℓ ∈ K ∩ g−1
q Hgq we have:

f ′(ℓk) = f(gqℓk) = f(gqℓg
−1
q · gqk) = (gqℓg

−1
q )f(gqk) = (gqℓg

−1
q )f ′(k).

Thus,

f ′ ∈ Ind
K∩g−1

q Hgq
K (res

g−1
q Hgq

K∩g−1
q Hgq

g−1
q V ) ⊂ Funk(K).

We leave to the reader to check immediately that our thus obtained

Φq : Sq(V )→ Ind
K∩g−1

q Hgq
K (res

g−1
q Hgq

K∩g−1
q Hgq

g−1
q V )

is a K-representation morphism. We claim that Φq is an isomorphism. To
describe the inverse, given f ′ we construct f as follows. Given g ∈ q, we write
g = hgqk for some h ∈ H and k ∈ K and set f(g) to be hf ′(k). We now leave
to the reader verify that indeed Φq is an isomorphism.

To conclude, we obtained an isomorphism

resGKIndHG (V ) =
⊕

q∈H\G/K

Sq(V ) ∼=
⊕

q∈H\G/K

Ind
K∩g−1

q Hgq
K (res

g−1
q Hgq

K∩g−1
q Hgq

g−1
q V ).

One immediately sees that it is functorial in V .

6.6.3

Given a group K, let us denote by Irrk(K) the set of isomorphism classes of
irreducible K-representations over k. Given an irreducible K-representation E,
we will denote by [E] ∈ Irrk(K) the corresponding isomorphism class.

Let H ⊂ G be a normal subgroup. We have an action of G on Irrk(H),
where the result of applying an element g ∈ G to the isomorphism class of an
irreducible H-representation E is the isomorphism class of the irreducible H-
representation gE. Notice that H acts trivially here, since hE is isomorphic to
E (an exercise). Therefore we obtain an action of G/H on Irrk(H).

Proposition 6.7. Let H ⊂ G be a normal subgroup. Let E,F be irreducible
H-representations.

1. The dimension of HomG(Ind
H
GE, Ind

H
GF ) is equal to the cardinality of

TransG/H([E], [F ]) := {γ ∈ G/H | γ [E] = [F ]}.
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2. IndHGE is irreducible if and only if [E] is a free point for the G/H-action
(i.e. StabG/H([E]) := TransG/H([E], [E]) = {1}.

3. IndHGE and IndHGF have common irreducible constituents if and only if
[E] and [F ] lie in the same G/H-orbit. In fact, in that case IndHGE and
IndHGF are isomorphic.

Proof. We choose representatives (gq)q∈G/H in G for cosets in G/H (which are
the same as double cosets in H\G/H, since H is normal in G).

We will use Mackey’s theory for K = H. We have:

HomG(Ind
H
GE, Ind

H
GF )

∼= HomH(resGHIndHGE,F )
∼=

⊕
q∈G/H

HomH(g
−1
q E,F ).

Notice that each summand on the right is of dimension 1 or 0, according to

whether g
−1
q E and F are isomorphic or not. This shows the desired dimension

assertion.

The second assertion follows by recalling that a G-representation V is irre-
ducible if and only if the dimension of EndG(V ) is 1. The first clause of the
third assertion follows by recalling that G-representations V and W have some
common irreducible constituent if and only if HomG(V,W ) ̸= 0. It remains to
be seen that if [E] and [F ] lie in the same G/H-orbit then in fact IndHGE and
IndHGF are isomorphic. Let g ∈ G be such that gE is isomorphic to F . So
IndHGF is isomorphic to IndHG (gE), which is isomorphic to g(IndHGE) by an ex-
ercise we had, which is isomorphic to IndHGE by an exercise we had. Combining
the chain of isomorphisms, we obtain that IndHGF is isomorphic to IndHGE.

6.6.4

Let us assume, as an example, that H ⊂ G is a normal subgroup of index
2. Then by the above theory, we see that we can perform the classification
of irreducible G-representations, in terms of irreducible H-representations, as
follows. We run over orbits of the G/H-action on Irrk(H); Each consists of
a single point or two points. If an orbit is a single point [E], then IndHGE
breaks down as the sum of two non-isomorphic irreducible representations. If
an orbit consists of two points, one of them [E], then IndHGE is an irreducible
representation (taking the second point [E′] in the same G/H-orbit will give us
IndHGE

′ which is isomorphic to IndHGE). In this way we obtain all irreducible
G-representations, without repetitions.

6.6.5

Let us take, as an example, the dihedral group G := ⟨r⟩ ⋊ ⟨s⟩, where r is an
element of order n, s is an element of order 2, and srs−1 = r−1. We have the
normal subgroup H := ⟨r⟩ ⊂ G of index 2. Let us work over C. We can identify
IrrC(H) ∼= µn (here µn ⊂ C× is the subgroup of roots of unity of order dividing
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n), by first identifying IrrC(H) with the group of characters of H (since H is
abelian), and the group of characters identifying with µn by sending a character
χ : H → C× to χ(r). To see how G/H acts on µn ∼= IrrC(H) we need to
see how s acts. Given a character χ : H → C×, we have the corresponding
[Cχ] ∈ IrrC(H). We compute that for c ∈ sCχ we have

r ∗ (“s”c) = “s”((s−1rs)c) = “s”(χ(s−1rs)c) = “s”(χ(r)−1c).

So sCχ ∼= Cχ−1 . So s acts on µn ∼= IrrC(H) by α 7→ α−1. Therefore, given
α ∈ µn such that α /∈ {1,−1}, we obtain an irreducible G-representation of
dimension 2 - IndHGCχα

, where χα : H → C× is the character sending r to α. If

α ∈ {1,−1}, the representation IndHGCχα
decomposes into two non-isomorphic

irreducible representations, which must be of dimension 1. So those will simply
correspond to characters of G (one can write them explicitly). In particular, we
see that G has n+1 irreducible representations if n is odd and n+2 irreducible
representations if n is even. Of course, this will also be the number of conjugacy
classes in G.

It is not hard to write a character table for G now (we use the abbrevia-
tion “n-dimensional character” for “character of an n-dimensional irreducible
representation):

• We have the trivial 1-dimensional character, sending ri to 1 and sri to 1,
and we have the second 1-dimensional character whose restriction to H is
trivial, sending ri to 1 and sri to −1.

• If n is even, we have two additional multiplicative characters: One sending
ri to (−1)i and sri to (−1)i and the other sending ri to (−1)i and sri to
(−1)i+1.

• For every α ∈ µn ∖ {1,−1} we have a 2-dimensional character, and those
are the same for α and α−1, but otherwise there are no repetitions. We use
the formula we had above for the character of an induced representation,
to calculate our character. We see that our character sends ri to αi+α−i

and sends sri to 0.

To write a nice character table, it might be a good idea to further write
explicitly the conjugacy classes in G.

6.6.6

We want to briefly discuss symmetries of functions on a line - a line over a
finite field since we are working with finite groups. So fix a finite field F. It
is convenient to fix a non-trivial character ψ ∈ ChC(F) (and then, as we have
already mentioned, the map F → ChC(F) given by a 7→ (x 7→ ψ(ax)) is a
bijection). We have the following two straightforward actions of F on FunC(F)
(here a ∈ F, f ∈ FunC(F)):

(a ∗1 f)(x) := f(x+ a),
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(a ∗2 f)(x) := ψ(ax)f(x).

Let us compute their commutation relation, given a, b ∈ F:

(b ∗2 (a ∗1 f))(x) = ψ(bx)f(x+ a),

(a ∗1 (b ∗2 f))(x) = ψ(ba) · ψ(bx)f(x+ a).

Since the two actions don’t commute, we don’t obtain an action of F×F., To fix
this, we need to add the error terms ψ(−ba) to the group, so to speak. Namely,
we add a third action of F on FunC(F):

(a ∗3 f)(x) := ψ(a)f(x).

We now let (c, b, a) ∈ F3 act by (c, b, a)f := c∗3(b∗2(a∗1f)). Then (abbreviating
the notation - hope the reader will understand)

(c2, b2, a2)((c1, b1, a1)f) = c2b2a2c1b1a1f = c2c1b2(a2b1)a1f =

= (b1a2) ∗3 c2c1b2b1a2a1f = (c2 + c1 + b1a2, b2 + b1, a2 + a1)f.

We are therefore led to consider the Heisenberg group H, which as a set is
F3, with the product

(c2, b2, a2) · (c1, b1, a1) := (c2 + c1 + b1a2, b2 + b1, a2 + a1).

Incidentally, notice that this group can be identified with the group of upper

triangular unipotent matrices of order 3, via (c, b, a) 7→

 1 a c
0 1 b
0 0 1

. We have

the representation of H on FunC(F), given by

((c, b, a)f)(x) = ψ(c)ψ(bx)f(x+ a).

Notice that elements of the form (c, 0, 0) lie in the center of H (and in fact the
center is equal to the subgroup of consisting of these elements).

The Stone-von Neumann theorem says that there exists a unique, up to
isomorphism, irreducible representation of H, on which the center {(c, 0, 0)}
acts by scalars ψ(c) (and this representation is of dimension |F|). To study
representations of H, we notice that H has commutative subgroups {(c, b, 0)}
and {(0, 0, a}, the first of which is normal in H, and this makes H a semidirect
product of these two subgroups. Therefore we can use the technique of above
(let us therefore leave the proof of the Stone-von-Neumann as an exercise, for
now).

Therefore, in particular, our representation of H on FunC(F) must be an
irreducible representation.

To make the roles of a and b more symmetrical (but one can probably formu-
late a better explanation), assuming that |F| is odd, let us slightly re-parametrize
H:

[c, b, a] := (c+
1

2
ba, b, a).
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In the new coordinates, the multiplication becomes:

[c2, b2, a2][c1, b1, a1] = [c2 + c1 +
1

2
det

(
b1 a1
b2 a2

)
, b2 + b1, c2 + c1].

We now notice that we have an action of SL2(F) on H by group automorphisms:

A[c, b, a] := [c, (b, a)At].

Now, consider A ∈ SL2(F) and consider the H-representation AFunC(F). Recall
that it is FunC(F) as a vector space, but with the H-action twisted by A. Since
the action of A on H leaves the center {[c, 0, 0]} of H untouched, AFunC(F)
will be again an irreducible representation on which the center acts via ψ(c).
By the Stone-von Neumann theorem, AFunC(F) must be isomorphic to FunC(F)
as H-representations. An isomorphism between them is an invertible operator
TA : FunC(F) → FunC(F). It is well-defined up to a scalar, by Schur’s lemma.
It is a simple exercise that in this way we obtain a projective representation
of SL2(F) on FunC(F). This means that TA ◦ TB is a scalar multiple of TA◦B ,
and T1 is a scalar multiple of the identity.

The thus-obtained projective representation of SL2(F) on FunC(F) can be
thought of as a family of symmetries of the line in which the Fourier transform

sits. Namely, one can see that the operator corresponding to

(
0 1
−1 0

)
is

the Fourier transform (up to scalar, as we work up to scalar). One can discuss
attempts at making this an actual representation, not just projective one, but
we will not do it here.

6.7 The group GL2(F)
Let us fix a finite field F of odd order, with q elements, where q is an odd
positive prime power. We consider the group G := GL2(F) of invertible 2 by 2
square matrices over F (with multiplication in the group being multiplication of
matrices). We will work over C. We would like to understand how to construct
irreducible representations of G, or at least their characters.

6.7.1

The number of elements in G is

(q2 − 1)(q2 − q).

6.7.2

Let us first figure out the conjugacy classes in G - this is linear algebra. We fix
a quadratic extension E of F, and an element ϵ ∈ E such that ϵ /∈ F but ϵ2 ∈ F.

1. For the characteristic polynomial p(x) = (x−c)2 for c ∈ F×, matrices with
that characteristic polynomial fall into one of the following two conjugacy
classes:
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(a) Conjugate to Dc,c :=

(
c 0
0 c

)
.

(b) Conjugate to Jc :=

(
c 1
0 c

)
.

2. For the characteristic polynomial p(x) = (x−c1)(x−c2) which decomposes
into two different linear factors in F[x] (so c1, c2 ∈ F× with c1 ̸= c2), all
matrices with that characteristic polynomial are conjugate (a representa-

tive is Dc1,c2 :=

(
c1 0
0 c2

)
).

3. For a characteristic polynomial p(x) which is irreducible in F[x], with
roots a + bϵ, a − bϵ ∈ E× (so parametrized by pairs (a, b) ∈ F2 for which
b ̸= 0), all matrices with that characteristic polynomial are conjugate to

Ca+bϵ :=

(
a b
bϵ2 a

)
.

In particular, we see that there are

(q − 1)(q − 2)

2
+ (q − 1) + (q − 1) + q

q − 1

2
= q2 − 1

conjugacy classes in G.

6.7.3

Let us denote by B ⊂ G the subgroup of upper triangular matrices. Let us
denote by U ⊂ B the subgroup of upper triangular unipotent matrices, i.e.
those all of whose eigenvalues are 1, i.e. those with 1’s on the diagonal. Let us
denote by T ⊂ B the subgroup of diagonal matrices. We have B = T ⋉ U , and
via this we identify T ∼= B/U , and so obtain the projection r : B → T .

Notice that G acts naturally on F2 (by multiplying vectors by matrices),
and so acts also on the set of lines in F2 (by line we mean a one-dimensional
sub-vector space). By linear algebra, the action on lines is transitive, and the

stabilizer of the line spanned by

(
1
0

)
is B. Therefore we can identify G/B

with the set of lines in F2. In particular, [G : B] = q + 1.

Given χ ∈ Ch(T ), let us denote by χ̃ ∈ Ch(B) the composition B
r−→ T

χ−→
C×. We define the principal series representation of G:

Pχ := IndBG(Cχ̃).

Since [G : B] = q + 1, this is a representation of dimension q + 1.

We use Mackey’s theory to study the reducibility and coincidence of the rep-
resentations Pχ. For this we need to first figure out representatives for B\G/B.
Notice that if a matrix g ∈ G is not in B, a Gauss elimination step allows to find
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u ∈ U such that ug has (1, 1)-component 0. Then, denoting w :=

(
0 1
1 0

)
,

we have wug ∈ B. Overall, we see that G is the union of the B-double cosets
B and BwB.

Now, we have:

HomG(Pχ1
,Pχ2

) = HomG(Ind
B
G(Cχ̃1

), IndBG(Cχ̃2
)) ∼= HomB(res

G
BInd

B
GCχ̃1

,Cχ̃2
) ∼=

∼= HomB(Cχ̃1
,Cχ̃2

)⊕HomB(Ind
T
B(Cwχ1

),Cχ̃2
) ∼=

∼= HomT (Cχ1
,Cχ2

)⊕HomT (Cwχ1
,Cχ2

)

(in the last isomorphism, at the second summand, we used the isomorphism
IndTB

∼= indTB and adjunction). In particular, we see that the dimension of
HomG(Pχ1

,Pχ2
) is the number of elements in the list (χ2,

wχ2) equal to χ1. In
particular, we can conclude that Pχ is irreducible if and only if χ ̸= wχ. If
χ = wχ, then Pχ is the direct sum of two non-isomorphic irreducibles. There
are no repetitions obtained in this way, except for the irreducible Pχ’s being
isomorphic to the Pwχ’s.

Let χ be such that χ = wχ. Writing χ(

(
t 0
0 s

)
) = χ(1)(t) · χ(2)(s)

where χ(1), χ(2) ∈ ChC(F×), the condition simply means χ(1) = χ(2). So

χ̃(

(
t x
0 s

)
) = χ(1)(ts) = χ(1)(det(

(
t x
0 s

)
)). Therefore, theG-representation

Cχ(1)◦det is a direct summand of Pχ. Indeed,

HomG(Cχ(1)◦det,Pχ)
∼= HomB(Cχ(1)◦det,Cχ̃),

and as the latter is 1-dimensional so is the former, and therefore there is a
non-zero G-morphism Cχ(1)◦det → Pχ which therefore is an injection. Thus,
Pχ decomposes into a one-dimensional representation and an irreducible q-
dimensional representation.

6.7.4

Let us calculate the characters of the Pχ, by using the formula for the character
of induction. Here we will think of G/B as the set of lines in the plane, as
above. Then the formula for the character says we need to look at lines which
our matrix stabilizes, i.e. eigenlines, and the contribution of that line will be

χ(

(
λ1 0
0 λ2

)
), where λ1 is the scalar by which the matrix acts on the line,

while λ2 is the scalar by which the matrix acts on the quotient of the plane by
this line (we give the reader to figure this out!). Therefore, one calculates:

Dc,c Jc Dc1,c2 Ca+bϵ
chPχ

(q + 1) · χ(Dc,c) χ(Dc,c) χ(Dc1,c2) + χ(Dc2,c1) 0
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We can also calculate, when χ = wχ, the characters of the 1-dimensional
and q-dimensional irreducible representations into which Pχ decomposes (the
notation χ(1) is as above) - the 1-dimensional we explicitly wrote above, and
the character of the q-dimensional is the subtraction of the character of the
1-dimensional from that of Pχ:

Dc,c Jc Dc1,c2 Ca+bϵ
chP1

χ
χ(1)(c

2) χ(1)(c
2) χ(1)(c1c2) χ(1)(a

2 − b2ϵ2)
chPq

χ
q · χ(1)(c

2) 0 χ(1)(c1c2) −χ(1)(a
2 − b2ϵ2)

6.7.5

We therefore obtained (q− 1) · 2+ (q−1)(q−2)
2 irreducible representations, which

we will call those of the principal series, so there are still q(q−1)
2 missing ones.

The sum of squares of dimensions of the missing irreducible representations is

seen to be q(q−1)
2 · (q − 1)2, so it is tempting to think that all the missing

irreducible representations have dimension q − 1. We will now show this.

Let V be a finite-dimensional G-representation. We consider the U -isotypic
components of V - given ψ ∈ ChC(U) we have the isotypic component

VU,ψ := {v ∈ V | uv = ψ(u)v | ∀u ∈ U}.

Notice that T normalizes U , so acts on U by conjugation and therefore also on
ChC(U). Given t ∈ T , we have tVU,ψ = VU,tψ and in particular dimVU,ψ =
dimVU,tψ. Notice that T acts transitively on ChC(U)∖{1} and therefore, fixing
some ψ0 ∈ ChC(U)∖ {1}, we see that

dimV = (q − 1) dimVU,ψ0 + dimVU,1.

Now, we claim that given an irreducible G-representation, E is of the principal
series if and only if EU,1 ̸= 0. Indeed, E is of the principal series if and only if

HomG(E, Ind
B
G(Cχ̃)) ̸= 0 for some χ ∈ ChC(T ). We have

HomG(E, Ind
B
G(Cχ̃)) ∼= HomB(E,Cχ̃) ∼= HomB(EU,1,Cχ̃) = HomT (EU,1,Cχ)

(the second identification is because Cχ̃ = (Cχ̃)U,1 and the third identification
is because U acts trivially on both representaitons, so we can consider them
as representations of B/U ∼= T ). Now, one finish by noticing that given a T -
representation W , we have W = 0 if and only if HomT (W,Cχ) = 0 for all χ.
So, we can proceed now to conclude that for an irreducible G-representation
E which is not of the principal series, we have dimE = (q − 1) dimEU,ψ0

. In
particular, we have dimE ≥ q − 1, and so from the above numerics there is no
choice but to conclude that all those irreducible representations have dimension
exactly q − 1.
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6.7.6

There are various ways to construct the irreducible representations which are
not of the principal series (they are called cuspidal), but here we would like
just to construct their characters, rather than the actual representations.

The basic idea is that we have used characters of T to define the principal se-
ries. To define the cuspidal representations, one would like to use the characters
of a different subgroup

K := {
(
a ϵ2b
b a

)
: (a, b) ∈ F2 ∖ {(0, 0)}}.

Note that K is similar to T ,6 in being the subgroup stabilizing the E-lines

spanned by

(
ϵ
1

)
and

(
−ϵ
1

)
(the latter is in fact redundant, by considering

conjugation), considering the natural action of G on E2. Note also that if we
identify F2 with E by (a, b) 7→ a + ϵb, then each element of K acts on E by

multiplication by a scalar in E (

(
a ϵ2b
b a

)
∈ K acts as a + ϵb ∈ E×), and in

this way K is identified with E×.

Let us emphasize that in our previous construction,would we take IndTGCχ,
we would have obtained representations that are too big to analyse, but IndBG(Cχ̃)
were already good (almost always irreducible). For K, one doesn’t have a sub-
group analogous to B to perform this reduction of dimension.

So we will now do the following strange thing: we will hope that the difference
chIndT

G(Cχ) − chIndB
T (Cχ̃)

is also somehow the correct difference, between the too
big and the desired, in the case of K. Let us compute this difference. To
compute the character of IndTG(Cχ) we interpret G/T as (isomorphic to) the set
of ordered pairs of non-equal lines in F2.

Dc,c Jc Dc1,c2 Ca+bϵ
chIndT

G(Cχ) (q + 1)q · χ(Dc,c) 0 χ(Dc1,c2) + χ(Dc2,c1) 0

chPχ
(q + 1) · χ(Dc,c) χ(Dc,c) χ(Dc1,c2) + χ(Dc2,c1) 0

chIndT
G(Cχ) − chPχ

(q + 1)(q − 1) · χ(Dc,c) −χ(Dc,c) 0 0

We already see a good sign - we see that the difference chIndT
G(Cχ)−chIndB

T (Cχ̃)

only depends on the values of χ on Z ⊂ G, the subgroup of scalar matrices (the
center of G) - Let us therefore write, given θ ∈ ChC(Z), dθ ∈ FunC(G)

cl for the
function in the last row above, where we replace χ(Dc,c) by θ(Dc,c). This is
good because K also contains Z, and so every character of K gives by restriction
a character of Z. So we can now hope that, given a character χ ∈ ChC(K),

chIndK
G (Cχ) − dχ|Z

6In the theory of algebraic groups, one would say that T is (the F-points of) a split torus,
while K is (the F-points of) a non-split torus, which splits over E.
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is the character of an irreducible representation.

Let us now calculate the above expression. It is easy to see that the action
of G on E-lines in E2 which do not contain non-zero vectors in F2 (i.e. E-liens
“not defined over F”) is transitive and, as mentioned above, K is the stabilizer

of the E-line spanned by

(
ϵ
1

)
. Therefore we can think of G/K as the G-set

of E-lines not defined over F.

Dc,c Jc Dc1,c2 Ca+bϵ
chIndK

G (Cχ) (q2 − q) · χ(Dc,c) 0 0 χ(Ca+bϵ) + χ(Ca−bϵ)

chIndK
G (Cχ) − dχ|Z −(q − 1) · χ(Dc,c) χ(Dc,c) 0 χ(Ca+bϵ) + χ(Ca−bϵ)

We forgot to tell before the following. Denote by R(G) the Z-submodule
of FunC(G)

cl spanned by characters of irreducible representations. By linear
independence of characters, in fact the characters of irreducible representations
form a Z-basis for R(G). Now we have the following useful observation: Given
f ∈ R(G), we have ⟨f, f⟩ = 1 if and only if f is either the character of an irre-
ducible representation or minus the character of an irreducible representation.
Indeed, letting E1, . . . , Er be an exhaustive list of the irreducible representa-
tions of G, write f =

∑
i ni · chEi

(where ni ∈ Z). Then ⟨f, f⟩ =
∑
i n

2
i . This is

equal to 1 if and only if all ni except one of them are equal to 0, and that one is
equal to 1 or −1. Clearly one can distinguish between the character of an irre-
ducible representation and minus the character of an irreducible representation
by looking at the value at 1 - it is equal to the dimension for the former, and
to minus the dimension for the latter.

We therefore set νχ := −(chIndK
G (Cχ)−dχ|Z ) and hope that it is the character

of an irreducible representation. For that, we need to check that ⟨νχ, νχ⟩ = 1.

Let us denote wK :=

(
−1 0
0 1

)
. Notice that wKχ(a + bϵ) = χ(a − bϵ). We

compute:

⟨νχ, νχ⟩ =
1

(q2 − 1)(q2 − q)

(
(q − 1) · (q − 1)2 + (q − 1) · (q + 1) · (q − 1) · 12+

+
1

2

∑
a+bϵ∈E×∖F×

(q2 − q) · ( χ
wKχ

(a+ bϵ) +
wKχ

χ
(a+ bϵ) + 2)

)
=

=
1

(q − 1)2q(q + 1)

(
(q−1)2·2q+1

2
(q−1)q

∑
a+bϵ∈E×

(
χ

wKχ
(a+bϵ)+

wKχ

χ
(a+bϵ)+2)−1

2
(q−1)q·4(q−1)

)
=

= 1 +
1

q2 − 1
· 1
2

∑
a+bϵ∈E×

(
χ

wKχ
(a+ bϵ) +

wKχ

χ
(a+ bϵ))
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which is equal to 1 if χ is such that wKχ ̸= χ and to 2 otherwise. It is an exercise
to show that the determinant map E× → F× is surjective, and its kernel consists
of elements of the form a+bϵ

a−bϵ , so that wKχ = χ if and only if χ factors via the
determinant map. Therefore there are q(q−1) characters χ for which wKχ ̸= χ.
For such χ, νχ is the character of an irreducible representation of dimension
q − 1. One sees that νχ = νχ′ if and only if χ′ = χ or χ′ = wKχ (either from
looking at the character values, using linear independence of characters of K, or

by calculating ⟨νχ, νχ′⟩). Therefore we obtain the characters of q(q−1)
2 different

irreducible representation of dimension q − 1, which therefore must be all the
remaining irreducible representations.

Let us summarize the character table of G = GL2(F):

Dc,c Jc Dc1,c2 Ca+bϵ
Cθ◦det (θ ∈ ChC(F×)) θ(c2) θ(c2) θ(c1c2) θ(a2 − b2ϵ2)

chPχ
(χ ∈ ChC(T ),

wχ ̸= χ) (q + 1) · χ(Dc,c) χ(Dc,c) χ(Dc1,c2) + χ(Dc2,c1) 0
chPq

χ
(χ ∈ ChC(T ),

wχ = χ) q · χ(Dc,c) 0 χ(Dc,c) −χ(Ca+bϵCa−bϵ)
νχ (χ ∈ ChC(K),wKχ ̸= χ) (q − 1) · χ(Dc,c) −χ(Dc,c) 0 −(χ(Ca+bϵ) + χ(Ca−bϵ))

6.8 Brauer’s induction theorem

Throughout this subsection, we fix a finite group G, and work over C.

6.8.1

For a subring A ⊂ C, we denote by RA(G) the A-span of the characters of
finite-dimensional G-representations, in FunC(G)

cl. This is an A-algebra, with
pointwise addition and multiplication. Moreover, the characters of irreducible
G-representations form an A-basis for RA(G). Given a subgroup H ⊂ G, we
have A-linear maps

RA(H)

IndH
G

((

RA(G)

resGH

hh

(the map IndHG is the restriction to RA(H) of the map that we called funIndHG ,
we for notational simplicity abbreviate the notation here).

In particular, we have RC(G) = FunC(G)
cl. In the other extreme, we set

R(G) := RZ(G) (this is sometimes called the representation ring of G). El-
ements of R(G) are sometimes called virtual characters. As we have already
mentioned above, a virtual character χ ∈ R(G) satisfies ⟨χ, χ⟩ = 1 if and only
if it is the character of an irreducible representation, or minus the character of
an irreducible representation.
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6.8.2

Artin’s induction theorem states that if we are given a family of subgroups
(Hi)i∈I of G such that every element in G is conjugate to an element in some
Hi, then the map

⊕i∈IIndHi

G :
⊕
i∈I

RQ(Hi)→ RQ(G)

is surjective. Indeed, it is clear by linear algebra that this map is surjective if
and only if the analogous map

⊕i∈IIndHi

G :
⊕
i∈I

RC(Hi)→ RC(G)

is surjective. Using our non-degenerate symmetric bilinear form, to check that
this map is surjective it is enough to check that if f ∈ RC(G) is orthogonal
to the image of the map, then f = 0. Indeed, if f is orthogonal to the image
then ⟨f, IndHi

G f ′⟩ = 0 for all i ∈ I and f ′ ∈ RC(Hi). By Frobenius reciprocity
we therefore have ⟨resGHi

f, f ′⟩ = 0 for all i ∈ I and f ′ ∈ RC(Hi). By the non-

degeneracy of our forms, we obtain resGHi
f = 0 for all i ∈ I. In other words, our

function f vanishes on all the subgroups Hi. Since f is a class function, by the
assumption on the Hi’s it follows that f = 0.

One can take (Hi)i∈I to simply consist of the cyclic subgroups in G. Each
RQ(Hi) is spanned by characters in ChC(Hi), and therefore we obtain:

Theorem 6.8 (Main version of Artin’s induction theorem). Let V be a finite-
dimensional representation of G. Then there exist cyclic subgroups H1, . . . ,Hr ⊂
G and characters χi ∈ ChC(Hi) such that chV is a rational linear combination
of IndH1

G (χ1), . . . Ind
Hr

G (χr).

Brauer’s induction theorem states:

Theorem 6.9 (Brauer’s induction theorem). Let V be a finite-dimensional rep-
resentation of G. Then there exist subgroups H1, . . . ,Hr ⊂ G and characters
χi ∈ ChC(Hi) such that chV is a Z-linear combination of IndH1

G (χ1), . . . Ind
Hr

G (χr).

The proof of Brauer’s induction theorem is more complicated. The main
application is to show that Artin L-functions are products of Hecke L-functions
and their inverses, therefore deducing that Artin L-functions have a meromor-
phic continuation to the whole complex plane.

6.8.3

Recall the inductive definition of being a nilpotent group. A group H is called
0-nilpotent if it is the trivial group. It is called r-nilpotent, for r ≥ 1, if H/Z(H)
is (r−1)-nilpotent. The group H is called nilpotent if it is r-nilpotent for some
r ∈ Z≥0. It is easy to see that subgroups and quotient groups of nilpotent groups
are nilpotent. A product of two nilpotent groups is also nilpotent. Recall that
any p-group is nilpotent.
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Lemma 6.10. Let H be a nilpotent group. If H is not abelian, then H contains
a normal abelian subgroup which is not central.

Proof. Since H is not abelian, we have Z(H) ̸= H. Consider an element h ∈ H
which maps to a non-trivial element of Z(H/Z(H)) under the projection H →
H/Z(H). Then Denote by K the subgroup of H generated by Z(H) and h.
Then K is not central, it is abelian, and it is also normal in H (since it is the
preimage under H → H/Z(H) of a central subgroup in H/Z(H)).

Lemma 6.11. Let H be a finite nilpotent group. Let E be an irreducible
representation of H. Then there exists a subgroup K ⊂ H and a character
χ ∈ ChC(K) such that E ∼= IndKH(Cχ).

Proof. We proceed by induction on |H|.
We first reduce to the case when the representation E of H is faithful. Let

L be the kernel of the representation. If L ̸= 1, then considering E as a H/L-

representation, by induction, we can find a subgroup K̃ ⊂ H/L and a character

χ ∈ ChC(K̃) such that E is isomorphic to IndK̃H/L(Cχ̃) as H/L-representations.
We leave to the reader to see that in fact then E is isomorphic to IndKH(Cχ) as
H-representations, where K is the preimage in H of K̃ under H → H/L, and

χ is the composition of K → K̃ with χ̃.

So we now assume that E is a faithful H-representation. We can also assume
that H is not abelian, since if H is abelian the claim is clear. By the above
lemma, there exists a non-central abelian normal subgroup L ⊂ H. Let us recall
that previously we saw that either the E is L-isotypical, or there exists L ⊂ K ⊂
G such that K ̸= G and E ∼= IndKGF for some irreducible K-representation F .
In the latter case, using induction we can find a subgroup K ′ ⊂ K and a

character χ ∈ ChC(K
′) such that F ∼= IndK

′

K (Cχ). Then E ∼= IndK
′

H (Cχ) and
we are done. It is left to see that the former case is not possible. Indeed, if E is
L-isotypical then, since L is abelian, we have that L acts on E by scalars. Then
the image of L in GL(E) is in the center of the image of H in GL(E). Since the
representation is faithful, we obtain that L is in the center of H, contradicting
L being non-central in H.

6.8.4

Given a prime p, let us say that a finite group H is p-elementary if it is
isomorphic to a product of a p-group with a cyclic group. We say that H is
elementary if it is p-elementary for some prime p. Clearly, an elementary
group is nilpotent.

Theorem 6.12 (Brauer’s induction theorem). The map

⊕ H⊂G
elementary

IndHG :
⊕
H⊂G

elementary

R(H)→ R(G)

is surjective.
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Notice that Theorem 6.12, coupled with Lemma 6.11, gives Theorem 6.9.
The remainder of the subsection will be devoted to proving Theorem 6.12.

6.8.5

We will have to use the following projection formula:

Lemma 6.13. Let H ⊂ G be a subgroup. Let V be a G-representation and W
a H-representation. Then

indHG (W ⊗ resGHV ) ∼= indHGW ⊗ V.

Proof. Let us leave this as an exercise for now.

Let I ⊂ R(G) be the image of our map (we want to show that I = R(G).

Reduction 6.14. It is enough to see that 1 ∈ I.

Proof. By the above projection formula, I is an ideal in R(G). Therefore 1 ∈ I
will imply I = R(G).

6.8.6

For subrings A,B ⊂ C, let us denote by RBA(G) ⊂ RA(G) the subset consisting
of functions all of whose values lie in B. Clearly RBA(G) is a subring of RA(G),
and the restriction and induction operators preserve RBA(−). Let us denote by
IBA the image of the map analogous to the previous one:

⊕ H⊂G
elementary

IndHG :
⊕
H⊂G

elementary

RBA(H)→ RBA(G).

We have I = ICZ .
Let us set A to be the subring of C generated by all |G|-th roots of unity.

Reduction 6.15. It is enough to see that 1 ∈ ICA.

Proof. Since A is finitely generated as a Z-module, all elements of A are integral.
Therefore A ∩ Q = Z. Therefore A/Z is a torsion free finitely generated Z-
module. Therefore we can write A = Z⊕A′ for some Z-submodule A′ ⊂ A. We
consider the corresponding projection p : A → Z, and consider the projection
P : RA(G) → RZ(G) given by writing an element as an A-linear combination
of irreducible characters and applying our projection to the coefficients. Now,
if 1 ∈ ICA then we can write 1 =

∑
i ai · chIndHi

G Ei
where ai ∈ A and Hi are

elementary subgroups in G. Then

1 = P (1) = P (
∑
i

ai·chIndHi
G Ei

) =
∑
i

P (ai·chIndHi
G Ei

) =
∑
i

p(ai)·chIndHi
G Ei

∈ I.
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The justification of the last equality is as follows. We can write ch
Ind

Hi
G Ei

=∑
j nj · chFj

where nj ∈ Z and Fj are distinct irreducible representations of G.
Then ai · chIndHi

G Ei
=
∑
j(ainj) · chFj

and therefore by definition

P (ai · chIndHi
G Ei

) =
∑
j

p(ainj) · chFj
= p(ai)

∑
j

·nj · chFj
= p(ai) · chIndHi

G Ei
.

We also make the following obvious reduction:

Reduction 6.16. It is enough to see that 1 ∈ IZA.

Proof. This is clear in view of the previous reduction, as IZA ⊂ ICA.

6.8.7

We now consider RZ
A(G) ⊂ RZ

C(G). Notice that RZ
C(G) is a finitely generated

free abelian group (it is simply FunZ(G)
cl). We will use the following lemma:

Lemma 6.17. Let L be a finitely generated free abelian group, let M ⊂ L be
a subgroup and let ℓ ∈ L. If ℓ ∈ M + pkL for all primes p and k ∈ Z≥1, then
ℓ ∈M .

We now have the following reduction:

Reduction 6.18. It is enough to see that for every prime p and k ∈ Z≥1, there
exists fp,k ∈ IZA such that all the values of 1− fp,k are divisible by pk.

Proof. We apply the lemma to L := RZ
C(G), M := IZA and ℓ := 1.

6.8.8

We reduce to the following:

Reduction 6.19. It is enough to see that for every prime p there exists fp ∈ IZA
all of whose values are prime to p.

Proof. Given in addition k ∈ Z≥1, by Euler’s theorem all the values of 1 −
f
ϕ(pk)
p are divisible by pk, so fp,k := f

ϕ(pk)
p ∈ IZA is as desired in the previous

reduction.

6.8.9

Let us call an element h ∈ H in a finite group p-regular if the order of h is
prime to p, and p-torsion if the order of h is a power of p.

Lemma 6.20. Let H be a finite group. Then any h ∈ H can be written uniquely
h = hp-rhp-t where hp-r is p-regular, hp-t is p-torsion, and hp-r and hp-t commute.
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We now reduce the claim further:

Reduction 6.21. It is enough to see the following. Let p be a prime and let
g ∈ G be a p-regular element. Then there exists fg ∈ IZA such that fg(x) is
prime to p if if xp-r is conjugate to g and fg(x) = 0 otherwise.

Proof. If we sum the functions fg as in the statement, running over represen-
tatives g of conjugacy classes of p-regular elements in G, we clearly obtain a
function fp ∈ I ′ all of whose values are prime to p, as desired in the previous
reduction.

6.8.10

Let us consider a p-Sylow subgroup S of ZG(g). Then clearly E := S · ⟨g⟩ is a
p-elementary subgroup of G. Denoting by o(g) the order of g, let us consider
f := o(g) · δ{g} ∈ RZ

A(⟨g⟩). We leave to the reader to figure out that indeed F
lies in RA(⟨g⟩) (recall the Fourier theory expression of f as a linear combination
of characters). We now denote by f1 ∈ RZ

A(E) the pullback of f under the

projection E → ⟨g⟩. So f1 = o(g) · δSg. Finally, let us denote fg := IndEG(f1) ∈
IZA ⊂ RZ

A(G). We claim that fg is as desired, i.e. fg(x) = 0 if xp-r is conjugate
to g and fg(x) is prime to p otherwise. Let us calculate:

fg(x) = o(g) · |{y ∈ G/E | y−1xy ∈ Sg}| = |{y ∈ G/S | y−1xy ∈ Sg}|.

If xp-r is not conjugate to g, then clearly the expression is equal to 0. Suppose
that xp-r is conjugate to g. By conjugating we can assume without loss of
generality that xp-r = g and so x ∈ ZG(g). Further conjugating inside ZG(g),
by Sylow’s theorem, we can assume without loss of generality that x ∈ E. So
write x = sg with s ∈ S. Then y ∈ G satisfying y−1xy ∈ Sg must satisfy
y−1gy = g i.e. y ∈ ZG(g). The remaining condition is y−1sy ∈ S. Hence we
want to show that

|{y ∈ ZG(g)/S | y−1sy ∈ S}|

is prime to p. We can interpret this as

|{yS ∈ ZG(g)/S | s(yS) = yS}|.

In other words, we want to show that the number of fixed points of the action
of s on GZ(g)/S is prime to p. Since s is p-torsion and |ZG(g)/S| is prime to p,
this follows from the following lemma:

Lemma 6.22. Let X be a finite set such that |X| is prime to p. Let σ : X → X
be a self-bijection whose order is a p-power. Then the number of fixed points of
σ on X is prime to p.

We are done!
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7 Some additional topics

7.1 Gelfand pairs, Gelfand-Tseitlin basis

Throughout, G is a finite group and k is an algebraically closed field of charac-
teristic zero.

7.1.1

Let K ⊂ G be a subgroup.

Definition 7.1. We say that (G,K) is a Gelfand pair if for every irreducible
G-representation E we have [resGKE : k] ≤ 1 (where here k is the trivial rep-
resentation of K). We say that (G,K) is a strong Gelfand pair if for every
irreducible G-representation E and every irreducible K-representation F we
have [resGKE : F ] ≤ 1.

Remark 7.2. Notice that [resGKE : k] = dimk E
K .

Our motivating example is:

Claim 7.3. (Sn, Sn−1) is a strong Gelfand pair.

We will prove this in the end of the discussion. Let us say that a axis sys-
tem for a m-dimensional vector space V is an unordered m-tuple {ℓ1, . . . , ℓm}
of one-dimensional subspaces of V such that V = ℓ1 ⊕ . . . ⊕ ℓm. A corol-
lary of (Sn, Sn−1) being a strong Gelfand pair is that every irreducible Sn-
representation has a canonical axis system (the ”Gelfand-Tseitlin basis”). In-
deed, starting with an irreducible Sn-representation E, we decompose it as a
direct sum of irreducible Sn−1-representations. Each isomorphism class of irre-
ducible Sn−1-representations appears in the decomposition at most once, since
(Sn, Sn−1) is a strong Gelfand pair. Therefore, in fact, the decomposition is
canonical (because the Sn−1-irreducible summands are the same as the Sn−1-
isotypic components). Now we continue, and decompose each Sn−1-irreducible
summand into a direct sum of irreducible Sn−2-representations. And so on, we
continue in this fashion, in the end obtaining a decomposition into irreducible
S1-representaitons, which are simply one-dimensional subspaces.

Example 7.4. Let us consider the standard irreducible S4-representation, on

E := {v = (xi)1≤i≤4 |
∑

xi = 0}.

7.1.2

Let K ⊂ G be a subgroup.

Definition 7.5. Let us denote by H(G,K) ⊂ k[G] the subset consisting of
K-biinvariant elements, i.e. elements d satisfying δkd = d and dδk = d for all
k ∈ K.

92



Definition 7.6. Let us define eK := 1
|K|
∑
k∈K δk ∈ k[G].

Exercise 7.1. We have e2K = eK and eK ∈ H(G,K). Also, H(G,K) is a
non-unital subalgebra of k[G] (i.e. it is a k-vector subspace of k[G] closed under
multiplication), and it is itself a unital algebra with unit eK . Finally, we have
eKdeK ∈ H(G,K) for all d ∈ k[G].

Definition 7.7. The algebraH(G,K) is called theHekce algebra (of (G,K)).

7.1.3

Let V be a G-representation. Then V K is a sub-H(G,K)-module of V . Indeed,
let d ∈ H(G,K) and v ∈ V K . Then for any k ∈ K we have

kdv = (δkd)v = dv

and therefore dv ∈ V K . Notice also that the unit eK of H(G,K) acts on V K

by identity, so that V K is indeed a unital H(G,K)-module.

Definition 7.8. Let E be an irreducible G-representation. We say that E is
K-spherical if EK ̸= 0.

Claim 7.9. If E is a K-spherical G-representation then EK is an irreducible
H(G,K)-module.

Proof. Let E be a K-spherical irreducible G-representation. Let N ⊂ EK be a
sub-H(G,K)-module. We claim that (k[G]·N)∩EK = N . Indeed, the inclusion
from right to left is evident. Let v ∈ (k[G]·N)∩EK . So we can write v =

∑
dini

with di ∈ k[G] and ni ∈ N . Then

v = eKv =
∑

eKdini =
∑

eKdieKni ∈ N

(the last inclusion is since eKdieK ∈ H(G,K)). Therefore, if N ⊂ EK is non-
zero, we have k[G] ·N = E since E is G-irreducible and therefore

N = (k[G] ·N) ∩ EK = E ∩ EK = EK ,

showing that EK is an irreducible H(G,K)-module.

Corollary 7.10. Suppose that H(G,K) is commutative. Then (G,K) is a
Gelfand pair.

Proof. If H(G,K) is commutative, then all irreducible H(G,K)-modules are
one-dimensional. Hence, given an irreducible G-representation E, if E is not
K-spherical then EK = 0 and if E is K-spherical then by the previous Claim
EK is an irreducible H(G,K)-module and hence dimk(E

K) = 1.

Claim 7.11 (Gelfand trick). Suppose that we have an anti-involution r : G→ G
(i.e. r(g1g2) = r(g2)r(g1) and r(r(g)) = g) which preserves all K-double cosets
in G. Then H(G,K) is commutative.
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Proof. Define R : k[G] → k[G] by R(
∑
cgδg) :=

∑
cgδr(g). Then R is an anti-

involution of k[G]. Notice that if d ∈ H(G,K) then R(d) = d, because writing
d =

∑
cgδg we have R(d) =

∑
cgδr(g) =

∑
cr(g)δg but since r(g) lies in the

same K-double coset as g, we have cr(g) = cg and therefore R(d) = d. Thus, R
restricts to an anti-involution ofH(G,K), which is the identity map. This shows
that H(G,K) is commutative: d1d2 = R(d1d2) = R(d2)R(d1) = d2d1.

Example 7.12. Let us consider (G,K) = (Sn, Sn−1). We consider the anti-
involution of Sn given by g 7→ g−1. It is not hard to see, thinking about cy-
cle decomposition, that this anti-involution preserves, in fact, Sn−1-conjugacy
classes - for any h ∈ Sn there exists k ∈ Sn−1 such that h−1 = khk−1. In par-
ticular, this anti-involution preserves K-double cosets and hence H(Sn, Sn−1)
is commutative and hence (Sn, Sn−1) is a Gelfand pair.

7.1.4

Claim 7.13. (G,K) is a strong Gelfand pair if and only if (G ×K,∆K) is a
Gelfand pair, where ∆K = {(k, k) : k ∈ K} ⊂ G×K.

Proof. The irreducible G×K-representations are of the form F ⊗E∗ where F is
an irreducible G-representation and E is an irreducible K-representation. Then

[resG×K
∆K (F ⊗ E∗) : k] = dimk(F ⊗ E∗)K = dimk HomK(E,F ) = [resGKF : E]

and from this the claim follows.

Let us denote by k[G]K (probably should find a better name) the subalgebra
of k[G] consisting of d for which δkdδ

−1
k = d for all k ∈ K.

Lemma 7.14. The algebras H(G×K,∆K) and k[G]K are isomorphic.

Proof. Let us define a map

ϕ : H(G×K,∆K)→ k[G]K

by sending ∑
(g,k)∈G×K

c(g,k) · δ(g,k) 7→
∑
g∈G

c(g,1) · δg.

We check that we indeed land in k[G]K :

δk

∑
g∈G

c(g,1) · δg

 δk−1 =
∑
g∈G

c(g,1) · δkgk−1 =
∑
g∈G

c(k−1gk,1) · δg =
∑
g∈G

c(g,1) · δg.

Now we check whether ϕ is an algebra morphism (it is not!):

ϕ

 ∑
(g,k)∈G×K

c(g,k) · δ(g,k)

 ·
 ∑

(g,k)∈G×K

c′(g,k) · δ(g,k)

 = ϕ

 ∑
g1,g2∈G
k1,k2∈K

c(g1,k1)c
′
(g2,k2)

δ(g1g2,k1k2)

 =
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=
∑

g1,g2∈G

∑
k∈K

c(g1,k)c
′
(g2,k−1)δg1g2 =

∑
g1,g2∈G

∑
k∈K

c(g1k−1,1)c
′
(kg2,1)

δg1g2 =

=
∑
k∈K

∑
g1,g2∈G

c(g1k−1,1)c
′
(kg2,1)

δ(g1k−1)(kg2) =
∑
k∈K

∑
g1,g2∈G

c(g1,1)c
′
(g2,1)

δg1g2 =

= |K|·

∑
g∈G

c(g,1)δg

·
∑
g∈G

c′(g,1)δg

 = |K|·ϕ

 ∑
(g,k)∈G×K

c(g,k) · δ(g,k)

·ϕ
 ∑

(g,k)∈G×K

c′(g,k) · δ(g,k)


Now we construct an inverse to ϕ:

ψ : k[G]K → H(G×K,∆K)

given by sending ∑
g∈G

cg · δg 7→
∑

(g,k)∈G×K

ck−1gδ(g,k).

One readily checks that ψ ◦ ϕ = id and ϕ ◦ ψ = id.

Therefore, we see that |K| · ϕ is an algebra isomorphism as desired!

Corollary 7.15. Suppose that k[G]K is commutative. Then (G,K) is a strong
Gelfand pair.

Proof. If k[G]K is commutative then by the above lemma we have that H(G×
K,∆K) is commutative, and therefore by a previous result (G × K,∆K) is a
Gelfand pair, and hence by a previous result (G,K) is a strong Gelfand pair.

Claim 7.16 (Gelfand trick). Suppose that we have an anti-involution r : G→ G
which preserves all K-conjugacy classes in G. Then k[G]K is commutative (and
hence (G,K) is a strong Gelfand pair).

Proof. The proof is as before: r induces an anti-involution R of k[G], which
restricts to the identity on k[G]K , and therefore k[G]K is commutative.

Corollary 7.17. (Sn, Sn−1) is a Strong Gelfand pair.

Proof. We consider the anti-involution g 7→ g−1 of Sn. As we have already
mentioned, it preserves Sn−1-conjugacy classes, and so the condition of the
Gelfand trick is fulfilled.

8 Representation theory of compact groups (3l
qSh hmzlg)

8.1 Topological groups, Haar measures

8.1.1

For us, a compact space will always mean a Hausdorff compact space. A locally
compact space will mean a Hausdorff locally compact space. We will assume all
topological spaces are Hausdorff, unless stated otherwise.
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Definition 8.1. A topological group is a set G equipped both with a group
structure and a topology, such that the multiplication map G×G→ G and the
inverse map G→ G are continuous.

Example 8.2. Any group can be given the discrete topology, making it a locally
compact topological group.

Example 8.3. The group GLn(R) of invertible (n×n)-matrices over R, equipped
with the usual topology (subspace topology with respect to the inclusion GLn(R) ⊂
Mn(R), where Mn(R) is given the usual topology on a finite-dimensional real
vector space), is a locally compact topological group.

Example 8.4. Given a topological group G and a closed subgroup H ⊂ G (here
“closed” refers to the topology - being a closed subset), H itself becomes naturally
a topological group. We can therefore obtain a lot of examples from the previous
example - SLn(R) (matrices with determinant 1), On (orthogonal matrices), and
so on. Notice that On is a compact group.

Example 8.5. We similarly have the locally compact topological group GLn(C)
and its compact subgroup Un consisting of unitary matrices.

Example 8.6. Given a topological group G and a closed normal subgroup
H ⊂ G, the quotient group G/H equipped with the quotient topology is a topo-
logical group. A very important example is R/Z (where R is a group with respect
to addition). This group has many other models (it is the circle group). For
example, it is isomorphic to SO2, the group of (2×2)-matrices which are orthog-
onal with determinant 1 (the group of rotations of the plane) - the isomor-

phism R/Z → SO2 is given by sending r + Z 7→
(
cos(r) −sin(r)
sin(r) cos(r)

)
. Also,

it is isomorphic to the subgroup C×,1 ⊂ C× consisting of the complex numbers
with length 1 - the isomorphism R/Z→ C×,1 is given by sending r+Z 7→ e2πir).

Example 8.7. One also has the locally compact topological groups such as
GLn(Qp) (where Qp is the field of p-adic numbers) and GLn(A) (where A is
the ring of adeles) which play important roles in number theory.

Example 8.8. There are also natural examples of topological groups which are
not locally compact. For example, one can take a locally compact topological
group G, a compact topological space X, and consider the group of continu-
ous maps from X to G (with pointwise multiplication), with the open-compact
topology.

8.1.2

Let X be a locally compact topological space. One has two dual approaches to
what a measure on X is. In one approach, a measure associates to nice enough
subsets of X values in R (the measure of a subset). In the other approach, a
measure associates to continuous functions with compact support on X values
in R (the integral of a function). Let us take the second approach.
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Definition 8.9. We denote by C(X) the complex vector space of complex-
valued continuous functions on X. We denote by Cc(X) ⊂ C(X) the subspace
consisting of functions with compact support.

Definition 8.10. A signed Radon measure onX is a functional µ : Cc(X)→
C satisfying the following: Let K ⊂ X be a compact subset and let (fn)n∈Z≥1

be
a sequence of functions in Cc(X), such that the support of each fn lies in K, and
converging uniformly to a function f ∈ Cc(X). Then (µ(fn))n∈Z≥1

converges
to µ(f). The signed Radon measure µ is said to be a Radon measure if
µ(f) ∈ R≥0 for any f ∈ Cc(X) such that f(x) ∈ R≥0 for all x ∈ X. We will
denote by M(X) the vector space of signed Radon measures on X.

Example 8.11. Associating to f ∈ Cc(R) the Riemann integral
∫∞
−∞ f(x)dx,

we obtain a Radon measure on R. Fixing f0 ∈ C(R), we can also consider the
signed Radon measure f 7→

∫∞
−∞ f(x)f0(x)dx.

Example 8.12. Let x ∈ X. We can consider the Radon measure on X, sending
f to f(x). This is called Dirac’s delta δx.

One has a natural structure of a C(X)-module on M(X) (where C(X) is an
algebra with respect to pointwise multiplication). Namely, given f ∈ C(X) and
µ ∈M(X), one defines fµ ∈M(X) by (fµ)(f ′) := µ(ff ′).

8.1.3

Let θ be an automorphism of a locally compact topological space X (i.e. a
homeomorphism of X to itself) Then we obtain an automorphism of the vector
space Cc(X), given by sending f to (x 7→ f(θ−1(x)), and then an automorphism
of the vector space M(X), given by sending µ to (f 7→ µ(θ−1(f)).

In particular, if G is a locally compact topological group, we can consider
the action of G on itself by left and right translations - the left action given by
Lg0g := g0g and the right action given by Rg0g := gg−1

0 . Each such Lg0 and
Rg0 is an automorphism of the topological space G, and therefore by the above
procedure we obtain corresponding actions of G on Cc(G) and on M(G). So,
for example, (Rg0µ)(f) = µ((g 7→ f(gg−1

0 ))).

8.1.4

Let G be a locally compact topological group.

Definition 8.13. A (left) Haar measure on G is a Radon measure
∫
on G,

which is non-zero and left G-invariant - meaning that Lg0
∫
=
∫
for all g0 ∈ G.

Similarly, a right Haar measure on G is a non-zero right G-invariant Radon
measure on G.

Theorem 8.14 (Haar theorem). There exists a Haar measure on G, and any
two Haar measures on G differ by a real positive scalar. In fact, any left G-
invariant signed Radon measure on G differs by a complex scalar from a Haar
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measure. Also, a Haar measure
∫

on G is nowhere-vanishing, in the sense that
if f ∈ Cc(G) satisfies f(g) ∈ R≥0 for all g ∈ G and f ̸= 0, then

∫
f ∈ R>0.

Proof. We omit the proof.

Example 8.15. On R, a group with respect to addition, the usual Riemann
integral Radon measure considered above (sending f to

∫∞
−∞ f(x)dx) is a Haar

measure.

Example 8.16. Let G be a group with the discrete topology. Then a Haar
measure is given by f 7→

∑
g∈G f(g) (note that the sum is well-defined since only

finitely many summands are non-zero). This is called the counting measure.
So, we have a normalization of the Haar measure in this case, by requiring the
integral of a function equal to 1 at some point and to 0 at the rest of the points
to be 1.

Example 8.17. Let us consider the circle group R/Z. A Haar measure on it

can be for example described as sending f to
∫ 1

0
f(x+ Z)dx.

Example 8.18. If G is compact, we can normalize the Haar measure by re-
quiring the integral of the constant function 1 to be equal to 1. Notice that if G
is a finite group, it is a compact group and also a discrete group, and we obtain
two different normalizations of the Haar measure.

8.1.5

Of course, all the previous can also be said for right Haar measures. Notice that
if
∫

is a left Haar measure, then f 7→
∫
(g 7→ f(g−1)) is a right Haar measure,

and vice versa. To discuss the possible difference between left and right Haar
measures, we proceed as follows.

Let θ be an automorphism of the topological group G (so, θ is a group
automorphism and also a homeomorphism). Let

∫
be a left Haar measure on

G. Then one easily checks that θ
∫

is also a left Haar measure on G. By
the uniqueness of Haar measure, there exists a scalar ∆(θ) ∈ R×

>0 (called the
modulus of θ) such that θ

∫
= ∆(θ) ·

∫
. One checks easily that ∆(id) = 1

and ∆(θ1θ2) = ∆(θ1)∆(θ2), in other words that ∆ : Aut(G) → R×
>0 is a group

homomorphism.

In particular, given g ∈ G let θg denote the automorphism of G given by
x 7→ gxg−1. We abbreviate ∆(g) := ∆(θg). We obtain therefore a group
homomorphism ∆ : G→ R×

>0, commonly referred to as themodulus function.

Lemma 8.19. The modulus function ∆ : G→ R×
>0 is continuous.

Proof. We omit the proof.

Now, let
∫
be a left Haar measure on G. We calculate:

(Rg0

∫
)(f) =

∫
(g 7→ f(gg−1

0 )) =

∫
(g 7→ f(g0g

−1
0 gg−1

0 ) =

∫
(g 7→ (θg−1

0
f)(g−1

0 g)) =
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=

∫
θg−1

0
f = (θg0

∫
)(f) = ∆(g0)

∫
f,

i.e. we obtain Rg0
∫
= ∆(g0)

∫
. We therefore deduce, in particular, that a left

Haar measure is also a right Haar measure if and only if ∆ = 1. In that case
one says that G is unimodular.

Exercise 8.1. Given a left Haar measure
∫

on G, show that f 7→
∫
(g 7→

f(g)∆(g)−1) is a right Haar measure on G.

Claim 8.20. If G is compact, or discrete, or abelian, then G is unimodular.

Proof. It is an easy exercise that R×
>0 does not admit compact closed subgroups

except the trivial subgroup {1}. If G is compact, the image of ∆ is a compact
subgroup of R×

>0, hence trivial, i.e. ∆ = 1. Next, if G is discrete, one sees
directly that the counting measure is both left and right invariant. Finally, if G
is abelian, then it is also clear from definitions that being left or right invariant
are the same thing.

Exercise 8.2. Let us consider the locally compact topological group G := R⋊R×

(where the semidirect product is formed by letting the multiplicative group act on
the additive group by multiplication). Show that G is not unimodular. Calculate
the modulus function.

8.2 Finite-dimensional representations

8.2.1

Recall that a norm || − || on a C-vector space V is a function || − || : V → R≥0

such that ||cv|| = |c| · ||v||, ||v1 + v2|| ≤ ||v1||+ ||v2||, and ||v|| = 0 if and only if
v = 0. A norm on V induces a metric on V , given by d(v1, v2) := ||v2 − v1||. A
metric, in its turn, induces a topology on V . By a normed space we mean a
C-vector space equipped with a norm. We have the following basic claim:

Claim 8.21. Let V be a finite-dimensional C-vector space. Then there exist
norms on V , and any two norms on V induce the same topology.

Let us give another example of a normed vector space. Let X be a compact
topological space. We define a norm on C(X), the supremum norm, by setting
||f ||sup := supx∈X |f(x)|.

8.2.2

Definition 8.22. Let G be a locally compact topological group. Let V be a
normed space. A (continuous) representation of G on V is a representation
in our old sense G × V → V such that, additionally, the map G × V → V is
continuous. If we want to emphasize, we will call a representation for which
G× V → V is not necessarily continuous an abstract representation.

99



Definition 8.23. Let G be a locally compact topological group and V a finite-
dimensional vector space. A (continuous) representaiton of G on V is a
continuous representation of G on V when V is considered as normed with any
norm (this will not depend on the norm, as the topology we obtain from a norm
on V does not depend on the norm chosen).

Exercise 8.3. Show that an abstract representation of G on a finite-dimensional
vector space V is continuous if and only if for every v ∈ V the map G→ V given
by g 7→ gv is continuous. Also, if and only if the associated group homomorphism
G→ GL(V ) is continuous.

All the basic definitions (subrepresentations, quotient representations, irre-
ducible representations, direct sums of finite families of representations, tensor
product of representations, dual representations and so on) can be made here.
Schur’s lemma holds - given irreducible E,F , we have HomG(E,F ) = 0 if E is
not isomorphic to F and dimHomG(E,F ) = 1 if E is isomorphic to F (explic-
itly, HomG(E,E) = C · IdE). But, of course, we don’t have semisimplicity in
this generality, as we already didn’t have it for infinite discrete groups, which
are in particular locally compact topological groups. However, we will see now
that if G is compact, semisimplicity holds as it did for finite groups.

Remark 8.24. Let X be a locally compact topological space and µ ∈ M(X).
Then it is a simple ”formal” exercise to see that, given a finite-dimensional
C-vector space V , and denoting by Cc(G;V ) the space of continuous functions
G→ V with compact support, there exists a unique linear map Cc(G;V )→ V ,
which we also denote by µ by slight abuse of notation, such that given f ∈ Cc(G)
and v ∈ V , and denoting by f · v ∈ Cc(G;V ) the function sending g to f(g) · v,
we have µ(f · v) = µ(f) · v. Moreover, given a linear map T : V1 → V2 of
finite-dimensional C-vector spaces, we will have µ(T ◦ f) = T (µ(f)) for all
f ∈ Cc(G;V1).

Claim 8.25. Assume that G is compact. Then any finite-dimensional G-
representation V is semisimple, i.e. given a G-subrepresentation W ⊂ V , there
exists a G-subrepresentation U ⊂ V such that V =W ⊕ U .

Proof. Let
∫

denote the Haar measure on G normalized by
∫
1 = 1. Let P0 :

V → V be a projection onto W . We define a new linear map P : V → V as
follows:

P (v) :=

∫ (
g 7→ gP0(g

−1v)
)
.

One immediately sees that if v ∈ W then P (v) = v and that the image of P
lies in W - in other words, that P is a projection onto W . One also checks
that P is a G-morphism (here one uses

∫
being a left Haar measure). Therefore

we will have a direct sum decomposition V = W ⊕ Ker(P ) where Ker(P ) is a
G-subrepresentation of V .
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8.2.3

So, if G is a compact group, the theory of finite-dimensional representations of
it is similar to that of a finite group. However, a difference is that one will have
infinitely many irreducible representations, up to isomorphism.

Claim 8.26. Let G be an abelian locally compact group. Then every irreducible
finite-dimensional representation of G is 1-dimensional.

Proof. Let V be an irreducible finite-dimensional G-representation. Let g ∈
G. Let λ an eigenvalue of the action of g on V , and let Vg,λ ⊂ V be the
corresponding eigenspace. An easy exercise shows that the action of any element
in G preserves Vg,λ (here one uses the commutativity of G, of course), i.e. Vg,λ
is a G-subrepresentation of V . Since V is irreducible, we must have Vg,λ = V .
In other words, we showed that any g ∈ G acts on V by a scalar. Therefore any
subspace of V is a subrepresentation. Since V is irreducible, we must have that
V is 1-dimensional.

Exercise 8.4. So, given an abelian locally compact group G we obtain, as before,
a bijection between the set of continuous characters G → C× and the set of
isomorphism classes of irreducible finite-dimensional G-representations.

Exercise 8.5. The continuous characters of G := R/Z are given by χn(x+Z) :=
e2πi(nx), for n ∈ Z.

8.2.4

Let G be a locally compact topological group. We say that a finite-dimensional
G-representation V is unitary, if it is equipped with an inner product ⟨−,−⟩
such that ⟨gv1, gv2⟩ = ⟨v1, v2⟩ for all v1, v2 ∈ V and g ∈ G (such an inner
product is said to be G-invariant). We say that V is unitarizable if it admits
a unitary structure.

Lemma 8.27. Assume that G is compact. Then any finite-dimensional G-
representation V is unitarizable.

Proof. Denote by
∫
the normalized Haar measure on G. One chooses any inner

product ⟨−,−⟩0 on V , and then defines a new inner product

⟨v1, v2⟩ :=
∫

(g 7→ ⟨gv1, gv2⟩).

Then one checks that ⟨−,−⟩ is a G-invariant inner product.

Exercise 8.6. Find a non-unitarizable finite-dimensional representation of a
locally compact topological group.

Given a finite-dimensional G-representation V , recall that we have the dual
representation V ∗. We also define the conjugate representation V as being V
with the same addition, the same G-action, but the multiplication by scalar
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is changed to be c ∗new v := c ∗old v. An inner product on V can be seen
as an isomorphism V → V ∗ (given by sending w to (v 7→ ⟨v, w⟩)), with the
extra property of positivity. If V is a unitary representation of G then the
corresponding isomorphism of vector spaces V → V ∗ is in fact an isomorphism
of G-representations. As a corollary, we see that for any finite-dimensional
representation V of a compact group G, the G-representations V ∗ and V are
isomorphic (not necessarily canonically).

In particular, a finite-dimensional irreducible G-representation E admits a
unique unitary structure, up to scalar (if it admits one). Indeed, we just ex-
plained that unitary structures inject into G-isomorphisms E → E∗. It is clear
that E and E∗ are irreducible G-representations. Hence by Schur’s lemma all
isomorphisms between them differ by a scalar.

We also have the following:

Lemma 8.28. Let V be a finite-dimensional unitary G-representation. Let
E,F ⊂ V be non-isomorphic irreducible sub-representations. Then E and F
are orthogonal.

Proof. Let us consider the G-morphism E → F ∗ given by sending v ∈ E to
the functional on F sending w ∈ F to ⟨w, v⟩. Notice that E and F ∗ are non-
isomorphic irreducible G-representations (because, since E is unitary, E ∼= E∗,
and so E ∼= F ∗ would imply E∗ ∼= F ∗ and so E ∼= F ). Therefore by Schur’s
lemma our G-morphism must be equal to zero. This precisely shows that E and
F are orthogonal.

8.2.5

Let G be a compact group, with normalized Haar measure
∫
. We have a theory

of characters as before. Namely, for a finite-dimensional representation V of G
we define a function chV ∈ Cc(G) by setting

chV (g) := Tr(g ↷ V ).

Then chV ∈ Cc(G)cl, where

Cc(G)
cl := {f ∈ Cc(G) | f(hgh−1) = f(g) ∀g, h ∈ G} ⊂ Cc(G).

One checks that chV1⊕V2
= chV1

+ chV2
. One checks that chV1⊗V2

= chV1
· chV2

.
Also, chV = chV (where we define f(g) := f(g)). By what we saw above, we
therefore also have chV ∗ = chV . Finally, one has the averaging operator

AvVG : V → V AvVG(v) :=

∫
(g 7→ gv),

which one checks to be a projection onto the subspace of invariants

V G := {v ∈ V | gv = v ∀g ∈ G} ⊂ V.
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Using this avergaing operator, one checks as before that dimV G =
∫
chV . Fi-

nally, we have the inner product on Cc(G) given by

⟨f1, f2⟩ :=
∫
f1 · f2

and one has the basic equality

dimHomG(V1, V2) = dimHom(V1, V2)
G =

∫
chHom(V1,V2) =

=

∫
chV ∗

1 ⊗V2
=

∫
chV1

chV2
= ⟨chV2

, chV1
⟩.

One deduces the orthogonality relation - for irreducible finite-dimensional G-
representations E and F , one has ⟨chE , chF ⟩ = 1 if E and F are isomorphic and
⟨chE , chF ⟩ = 0 otherwise.

One has the theory of isotypic components as before, and given a finite-
dimensional irreducible G-representation E, the projection PE : V → V onto
the E-isotypic component is given by

v 7→ dimE ·
∫
(g 7→ chE(g) · gv).

8.2.6

We now want to find irreducible representations of the group G := SU(2) of
unitary (2× 2)-matrices with determinant 1. We have a natural representation
of G on C2. Let Pn, for n ∈ Z≥0, denote the vector space of functions on C2

spanned by

(
x
y

)
7→ xiyj with i, j ∈ Z≥0, i + j = n. So dimPn = n + 1.

We have a natural action of G on Pn (given by (gf)(v) := f(g−1v)). It will
turn out that (Pn)n∈Z≥0

are exactly all the irreducible G-representations, up to
isomorphism.

We will now prove it using a formula which we will not currently deduce.
Denote by T ⊂ G the subgroup of diagonal matrices. By linear algebra (diag-
nolizability of unitary operators), any element of G is conjugate to an element
in T . Therefore a function f ∈ Cc(G)cl is determined by its values on T . Let
us denote by α the following character of T :

α(

(
t 0
0 t−1

)
) = t

(where t ∈ C×,1). Then (αn)n∈Z are precisely all the characters of T . The
character of any finite-dimensional T -representation can be written uniquely as∑
n∈Z cn · αn, where cn ∈ Z≥0 and all the cn’s except finitely many are equal

to 0 (here, of course cn is the dimension of the αn-isotypic component). In
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particular, given a finite-dimensional G-representation V , chV is determined by
the knowledge of the family (cn)n∈Z for which (chV )|T = chresGT V =

∑
n∈Z cn·αn.

Let us find this decomposition for chPn . It is clear that T acts on a basis
element xiyj of Pn by the character αj−i. Therefore we have

chPn = α−n + α−n+2 + . . .+ αn.

Now, as f ∈ Cc(G)cl is determined by f |T , one should be able to calculate∫
G
f just from the data of f |T . Since we have two compact groups now, G and

T , let us denote by
∫
G

and
∫
T
the respective noramlized Haar measures.

Theorem 8.29 (Weyl’s integration formula). Let f ∈ Cc(G)cl. We have∫
G

f =
1

2

∫
T

f |T · |α− α−1|2.

Proof. We don’t prove the theorem now.

We can now see that Pn are irreducible (of course, this can also be shown in
various other ways). Namely, we calculate:

⟨chPn
, chPn

⟩ =
∫
G

|chPn
|2 =

1

2

∫
T

|(α−n + . . .+ αn)(α− α−1)|2 =

=
1

2

∫
T

|αn+1 − α−n−1|2 = 1.

We would like to see now that any irreducible G-representation is isomorphic
to some Pn. Let V be a finite-dimensional G-representation. Write (chV )|T =∑
n∈Z cn · αn. We first claim that cn = c−n for all n ∈ Z. Indeed, consider

the element w :=

(
0 −1
1 0

)
∈ G. This element normalizes T , and sends α to

α−1. Therefore the action of w on V sends the (T, αn)-isotypic component to
the (T, α−n)-isotypic component. In particular, those have the same dimension.
Assume now that V is irreducible. Then ⟨chV , chV ⟩ = 1. Let us see what this
condition means:

1 = ⟨chV , chV ⟩ =
∫
G

|chV |2 =
1

2

∫
T

|(
∑
n∈Z

cn · αn)(α− α−1)|2 =

=
1

2

∫
T

|
∑
n∈Z

(cn−1 − cn+1) · αn|2 =
1

2

∑
n∈Z
|cn−1 − cn+1|2.

It is easy to see from this that the sequence (cn)n∈Z must be identical to that
coming from some Pn.
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8.2.7

Let us talk also about G := SO(3). Set G̃ := SU(2). We think of G̃ embedded
in GL2(C) in the usual way. Let us consider the R-sub-vector space g̃ ⊂M2(C)
given by

g̃ := {X ∈M2(C) | X +X
t
= 0,Tr(X) = 0} ⊂M2(C).

We have dimR(g̃) = 3. We leave as an exercise to check that given g ∈ G̃
and X ∈ g̃, one has gXg−1 ∈ g̃. Therefore, we can think of g̃ as a finite-
dimensional G̃-representation over R in this way. We leave as an exercise to
check that the kernel of the representation is {±1} ⊂ G̃. As with complex
representations, we can average an inner product on the real representation g̃, to
obtain a G̃-invariant inner product. Then the representation map G̃→ GLR(g̃)

will factor via G̃ → O(g̃), the subgroup of orthogonal transformations. Since

G̃ is connected, this map in fact is a map G̃ → SO(g̃). Thus, we obtain an
injective continuous group homomorphism

G̃/{±1} ↪→ SO(g̃).

We leave it as an exercise to check that both groups have the same dimen-
sion. From manifold theory, it can be shown that this must be then an open
embedding. Since it is also closed as the source is compact, and the target
is connected, this must be a homeomorphism. We obtain an isomorphism of
compact topological groups

SU(2)/{±1} ∼= SO(3).

In particular, we can think of finite-dimensional representations of SO(3) as
finite-dimensional representations of SU(2) on which −1 acts trivially. Looking
at the irreducible finite-dimensional representations Pn above, we see that −1
acts trivially on Pn if and only if n ∈ 2Z. We can conclude that SO(3) has
exactly one (up to isomorphism) irreducible representation of dimension n for
every n ∈ 1 + 2Z≥0, and those will be all the irreducible finite-dimensional
representations (up to isomorphism) of SO(3).

Recall the subgroup T̃ ⊂ G̃ of diagonal matrices, which is isomorphic to
R/Z. We leave as an exercise to see, from linear algebra, that T̃ will pre-
serve some plane E ⊂ g̃, and moreover will map isomorphically onto SO(E).
In other words, we can choose coordinates so that under the isomorphism
SU(2)/{±1} ∼= SO(3), we will have T̃ /{±1} ∼= SO(2) where we consider SO(2)
as a subgroup of SO(3) by embedding into the first two coordinates in the
standard way. This allows us see that the (1 + 2n)-dimensional irreducible rep-
resentation of SO(3), when decomposed as a SO(2)-representation, will have
characters α−n, α−n+1, . . . , 1, . . . , αn−1, αn, where α : SO(2)→ C× is given by

α(

(
cos θ − sin θ
sin θ cos θ

)
) = cos θ + i sin θ.
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8.3 The Peter-Weyl theorem

Throughout this subsection, let us fix a compact topological group G. We also
denote by

∫
the normalized Haar measure on G.

8.3.1

An exercise: Given a compact topological space X, and a continuous G-action
on X (i.e. G × X → X is continuous), the induced action of G on C(X) is
continuous, where C(X) is considered with the supremum norm. The action is
(gf)(x) := f(g−1x).

8.3.2

Let V be a finite-dimensional G-representation, with action map π : G →
GL(V ). We define the matrix coefficients map mV : EndC(V ) → C(G) by
sending T to the function on G sending g to Tr(T ◦ π(g)). For example, one
has mV (IdV ) = chV . In terms of the isomorphism V ⊗ V ∗ ∼= EndC(V ), the
matrix coefficients map is the map V ⊗ V ∗ → C(G) given by sending v ⊗ α to
the function on G sending g to α(gv).

8.3.3

Let V be a finite-dimensional G-representation, with action G→ GL(V ). Recall
that we have an action of G×G on EndC(V ), given by

(g1, g2)T := π(g2) ◦ T ◦ π(g1)−1.

Also, recall that we have an action of G×G on Cc(G), given by

((g1, g2)f)(g) := f(g−1
1 gg2).

One checks that the matrix coefficients mapmV : EndC(V )→ C(G) is a (G×G)-
morphism.

8.3.4

Lemma 8.30. Let f ∈ C(G). The following conditions are equivalent:

1. The function f is in the image of some matrix coefficients map.

2. The function f lies in a finite-dimensional (G × G)-subrepresentation of
C(G).

3. The function f lies in a finite-dimensional G-subrepresentation of C(G)
with respect to the left G-action.

4. The function f lies in a finite-dimensional G-subrepresentation of C(G)
with respect to the right G-action.
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Moreover, the subset C(G)fin ⊂ C(G) of functions satisfying these condi-
tions is a subspace, closed under pointwise addition, pointwise multiplication
and pointwise complex conjugation.

Proof. That (1) implies (2) follows immediately frommV being (G×G)-morphism,
so its image being a finite-dimensional (G × G)-subrepresentation of C(G). It
is also clear that (2) implies (3) and (4). Let us see that (4) implies (1) (that
(3) implies (1) is analogous). So, let f ∈ C(G) lie in a finite-dimensional G-
subrepresentation V ⊂ C(G) with respect to the left G-action. Consider the
functional ℓ ∈ V ∗ given by ℓ(f) := f(1). Consider the matrix coefficients map
V ⊗ V ∗ → C(G). One immediately sees that f is the image of f ⊗ ℓ.

Definition 8.31. The subspace C(G)fin ⊂ C(G) of functions satisfying the
equivalent conditions of the lemma is called the subspace of finite functions).

Let (Ei)i∈I be an exhaustive family of irreducible finite-dimensional G-
representations. We consider the map

m := ⊕i∈ImEi :
⊕
i∈I

EndC(Ei)→ C(G).

Lemma 8.32. The map m is injective, and its image is C(G)fin.

Proof. The image is C(G)fin since it is easy to see that a matrix coefficient of
a representation can be written as a linear combination of matrix coefficients of
irreducible representations. Once we know that each mEi

is injective separately,
the map m will be injective by linear independence of isotypic components (we
leave the reader to see this). To see that mE is injective, we can proceed as
follows. One sees that EndC(E) is an irreducible (G × G)-representation (for
example by identifying EndC(E) ∼= E ⊗ E∗ and again performing the exercise
that if E1 (resp. E2) is an irreducible finite-dimensional representation of G1

(resp. G2) then E1 ⊗ E2 is an irreducible finite-dimensional representation of
G1×G2). Therefore by Schur’s lemma either mEi

is equal to zero or is injective.
It is not equal to zero since it sends the identity endomorphism to the character,
whose inner product with itself is 1.

Exercise 8.7. Let E be a finite-dimensional G-representation. Show that the
composition

EndC(E)
mE−−→ C(G)→ EndC(E),

where the second map is given by sending f ∈ C(G) to the endomorphism of E
sending v to

∫
(g 7→ f(g) · gv), is a scalar multiple of the identity. Also, find

that scalar.
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8.3.5

Theorem 8.33 (Peter-Weyl). The subspace C(G)fin is dense in C(G).

Let us recall the following theorem:

Theorem 8.34 (Stone-Weierstrass). Let X be a compact topological space. Let
V ⊂ C(X) be a subspace closed under pointwise sum, product and complex
conjugation, and containing 1. Suppose that V separates points of X, meaning
that given x1, x2 ∈ X with x1 ̸= x2, there exists f ∈ V such that f(x1) ̸= f(x2).
Then V is dense in C(X) (where C(X) is equipped with the topology induced by
the supremum norm).

Therefore, to deduce the Peter-Weyl theorem, it is enough to check that
C(G)fin separates points of G. It is enough to check that for every g ∈ G such
that g ̸= 1, there exists a finite-dimensional G-representation V such that g
does not act on V by identity. Indeed, then given g1, g2 ∈ G with g1 ̸= g2, we
consider g1g

−1
2 and a finite-dimensional G-representation V on which it does

not act by identity. Then g1 and g2 do not act identically on V and thus, since
one checks that the symmetric bilinear form (T1, T2) 7→ Tr(T1 ◦T2) on EndC(V )
is non-degenerate, there exists T ∈ EndC(V ) such that Tr(g1 ◦ T ) ̸= Tr(g2 ◦ T ),
i.e. mV (T )(g1) ̸= mV (T )(g2).

8.3.6

Recall that a metric space (K, d) is called complete if for a sequence (xn)n∈Z≥1

in K, if it is a Cauchy sequence (i.e. for every ϵ there exists n0 such that
d(xn, xm) < ϵ for n,m > n0) then it is convergent (i.e. there exists x ∈ K such
that for every ϵ there exists n0 such that d(xn, x) < ϵ for all n > n0).

In particular, we can talk about complex normed vector spaces, since the
norm defines a metric. It is a basic fact that finite-dimensional normed space is
always complete. Given a normed vector space V , we can form its completion,
which is a complete normed vector space V ∧ with an isometric embedding V →
V ∧ whose image is dense in V ∧. This in fact characterizes V ∧ completely (one
should formulate this in a way similar to the way we formulated the uniqueness
of tensor product). One can construct V ∧ as a quotient space of the space of
Cauchy sequences in V , modulo the subspace of sequences converging to 0. We
will not expand the details here.

The completion V ∨has the following basic property (which is a characteri-
zation of completion when appropriately stated). Let W be a complete normed
vector space. Let T : V → W be a continuous linear map. Then there exists
a unique continuous linear map V ∨ → W extending T (which one, by abuse of
notation, will also usually denote by T ).

We want also to recall that given normed vector spaces V and W , and a
linear map T : V →W , T is continuous if and only if the subset {||T (v)|| : v ∈
V, ||v|| = 1} ⊂ R≥0 is bounded. One also obtains a norm on the space B(V,W )
of continuous linear maps from V to W , given by ||T || := supv∈V,||v||=1||T (v)||.
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8.3.7

In particular, a vector space V equipped with an inner product ⟨−,−⟩ is normed
via ||v|| :=

√
⟨v, v⟩. This in particular gives V a topology. The inner product

⟨−,−⟩ : V × V → C is continuous. One sees that the inner product extends
uniquely to a continuous inner product on V ∨, the norm determined by which
coincides with the norm already considered on V ∨.

Definition 8.35. A Hilbert space is a complete inner product space.

A basic construction is the following. Let X be a compact topological space
and µ a nowhere-vanishing Radon measure on X. We define an inner product on
C(X) by ⟨f1, f2⟩ := µ(x 7→ f1(x)f2(x)). The completion of C(X) with respect
to this inner product is denoted L2(X,µ) (or simply L2(X) if µ is understood
from the context). It is a Hilbert space.

8.3.8

Definition 8.36. A continuous representation of a locally compact topological
group G on a Hilbert space H is unitary if ⟨gv1, gv2⟩ = ⟨v1, v2⟩ for all v1, v2 ∈
H.

Remark 8.37. It can be shown that, in the notation of the definition, given an
abstract representation of G on H for which the map G→ H given by g 7→ gv
is continuous for every v ∈ H, and which satisfies the unitarity property, is a
continuous representation.

8.3.9

We will now concentrate on L2(G) := L2(G,
∫
).

Lemma 8.38. Let f ∈ C(G). We have ||f ||2 ≤ ||f ||sup.

Proof. We have

||f ||22 =

∫
(g 7→ |f(g)|2) ≤

∫
(g 7→ ||f ||2sup) = ||f ||2sup.

Let g ∈ G. Then the left action of g on C(G) is unitary with respect to the
inner product, hence extends to an action on L2(G). In this way we obtain a
unitary action of G on L2(G). From the above lemma we also easily deduce
that this action is continuous. In other words, L2(G) becomes a unitary G-
representation.

Let us denote by L2(G)fin ⊂ L2(G) the subspace consisting of elements f
which sit in a finite-dimensional G-subrepresentation. Let us see now that in
order too prove the Peter-Weyl theorem, it is enough to see that L2(G)fin is
dense in L2(G). Indeed, suppose that this is so. Let g ∈ G and assume g ̸= 1.
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Then it is easy to see that g does not act as identity on C(G). Therefore, g does
not act as identity on L2(G). Therefore, by our current assumption, g does not
act as identity on L2(G)fin. So there exists f ∈ L2(G)fin such that gf ̸= f .
Taking a finite-dimensional G-subrepresentation V of L2(G) which contains f ,
we get that g does not act as identity on V .

8.3.10

Definition 8.39. Let H be a Hilbert space. An operator T ∈ B(H) is called
compact if it can be approximated by operators of finite rank. Here, an opera-
tor is said to have finite rank if its image is finite-dimensional, and the approx-
imation property means that for every ϵ > 0 there exists an operator of finite
rank S ∈ B(H) such that ||T − S|| < ϵ.

Definition 8.40. Let H be a Hilbert space. An operator T ∈ B(H) is called
self-adjoint if ⟨T (v1), v2⟩ = ⟨v1, T (v2)⟩ for all v1, v2 ∈ H.

Theorem 8.41 (Part of spectral theory of compact self adjoint operators). Let
H be a Hilbert space and T ∈ B(H) a self-adjoint compact operator. Then the
sum of all eigenspaces of T is dense in H (from this, one sees that the sum
of all eigenspaces of T with non-zero eigenvalue is dense in the image of T ).
Moreover, any eigenspace of T with non-zero eigenvalue is finite-dimensional.

8.3.11

Let k ∈ C(G×G). Define an operator

Tk : C(G)→ C(G)

by

Tk(f)(g) :=

∫
(x 7→ k(g, x)f(x)).

Lemma 8.42. We have

||Tk(f)||2 ≤ ||k||sup · ||f ||2.

Proof. Recall that we have |
∫
f |2 ≤

∫
|f |2. Indeed, using Cauchy-Schwartz

inequality:

|
∫
f |2 = |⟨f, 1⟩|2 ≤ ||f ||22 · ||1||22 = ||f ||22 =

∫
|f |2.

Now, we have:

||Tk(f)||22 =

∫
x

|Tk(f)(x)|2 =

∫
x

|
∫
y

k(x, y)f(y)|2 ≤
∫
x

∫
y

|k(x, y)||f(y)|2 ≤ ||k||2sup·||f ||22.
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From the lemma, we deduce that

C(G)
Tk−→ C(G) ↪→ L2(G)

is continuous with respect to the inner product norms, and therefore it extends
uniquely to a continuous operator

L2(G)
Tk−→ L2(G),

and ||Tk|| ≤ ||k||sup.

Lemma 8.43. The operator

L2(G)
Tk−→ L2(G)

is compact.

Proof. Consider in C(G × G) the subspace spanned by functions of the form
(g1, g2) 7→ f1(g1)f2(g2) where f1, f2 ∈ C(G). By the Stone-Weierstrass theorem,
this subspace is dense in C(G×G). Let therefore kn be a sequence of functions
in the subspace converging to k. We have ||Tk−Tkn || = ||Tk−kn || ≤ ||k−kn||sup.
Furthermore, notice that each Tkn has an at most 1-dimensional image, so is of
finite rank.

Lemma 8.44. The operator Tk is adjoint to the operator Tk∗ , where k
∗
(x, y) :=

k(y, x). In particular, if k = k
∗
then Tk is self-adjoint.

Proof. Left as an exercise for now.

Let now f ∈ C(G). Define kf (x, y) := f(xy−1).

Definition 8.45. Let U be an open neighbourhood of 1 in G. A U-unit
approximate is a function h ∈ C(G) whose support lies in U , whose values lie
in R≥0, and such that

∫
h = 1.

Lemma 8.46. Let f ∈ C(G). For every ϵ > 0 there exists an open neighbour-
hood U of 1 in G such that for every U -unit approximate h ∈ C(G), we have
||Tkhf − f ||sup ≤ ϵ.

Proof. From basic topology, there exists an open neighbourhood U of 1 in G
such that |f(u−1g) − f(g)| ≤ ϵ for all g ∈ G and u ∈ U . Let h be a U -unit
approximate. Then for any g ∈ G we have

|(Tkh(f)−f)(g)| = |
∫
(x 7→ h(gx−1)f(x))−f(g)| = |

∫
(x 7→ h(gx−1)(f(x)−f(g)))| ≤

≤
∫
(x 7→ h(gx−1)|f(x)− f(g)|) ≤ ϵ.
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Lemma 8.47. Let U be an open neighbourhood of 1 in G. Then there exists a
U -unit approximate h such that h ∈ C(G)cl and h = h∗.

Proof. Denote U1 := U ∩ U−1. Since G is compact, from basic topology we
can find an open neighbourhood V of 1 in G such that for x ∈ V and g ∈ G
we have gxg−1 ∈ U1. Let h0 ∈ C(G) be a V -unit approximate. Denote by
h1 ∈ C(G) the function h1(x) :=

∫
(g 7→ h0(g

−1xg)). Then h1 ∈ C(G)cl and h1
is a U1-unit approximate. Now set h ∈ C(G) to be h(x) := 1

2 (h1(x) + h1(x
−1).

Then h ∈ C(G)cl, h = h∗ and h is a U -unit approximate.

8.3.12

We can now finish the proof of the Peter-Weyl theorem. We want to show that
L2(G)fin is dense in L2(G). Since C(G) is dense in L2(G), it is enough to take
f ∈ C(G) and show that it can be approximated by elements of L2(G)fin. Let
ϵ > 0. We saw above that f can be approximated to any degree by elements Tkhf
in the supremum norm, and therefore in the L2-norm, for U -unit approximates
h. By above, we can choose to take h ∈ C(G)cl and h = h∗. Then by the above
Tkh is a compact self-adjoint operator. By the spectral theorem, Tkhf can be
approximated to any degree by finite sums of eigenvectors of Tkh with non-zero
eigenvalues. These eigenvectors sit in the finite-dimensional eigenspaces. Notice
now that since h ∈ C(G)cl, the eigenspaces of Tkh are G-subrepresentations of
L2(G), and therefore the eigenspaces with non-zero eigenvalues lie in L2(G)fin.

8.3.13

Let us give an application. Let α ∈ R be an irrational number. Denote by
[−] : R → R/Z the projection. We claim that {[nα]}n∈Z is equi-distributed in
R/Z. This means that for any interval [c1, c2] ⊂ [0, 1], we have:

lim
N→∞

1

N + 1
|{0 ≤ n ≤ N : [nα] ∈ [c1, c2]}| = c2 − c1.

It is not hard to see that this is equivalent to the following: For any f ∈ C(R/Z),
we have

lim
N→∞

∑
0≤n≤N

f([nα]) =

∫
f

where
∫

is the normalized Haar measure on R/Z. It is immediate to see that
it is enough to prove this for f lying in a subset of C(G), whose span is dense
in C(G) (with respect to the supremum norm topology). By the Peter-Weyl
theorem, {χm}m∈Z is such a subset (of course, in this case it is easy to see the
separation of points directly, but this is just an illustration). For χ0 the claim
is clear. Let m ̸= 0. We have

∫
χm = ⟨χm, χ0⟩ = 0. Notice that χm([α]) ̸= 1,

because α is not rational. Denote β := χm([α]). We have:

1

N + 1

∑
0≤n≤N

βn =
1

N + 1

∑
0≤n≤N

e2πi(nα) =
1

N + 1
· β

N+1 − 1

β − 1
→ 0.
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8.3.14

We now also want to discuss the L2-formulation of the Peter-Weyl theorem.

Let V be a finite-dimensional inner product space. One has an inner product
on EndC(V ), known as the Hilbert-Schmidt inner product, given by ⟨T, S⟩ :=
Tr(T ◦S∗). Here S∗ ∈ EndC(V ) is the adjoint to S, characterized by ⟨S∗(v), w⟩ =
⟨v, S(w)⟩ for all v, w ∈ V .

Let V be a finite-dimensional unitary G-representation. One checks that the
action of G × G on EndC(V ) is unitary (where the latter is given the Hilbert-
Schmidt inner product). Also, one checks that the action of G×G on C(G) is
unitary.

Exercise 8.8. Let E be an irreducible unitary G-representation. Show that
√
dimE ·mE : EndC(E)→ C(G)

is isometric.

Let (Hi)i∈I be a collection of Hilbert spaces. We can construct a Hilbert
space ⊕∨

i∈IHi by first defining an inner product on ⊕i∈IHi by

⟨
∑
i

vi,
∑
i

wi⟩ =
∑
i

⟨vi, wi⟩,

and then taking the completion of the resulting inner product space.

Exercise 8.9. Interpret the Peter-Weyl theorem by saying that the maps from
Exercise 8.8 induce an isomorphism

⊕∧
i∈IEndC(E) ∼= L2(G)

(where again (Ei)i∈I is an exhaustive family of irreducible finite-dimensional
G-representations). This is an isomorphism of unitary G-representations (i.e.
both an isomorphism of Hilbert spaces and a G-morphism).

8.3.15

Recall that we denote by L2(G)fin ⊂ L2(G) the subspace of vectors which sit
in a finite-dimensional G-subrepresentation, with respect to the left G-action.
Clearly C(G)fin ⊂ L2(G)fin. We have the following important ”automatic
regularity”-type statement:

Proposition 8.48. We have C(G)fin = L2(G)fin.

Proof. We want to show that a G-finite f ∈ L2(G) is automatically continuous.
We can write f as a sum of elements which sit in irreducible finite-dimensionalG-
subrepresentations, and therefore without loss of generality we can assume that
f itself sits in an irreducible finite-dimensional G-subrepresentation E. By the
Peter-Weyl theorem, we can approximate f to any degree (in the L2-norm) by
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elements of C(G)fin. An element of C(G)fin we also write as a sum of elements
sitting in irreducible finite-dimensional subrepresentations. Recall that we saw
that elements sitting in non-isomorphic irreducible subrepresentations must be
orthogonal. This shows that since our f can be approximated by elements
of C(G)fin, it can in fact be approximated by elements of mE(EndC(E)) ⊂
C(G)fin. Since mE(EndC(E)) is a finite-dimensional subspace of L2(G), it is
complete and hence closed in L2(G). Therefore our f must lie in mE(EndC(E)),
and in particular is continuous.

8.3.16

Let H ⊂ G be a closed subgroup. We consider Y := G/H. It is a compact
topological space, equipped with a continuous G-action G× Y → Y . In partic-
ular, we obtain a G-representation C(Y ) (with the supremum norm). We have
the subspace C(Y )fin consisting of elements which sit in a finite-dimensional
G-subrepresentation.

Notice that we have an inclusion C(G/H) ↪→ C(G) by pulling back, and in
fact this identifies C(G/H) with a the closed subspace C(G)H ⊂ C(G), where
here H-invariants are with respect to the right H-action. This is also isometric
with respect to the supremum norms. Using that, we get:

Claim 8.49. C(G/H)fin is dense in C(G/H) (with respect to the supremum
norm) and one has C(G/H)fin ∼= ⊕i∈IEi ⊗ (E∗

i )
H .

Proof. We have C(G/H)fin ∼= (C(G)fin)H . We leave to the reader for now
to check the density claim - one uses the density for C(G) (the Peter-Weyl
theorem) and averaging on the right with repsect to H. Recall the isomorphism
of (G×G)-representations

C(G)fin ∼= ⊕i∈IEi ⊗ E∗
i .

We obtain
C(G/H)fin ∼= (C(G)fin)H ∼= ⊕i∈IEi ⊗ (E∗

i )
H .

One has the analog of Haar’s theorem:

Theorem 8.50 (Haar’s theorem). There exists a G-invariant nowhere-vanishing
Radon measure

∫
on Y , which can be normalized by requiring

∫
1 = 1. Any G-

invariant signed Radon measure on Y differs from that one by a scalar.

We then set L2(Y ) := L2(Y,
∫
) and L2(Y ) is then naturally a unitary G-

representation. We can again set L2(Y )fin ⊂ L2(Y ) to consist of the G-finite
vectors, and as before we see that C(Y )fin = L2(Y )fin. We obtain

L2(G/H) = ⊕∧
i∈IEi ⊗ (E∗

i )
H

for some suitable inner products on Ei ⊗ (E∗
i )
H .
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We tell this because we want to have the following illustration. We take
G := SO(3) and H = SO(2) ⊂ SO(3) (embedded in the standard way via
the first two coordinates). If we let G act on the two-dimensional sphere S in
the standard way, the action is transitive and H is the stabilizer of a certain
point. Therefore we can identify G/H ∼= S. One obtains a measure on S -
the unique Radon measure of total mass 1 which is preserved under rotations.
One obtains the corresponding Hilbert space L2(S), equipped with a unitary
representation of G. It is very natural now to find the generalization of what we
had for S1 - the eigenbasis of characters (here ”basis” in the Hilbert sense). As
we know from the experience with finite groups, we can’t expect an eigenbasis,
but a decomposition into direct sum (in the Hilbert sense) of irreducibles. And
indeed, as we explained, we have

L2(S) ∼= ⊕∧
n∈1+2Z≥0

En ⊗ (E∗
n)
H ,

where En is the unique (up to isomorphism) unitary irreducible representation
of G of dimension n. Above we saw how the En’s deompose under the H-action.
In particular, we see that dim(E∗

n)
H = 1 for all n. To summarize, we obtain the

following:

Proposition 8.51 (Part of the theory of spherical harmonics). For every n ∈
1 + 2Z≥0, there exists a unique subrepresentation Fn of L2(S) of dimension n.
We obtain

L2(S) = ⊕∧
n∈1+2Z≥0

Fn.

We have ⊕n∈1+2Z≥0
Fn ⊂ C(S), and this is a dense inclusion with respect to the

supremum norm.

8.4 The Lie algebra approach

Throughout this subsection, let G be a compact topological group, assumed to
be a closed subgroup of some GLn(R) (such a group is called a matrix group).
This in fact restricts us to so-called Lie groups (for example, excluding p-adic
groups).

8.4.1

Recall the exponential mapMn(R)→ GLn(R) given byX 7→ eX :=
∑
m∈Z≥0

1
n!X

n.

Exercise 8.10. Let limn→∞Xn = X. Show that

eX = lim
n→∞

(
I +

1

n
Xn

)n
Lemma 8.52. Let X1, X2 ∈Mn(R). Then

eX1+X2 = lim
n→∞

(
e

1
nX1e

1
nX2

)n
.
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Proof. We have

e
1
nX1e

1
nX2 =

(
I +

1

n
X1 +O(

1

n2
)

)
·
(
I +

1

n
X2 +O(

1

n2
)

)
=

= I +
1

n
(X1 +X2 +O(

1

n
))

and thus(
e

1
nX1e

1
nX2

)n
=

(
I +

1

n
(X1 +X2 +O(

1

n
))

)n
−−−−→
n→∞

eX1+X2 .

We define the Lie algebra ofG as the subset ofMn(R) consisting of matrices
X for which etX ∈ G for all t ∈ R. We denote it by Lie(G).

Claim 8.53. Lie(G) is a R-vector subspace ofMn(R). Moreover, given X1, X2 ∈
Lie(G), we have [X1, X2] := X1X2 − X2X1 ∈ Lie(G). Also, given g ∈ G and
X ∈ Lie(G) we have gXg−1 ∈ Lie(G).

Proof. It is clear that Lie(G) is closed under scalar multiplication and that
0 ∈ Lie(G). Let X1, X2 ∈ Lie(G). Since G is closed in GLn(R), it is clear from
the above formula that et(X1+X2) ∈ Lie(G) for any t ∈ R, so X1 +X2 ∈ Lie(G).
Given g ∈ G and X ∈ Lie(G) we have et·gXg−1 = getXg−1 ∈ G. It is now left to
see that if X1, X2 ∈ Lie(G) then [X1, X2] ∈ Lie(G). It is standard to calculate
that

lim
t→0

etX1 − 1

t
= X1.

Then

lim
t→0

etX1X2 −X2

t
= X1X2.

Therefore

lim
t→0

etX1X2e
−tX1 −X2

t
= lim
t→0

etX1X2e
−tX1 − etX1X2

t
+ lim
t→0

etX1X2 −X2

t
=

= −X2X1 +X1X2 = [X1, X2].

Definition 8.54. A Lie algebra (over R) is an R-vector space g equipped with
a bilinear map [−,−] : g× g→ g satisfying:

1. [X2, X1] = −[X1, X2].

2. [X1, [X2, X3]] = [[X1, X2], X3] + [X2, [X1, X3]].

Exercise 8.11. Let A be a R-algebra. Show that A equipped with [a1, a2] :=
a1a2 − a2a1 is a Lie algebra.
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We have the notion of Lie subalgebra which we leave to the reader to define.
We see that Lie(G) is a Lie algebra, a Lie subalgebra of Mn(R) equipped with
the bracket [X1, X2] := X1X2 −X2X1.

Remark 8.55. To have a description of the Lie algebra Lie(G) that is manifestly
independent of the choice of embedding into GLn(R), one has to talk about
smooth manifolds and Lie groups. Then given a Lie group G, one can define an
intrinsic R-vector space, the tangent space to G at 1 ∈ G, and on it a Lie algebra
structure. Then our definition acquires its “correct” role, as a calculation.

8.4.2

Let us calculate the Lie algebra of G := SU(n). We will consider G as a
closed subgroup in Mn(C) in the natural way, which in its turn we will consider
as a closed subgroup in M2n(R). Then Lie(G) is defined as a subspace of

M2n(R). However, since X ∈ Lie(G) can be written as limt→0
etX−I
t , we see

that Lie(G) ⊂ Mn(C). So we need to find matrices X ∈ Mn(C) for which
etX ∈ SU(n) for all t ∈ R.

Exercise 8.12. Show that

Lie(SU(n)) = {X ∈Mn(C) |X +X
t
= 0, Tr(X) = 0}.

8.4.3

Let V be a finite-dimensional G-representation. It can be shown that for any
X ∈ Lie(G) and v ∈ V , the limit X ·v := limt→0

1
t (e

tXv−v) exists (this is some
result of “automatic smoothness” type, that a continuous finite-dimensional
representation is automatically smooth). In this way we obtain a map Lie(G)×
V → V .

Lemma 8.56. In the above notation, the map Lie(G)× V → V is R-linear in
the first variable, C-linear in the second variable, and we have [X1, X2] · v =
X1 · (X2 · v)−X2 · (X1 · v) for all X1, X2 ∈ Lie(G) and v ∈ V .

Proof. It is clear that the map is complex linear in the second variable. Re-
specting multiplication by real scalar in the first variable is also easy. Let us
show additivity in the first variable: complete

Definition 8.57. Let g be a R-Lie algebra. Let V be a C-vector space. A
representation of g on V (or the structure of a g-module on V ) is a map
g × V → V , R-linear in the first variable, C-linear in the second variable, and
such that [X1, X2] · v = X1 · (X2 · v)−X2 · (X1 · v) for all X1, X2 ∈ g and v ∈ V .
We leave to the reader to define morphisms etc.

Lemma 8.58. Let V1, V2 be finite-dimensional G-representations, and let T :
V1 → V2 be a G-morphism. Then T is also a Lie(G)-morphism.

Proof. Left as an exercise.
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8.4.4

The following are parts of what is known as Lie’s theorems:

Theorem 8.59. Suppose that G is connected. Let V andW be finite-dimensional
G-representations. Let T : V →W be a linear map. If T is a Lie(G)-morphism
then T is a G-morphism.

Theorem 8.60. Suppose that G is connected and simply connected. Let V be a
finite-dimensional module over Lie(G). Then there exists a continuous G-action
on V for which the induced Lie(G)-action is the given one.

Corollary 8.61. We see that if G is connected and simply connected, finite-
dimensional G-representations are the same as finite-dimensional Lie(G)-modules.
In this way, representation theory of compact matrix groups is algebraic!

Remark 8.62. Let g be a R-Lie algebra. We can consider the complexification
gC := C⊗R g, which is a C-Lie algebra naturally. Then g-modules are the same
as gC-modules.

Let us now consider G := SU(n). We claim that G is connected and simply
connected. Recall that

Lie(G) = {X ∈Mn(C) | X +X
t
= 0,Tr(X) = 0} ⊂Mn(C).

We have the corresponding emebedding of C-Lie algebras. Lie(G)C ↪→ Mn(C).
Clearly the image lies in the Lie-subalgebra

sln := {X ∈Mn(C) | Tr(X) = 0}.

By dimension consideration, we have an equality:

Lie(G)C = sln.

Corollary 8.63. The study of finite-dimensional SU(n)-representations is the
same as the study of finite-dimensional modules over the complex Lie algebra
sln!

8.5 Representation theory of sln

We are interested in understanding the finite-dimensional irreducible sln-modules.
Let us abbreviate g := sln and we denote by t the Lie subalgebra of g consisting
of the diagonal matrices.

8.5.1

We have the following result:

Proposition 8.64. Let V be a finite-dimensional sln-module. Then V is semisim-
ple - given a submodule W ⊂ V , there exists a submodule U ⊂ V such that
V =W ⊕ U .
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Proof. This follows from Lie’s theorems, since finite-dimensional sln-modules
are precisely the same as finite-dimensional SU(n)-representations.

Remark 8.65. One can also prove the proposition in a completely algebraic
way, without referring to the connection to SU(n).

8.5.2

In a similar spirit, we have the following:

Proposition 8.66. Let V be a finite-dimensional sln-module. Then V is t-
diagnolizable, i.e. V is the direct sum of subspaces Vλ, where λ ∈ t∗ and

Vλ := {v ∈ V | Hv = λ(H)v ∀H ∈ t}.

Proof. We can treat V as a SU(n)-representation. As before, we denote by
T ⊂ SU(n) the subgroup consisting of diagonal matrices. Then V is the direct
sum of T -isotypic components VT,χ. By definitions, given v ∈ VT,χ and H :=
diag(it1, . . . , itn) ∈ t, we have

H·v = lim
t→0

1

t

(
diag(eitt1 , . . . , eittn)v − v

)
=

(
lim
t→0

χ(diag(eitt1 , . . . , eittn))− 1

t

)
·v.

We define dχ ∈ t∗ by (dχ)(diag(t1, . . . , tn)) := limt→0
χ(diag(ett1 ,...,ettn ))−1

t .
Then t acts on VT,χ via dχ.

Remark 8.67. Similarly to the previous remark, one can prove this proposition
completely algebraically, without referring to the connection to SU(n).

8.5.3

Since finite-dimensional sl2-modules are the same as finite-dimensional SU(2)-
representations, we have a knowledge of irreducible finite-dimensional sl2-module,
which we now describe. For any m ∈ Z≥0, there is exactly one, up to isomor-
phism, finite-dimensional irreducible sl2-module Pm of dimension m + 1. We
can also calculate how Pm looks like as a t-module: consider the basis ele-

ment H0 :=

(
1 0
0 −1

)
∈ t. By the definitions, the action of iH0 on Pm is

given as limt→0
1
t (e

t·iH0 − 1). Recall that Pn decomposes into one-dimensional
T -eigenspaces, where T is the subgroup of diagonal elements in SU(2), corre-
sponding to characters χd of T , for d ∈ {−m,−m + 2, . . . ,m − 2,m} where

χd(

(
eiθ 0
0 e−iθ

)
) = ei·dθ. Therefore, we conclude that the action of H0 on

Pm is diagnolizable, with one-dimensional eigenspaces, with eigenvalues running
over {−m,−m+ 2, . . . ,m− 2,m}.

Remark 8.68. Similarly to the previous remarks, one can obtain this informa-
tion completely algebraically, without referring to the connection to SU(2).
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8.5.4

To go further in trying to somehow parametrize irreducible finite-dimensional
sln-representations, we need some more language to talk about functionals in t∗

(which are parametrizing the t-eigenspaces in finite-dimensional sln-modules).
A usual terminology is to call elements of t∗ weights, to call t-eigenspaces
weight spaces, and to call vectors in weight spaces weight vectors. We can
say that a weight λ ∈ t∗ appears in a g-module V , or is a weight of V if the
weight space Vt,λ is non-zero, where

Vt,λ := {v ∈ V | H · v = λ(H) · v, ∀H ∈ t}.

Similarly to the regular representation of a group, every Lie algebra g is a module
over itself, by X · Y := [X,Y ]. We want to decompose our g := sln into weight
spaces. For a pair (i, j) of indices in [1, n], such that i ̸= j, one has the element
Ei,j ∈ g whose (i, j)-entry is 1 and all other entries are 0. Writing, given H ∈ t,
H = diag(H(1), . . . ,H(n)), we have

[H,Ei,j ] = (H(i) −H(j)) · Ei,j .

Thus, we have (n−1)-dimensional weight space t ⊂ g corresponding to weight 0,
and we have 1-dimensional weight spaces, corresponding to weights αi,j(H) :=
H(i) −H(j) where (i, j) ∈ [1, n]2 is such that i ̸= j. A usual terminology is to
call the non-zero weights appearing in the regular g-module g roots. Thus, the
roots in our case are the elements in t∗ of the form αi,j with (i, j) ∈ [1, n]2 and
i ̸= j. The elements αi,j with j > i we call positive roots, and the elements
αi,j with j < i we call negative roots. For a root α := αi,j let us write also
Eα := Ei,j . Notice that αi,j = −αj,i, i.e. negative roots are simply negatives of
positive roots.

8.5.5

Let us gather a few tools for the continuation of the discussion. We need to
understand a weak version of the Poincare-Birkhoff-Witt theorem.

Proposition 8.69. Let V be a g-module and let X1, . . . , Xd be a basis for g.
Let v ∈ V . Then the subspace W ⊂ V spanned by elements Xmd

d · . . . · Xm1
1 v,

for mi ∈ Z≥0, is a g-submodule of V , and is contained in any g-submodule of
V containing v.

Also, we have the following important computation:

Lemma 8.70. Let V be a g-module. Let v ∈ Vt,λ. Let E ∈ gt,ω. Then
E · v ∈ Vt,ω+λ.

Finally, let us define a partial order on t∗, by setting λ1 ≤ λ2 if λ2 − λ1 can
be written as a finite (possibly empty) sum of positive roots.
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8.5.6

Definition 8.71. Let V be a g-module. A non-zero v ∈ V is called a highest
weight vector if v is a weight vector and Eα · v = 0 for all positive roots α. A
non-zero vector v ∈ V is called a highest weight generator if it is a highest
weight vector and it is a generator of V as a g-module (the latter means that
any g-submodule of V containing v is equal to V ). The module V is called a
highest weight module if it admits a highest weight generator.

Proposition 8.72. Let V be an irreducible finite-dimensional g-module. Then
V is a highest weight module.

Proof. In the finite set of weights of V , let us pick a weight λ ∈ t∗, maximal
with respect to our partial order. Let 0 ̸= v ∈ Vt,λ. We first claim that v is a
highest weight vector. Indeed, let α be a positive root. Then Eα ·v ∈ Vα+λ. But
by the maximality assumption on λ we have that α+λ is not a weight of V , i.e.
Vα+λ = 0. Thus Eα ·v = 0. So v is a highest weight vector. Furthermore, clearly
the submodule of V generated by v is the whole V , since V is irreducible.

Exercise 8.13. Using the semisimplicity of finite-dimensional g-modules, see
that the converse also holds: a finite-dimensional highest weight g-module is
necessarily irreducible.

We now study highest weight modules, and in particular irreducible highest
weight modules, in more detail.

Proposition 8.73. Let V be a highest weight g-module with highest weight
generator v, having weight λ. Then all weights µ of V satisfy µ ≤ λ. Also, we
have dimV t,λ = 1. The vector v is the unique highest weight generator of V ,
up to scalar. Finally, V is an indecomposable g-module.

Proof. Let us enumerate the positive roots by α1, . . . , αd, and pick a basis
X1, . . . , Xd, H1, . . . ,Hn−1, Y1, . . . , Yd of g where Xi ∈ gt,αi

, H1, . . . ,Hn−1 is a
basis of t, and Yi ∈ gt,−αi

. By above, the subspace of V spanned by elements
Y ?
d . . . Y

?
1 H

?
n−1 . . . H

?
1X

?
d . . . X

?
1v is a g-submodule. Since V is generated by v

as a g-module, this subspace must be equal to the whole V . Note that each
Y ?
d . . . Y

?
1 H

?
n−1 . . . H

?
1X

?
d . . . X

?
1v is a scalar multiple of Y ?

d . . . Y
?
1 v, so

Y md

d . . . Y m1
1 H?

n−1 . . . H
?
1X

?
d . . . X

?
1v ∈ Vt,λ−(m1α1+...+mdαd).

Therefore, the weights of V lie in the set of weights of the form λ−(m1α1+ . . .+
mdαd) for (m1, . . . ,md) ∈ Zd≥0. In particular, all are ≤ λ. Also, we see from here

that dimV t,λ = 1. It is clear that v is the unique highest weight generator of
V , because if we have another highest weight generator, with weight µ, then by
what we have seen just now we have λ ≤ µ and µ ≤ λ and therefore µ = λ and so
our second generator lies in V t,λ, and so is a scalar multiple of v. Finally, to see
that V is indecomposable, suppose that V = V1⊕V2. Then V t,λ = V t,λ

1 ⊕V t,λ
2 .

Since V t,λ is 1-dimensional, we have v ∈ V t,λ
1 or V ∈ V t,λ

2 , suppose the former
as the latter is analogous. Then V1 contains v and so is equal to V since v
generates V .
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Definition 8.74. Let V be a highest weight g-module. The weight of a highest
weight generator of V is called the highest weight of V (by the Proposition, it
is well defined, and can also be characterized as the unique weight λ ∈ t∗ such
that µ ≤ λ for all weights µ of V ).

Claim 8.75. Let V be an irreducible (not necessarily finite-dimensional) high-
est weight g-module. Then all highest weight vectors in V are highest weight
generators.

Proof. This claim is clear, because V is irreducible any non-zero vector in V is
a generator of V .

One can give here an example of a highest weight sl2-module which admits
two different highest weights. By the above material, it is necessarily infinite-
dimensional and not irreducible (but indecomposable). It has a highest weight
generator with weight 0, and also a highest weight vector (which is not a gen-
erator) with weight −α where α is the positive root (this weight is given by(

1 0
0 −1

)
7→ −2). But by our convention, we speak of 0 as the highest weight

of this module, and we don’t call −α a highest weight for this module.

Proposition 8.76. Let V1, V2 be two irreducible highest weight g-modules. Sup-
pose that the highest weights of V1 and V2 coincide. Then V1 and V2 are iso-
morphic.

Proof. Let us consider highest weight generators v1 ∈ V1 and v2 ∈ V2. Then
(v1, v2) is a highest weight vector in V1⊕V2. LetW ⊂ V1⊕V2 be the g-submodule
generated by (v1, v2). Then (v1, v2) is a highest weight generator of W . Let us
consider the projection morphism W ↪→ V → V1. It is surjective, since its
image contains v1. It is also injective, because its kernel can be identified with
a submodule of V2, and so must be 0 since V2 is irreducible (it can not be
V2 because then, for example, the morphism would be 0, and so could not be
surjective). So we have an isomorphism of W with V1. Completely analogously,
we obtain an isomorphism ofW with V2, showing that V1 and V2 are isomorphic.

So, now one wonders for which weights λ ∈ t∗, there exists an irreducible
highest weight g-module whose highest weight is λ.

Lemma 8.77. Let λ ∈ t∗. Suppose that there exists a highest weight g-module
V whose highest weight is λ. Then there exists an irreducible highest weight
g-module whose highest weight is λ.

Proof. Fill in... Should take quotient by all proper highest weight submodules...

Claim 8.78. Let λ ∈ t∗. Then there exists a highest weight g-module whose
highest weight is λ. In particular, by the previous lemma, there exists therefore
an irreducible highest weight g-module whose highest weight is λ (unique up to
isomorphism, by a previous proposition).
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Now one wonders for which weight λ, the irreducible highest weight g-module
with highest weight λ is finite-dimensional. Answering this, one obtains a
parametrization of irreducible finite-dimensional g-modules.

Claim 8.79. Let λ ∈ t∗ and let E be the irreducible highest weight g-module with
highest weight λ. Assume that E is finite-dimensional. Then λ(Ei,i−Ei+1,i+1) ∈
Z≥0 for all 1 ≤ i ≤ n− 1.

Proof. The matrices Ei,i − Ei+1,i+1, Ei,i+1, Ei+1,i span a copy of sl2, then use
the knowledge of sl2-modules complete...

And the (local) culmination is:

Proposition 8.80. Let λ ∈ t∗ and let E be the irreducible highest weight g-
module with highest weight λ. Assume that λ(Ei,i − Ei+1,i+1) ∈ Z≥0 for all
1 ≤ i ≤ n− 1. Then E is finite-dimensional.

To be continued... Time ended.
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