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It is never true that two
substances are entirely alike,
differing only in being two rather
than one1.

G. W. Leibniz, Discourse on
metaphysics

1This can be imagined to be related to at least two of our themes: the imperative of
considering a contractible groupoid of objects as an one single object, and also the ideology
around Yoneda’s lemma (“no two different things have all their properties being exactly the
same”).
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1 The basic language

1.1 Categories

1.1.1

In a set, such as the set of real numbers R, any given two elements are either
equal or not. Given r1, r2 ∈ R, the answer to the question whether r1 is equal
to r2 is either “yes” or “no”, i.e. it is a truth value. Moreover, equality is an
equivalence relation - (1) r1 = r1 (2) r1 = r2 and r2 = r3 imply r1 = r3 (3)
r1 = r2 implies r2 = r1.

In contrast, the class of vector spaces over R is of a different nature. We
don’t really want to ask whether two given vector spaces V1 and V2 are equal or
not. Instead, what is more sensible is to ask whether V1 is isomorphic to V2.
The answer to that is also a “yes” or a “no”, but in fact a more correct question
is how V1 is isomorphic to V2 (informally, how V1 is “the same as“ V2), and the
answer to that question is an isomorphism between V1 and V2. So, the answer
to the more correct question lies in a set (the set of isomorphisms between V1
and V2), rather than being a truth value. Of course, one can recover the truth
value from the set - if the set is empty the truth value is “no”, while if the set
is non-empty the truth value is “yes”.

The analog of equality being an equivalence relation is here - (1) There is
a preferred way of making V1 the same as V1, the identity isomorphism (2)
If we have a way of making V1 the same as V2 and a way of making V2 the
same as V3 then we get a way of making V1 the same as V3, by composition
of isomorphisms (3) If we have a way of making V1 the same as V2 then we get
a way of making V2 the same as V1, taking the inverse of an isomorphism.

As an additional layer to the above, we also have “attempts” at pointing
how vector spaces are the same, namely non-invertible linear transformations.
These one can also compose, but not invert. The definition of a category will
formalize this situation.

Some side point to make is that from our point of view, we usually don’t
really care at first whether a set is a set in the sense of axiomatic set theory,
for example whether it has a cardinality. A set in that latter sense, of having
cardinality and so on, we will call a small set. Rather, our main differentiating
feature is that elements of a set are either equal or not, while one can not ask
this question about elements in a general class (such as that of vector spaces over
R). For example, if we consider the class whose element is data (TV ) consisting
of a linear endomorphsim TV of V for every R-vector space V , we would like
to think of this class as a set, because clearly we can ask whether (TV ) and
(SV ) are equal to not - this is the same as asking whether TV = SV for all V ,
and this is a legitimate question since, for any given V , both TV and SV lie
in the same set, the set of endomorphisms of V . However, the set of all data
(TV ) is not a small set. Another example of a set which is not a small set is
set of isomorphism classes of vector spaces over R - we define an equivalence
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relation on the class of vector spaces over R, by saying that two vector spaces
are equivalent if there exists an isomorphism between them, and we consider
the class of equivalence classes, which clearly one should consider as a set (there
is a notion of equality in it). However, that set has no cardinality, since it is
basically the set of all cardinalities, and so introducing its cardinality will lead
to paradoxes.

1.1.2

A category C consists of the following:

1. A class which might be denoted Ob(C), but we will simply, by an abuse
of notation, denote it by C - the class of objects,.

2. For any two objects X,Y ∈ C a set HomC(X,Y ) (or simply Hom(X,Y ) if
C is clear from the context) - the set of morphisms from X to Y . One

also writes X
f−→ Y , or f : X → Y , for f ∈ HomC(X,Y ).

3. For any three objects X,Y, Z ∈ C a map of sets

HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z),

- the composition of morphisms. We denote by g ◦ f the result of
applying composition to (g, f).

One requires the following:

• For X,Y, Z,W ∈ C and f : X → Y, g : Y → Z, h : Z → W , one has
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

• For X ∈ C there exists an element ϵ ∈ HomC(X,X) such that for all Y ∈ C

one has f ◦ ϵ = f for all f : X → Y and ϵ ◦ f = f for all f : Y → X.

It is easy to see that ϵ as above is unique; It is denoted idX and called the
identity morphism (of X).

1.1.3

Examples of categories: The category of small sets, denoted by Set, has small
sets as objects, and morphisms between a set X and a set Y are arbitrary func-
tions X → Y . Composition is the usual composition of functions. In a similar
fashion, we have categories Grp/Veck/Top, whose objects are groups/vector
spaces over a field k/topological spaces and morphisms in which are group
homomorphisms/k-linear transformations/continuous maps, and much more ex-
amples of this “concrete” sort, where the objects are sets with some extra struc-
ture, and morphisms are maps of sets which respect the extra structure in the
appropriate way. Here, a group means a group whose underlying set is a small
set, and similarly in all the examples.
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Sometimes there are various sensible choices for morphisms. For example, we
can consider the category Met of metric spaces, where morphisms are continuous
maps. However, we also have categories of metric spaces where morphisms are
isometries (maps f : X → Y satisfying d(f(x1), f(x2)) = d(x1, x2)), or Lipschitz
maps with constant 1 (maps f : X → Y satisfying d(f(x1), f(x2)) ≤ d(x1, x2)),
and so on. It is important to distinguish all these categories, although they have
the same class of objects.

Another example is, given a partially ordered set (P,≤), the category whose
class of objects is the set P , and in which the set of morphisms from p1 ∈ P
to p2 ∈ P is empty if p1 ̸≤ p2 and is the set ∗ with one element if p1 ≤ p2.
Composition of morphisms is then uniquely defined.

A simple way of obtaining a new category from an old one is passing to
the opposite category. Namely, given a category C, we can construct a
category Cop whose objects are the same as objects of C, but where we set
HomCop(X,Y ) := HomC(Y,X) and composition is defined using that of C in a
straight-forward manner.

Another common way of obtaining a new category from an old one is as
follows. Let C be a category and let C0 be a subclass of the class of objects of
C. We then can make C0 a category by letting morphisms and composition to
be the same as they were in C. Thought of as a category in this way, C0 is said
to be a full subcategory of C (spanned by the class of objects C0).

1.1.4

A morphism f : X → Y is called left invertible (resp. right invertible) if
there exists g : Y → X such that g ◦ f = idX (resp. f ◦ g = idY ) - such a g is
then called a left inverse (resp. right inverse) for f . The morphism f : X → Y
is called an isomorphism if it is both left invertible and right invertible (one
writes usually f : X

∼−→ Y to indicate that f : X → Y is an isomorphism) . It
is easy to see that if f is an isomorphism then there exists a unique left inverse
for f , and a unique right inverse for f , and these are equal. This uniquely
characterized morphism is denoted f−1 : Y → X (the inverse).

For example, isomorphisms in the category Set are just bijections. Isomor-
phisms in the category Top are homeomorphisms (so those are not continuous
bijections, but rather continuous bijections whose inverse is also continuous).
Isomorphisms in the category Grp are what are usually called isomorphisms
of groups.

The ideology is that two objects, for which we have specified an isomor-
phism, become “the same”. However, a different isomorphism between these
two objects will make them “the same” in a different way, and it is important
to keep track of the way in which we decide objects are the same, not just the
mere fact of having a way of making them “the same”.
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1.1.5

A category is called a groupoid if every morphism in it is an isomorphism. As
we explained above, one can think of the notion of a groupoid as a generalization
of the notion of a set, where the answer to the question of how two elements are
the same lies in a set, instead of being a truth value.

To every category C one can naturally associate a groupoid Cgrpd (the core
groupoid) by keeping the same objects and keeping all isomorphisms, discard-
ing morphisms which are not isomorphisms.

1.1.6

Given a set S, we construct a groupoid whose class of objects is the set S,
and the set of morphisms from s1 ∈ S to s2 ∈ S is empty if s1 ̸= s2 and is
the set ∗ with one element if s1 = s2. Composition of morphisms is uniquely
defined (formally, this example is subsumed by the above example of attaching
a category to a partially ordered set).

Another basic example of a groupoid is as follows. Let G be a group. We
construct a groupoid G\∗, whose class of objects is the set ∗ with one element,
and with morphisms HomG\∗(∗, ∗) := G. Composition is by multiplication in
the group.

1.1.7

A morphism f : X → Y is called a monomorphism (resp. epimorphism) if
for every Z ∈ C the map HomC(Z,X)→ HomC(Z, Y ) given by g 7→ f ◦ g (resp.
the map HomC(Y,Z)→ HomC(X,Z) given by g 7→ g ◦ f) is injective.

Exercise 1.1. A left invertible morphism is a monomorphism (resp. a right
invertible morphism is an epimorphism). Thus, an isomorphism is both a
monomorphism and an epimorphism.

An example of a morphism which is both a monomorphism and an epimor-
phism, but not an isomorphism, is a morphism of topological spaces, which is
injective and whose image is dense in the target (but which is not a homeomor-
phism).

1.1.8

Let C be a category. One can formalize the process of answering the question of
whether two objects are isomorphic, which is cruder than the question of how
the two objects are isomorphic, as follows. Isomorphism of objects in C is an
equivalence relation, and the set of equivalence classes we will denote by π0(C)
(this is the set of isomorphism classes in C). Notice that this is indeed a set,
not a class. Thus, C 7→ π0(C) is the standard process of “crudifying” a category
into a set.
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1.1.9

A common way of obtaining a full subcategory of a category C is by considering
a subset ∆ of the set π0(C) of isomorphism classes in C, and considering the full
subcategory C0 ⊂ C whose objects are those whose isomorphism class lies in ∆.

1.2 Functors

1.2.1

Let C,D be categories. A functor F : C→ D consists of the following:

1. For any X ∈ C an F (X) ∈ D.

2. For anyX,Y ∈ C, a map HomC(X,Y )→ HomD(F (X), F (Y )). The image

of X
f−→ Y under this map we denote by F (f).

One requires the following:

• For X,Y, Z ∈ C and f : X → Y, g : Y → Z one has F (g◦f) = F (g)◦F (f).

• For X ∈ C one has F (idX) = idF (X).

1.2.2

One class of examples of functors are so-called forgetful functors. For exam-
ple, we have the functor Grp → Set sending a group G to G considered as a
set (i.e. with the group structure, the multiplication, “forgotten”), and a ho-
momorphism of groups it sends to itself considered as a map of sets. One has a
lot of similar examples.

So, given a field k, we have the forgetful functor Veck → Set. Does one have
some sensible functor in the other direction, a functor Set→ Veck? Given a set
S, we can consider the formally fabricated vector space k[S] with basis S (so it
consists of formal combinations

∑
s∈S cs ·δs, where δs is a formal symbol (“delta

function” or, slightly better, “delta measure”) created for every s ∈ S, cs ∈ k
are scalars, and all the cs’s except finitely many are equal to 0). Given a map of
sets f : S → T , we have a natural k-linear transformation k[S]→ k[T ] (sending
δs to δf(s)). This defines a functor Set → Veck. In some sense, this functor
makes out of a set a k-vector space “in the most efficient way”. A formalization
of that will come later (stating that this functor S 7→ k[S] is left adjoint to the
forgetful functor Veck → Set).

One of the first conscious appearances of functors in mathematics (as far
as we understand) was as constructions of “algebraic invariants” of topological
spaces. For example, denoting by AbGrp the full subcategory of Grp consisting
of abelian groups, there is a functor H1 : Top → AbGrp (the first homology
with integral coefficients). This functor, roughly speaking, records ”two-
dimensional holes” in a topological space. For example, the two-dimensional
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unit disc D2 ⊂ R2 has no holes, so H1(D2) = 0. The unit circle S1 ⊂ R2 has
one hole, so H1(S

1) ∼= Z. A nice illustration of the power of this is proving
Brouwer’s fixed point theorem. It (or a special case of it) says that every
continuous map f : D2 → D2 admits a fixed point - there exists x ∈ D2 such
that f(x) = x. The proof is by contradiction. Assuming the contrary, we can
define a continuous map g : D2 → S1 by sending every x ∈ D2 to the point on
S1 to which one eventually arrives if one goes, on the line passing through x
and f(x), from f(x) in the direction of x. Notice that if x ∈ S1, then g(x) = x.
In other words, we have in Top morphisms

S1 i−→ D2
g−→ S1,

where i is the inclusion, and the composition g ◦ i is equal to idS1 . We now
apply the functor H1, and obtain in AbGrp morphisms

H1(S
1)

H1(i)−−−→ H1(D2)
H1(g)−−−−→ H1(S

1)

whose composition is H1(idS1) = idH1(S1), or according to what we said before
morphisms

Z −→ 0 −→ Z

whose composition is idZ. However, the composition of those is the zero mor-
phism 0Z, and 0Z ̸= idZ, so that we arrive to a contradiction.

1.2.3

Let F : C → D be a functor. Notice, as a small exercise, that if two objects
in C are isomorphic, then so are their images in D under F . Thus F induces
naturally a map π0(C) → π0(D). We refer to the image of this map, or to
the corresponding full subcategory of D, as the essential image of F . Thus,
concretely, an object in D belongs to the essential image of F if it is isomorphic
to some object of the form F (X), for X ∈ C. One says that F is essentially
surjective if its essential image is the whole of D.

For example, the functor Set→ Veck sending S to k[S], that we considered
before, is essentially surjective; this is equivalent to a basic theorem in linear
algebra, that every vector space has a basis! Here one can reiterate, that this
means that every V ∈ Veck is isomorphic to k[S] for some set S, but it is
meaningless from our perspective to ask whether every V ∈ Veck is equal to
k[S] for some S (thus, from our perspective, we don’t want to be able to ask
this question and the answer being negative; we want ideally to not be able even
to ask this question2).

2Informally, some things are worse than being wrong, they are “not even wrong” (what is
the source of this expression? I remeber vaguely that maybe someone called string theory like
that, but I am not sure).
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1.2.4

Let F : C→ D be a functor. One says that F is faithful / full / fully faithful
if for every X,Y ∈ C, the map HomC(X,Y )→ HomD(F (X), F (Y )) is injective
/ surjective / bijective. Sometimes one might use the term “embedding” for a
fully faithful functor.

An example of a faithful but not full functor is some typical forgetful functor,
such as the forgetful functor Grp → Set. Another example is the category of
metric spaces with isometries sitting in the category Met of metric spaces with
continuous maps.

Examples of full but not faithful functors can by typically obtained by
putting some equivalence relation on morphisms. Let us be given a category C

and for every c1, c2 ∈ C an equivalence relation ∼ on HomC(c1, c2), such that
f1 ∼ f2 implies f1 ◦ g ∼ f2 ◦ g (where g :? → c1) and g ◦ f1 ∼ g ◦ f2 (where
g : c2 →?). Then we can define a category C/ ∼, whose objects are the ob-
jects of C, and HomC/∼(c1, c2) := HomC(c1, c2)/ ∼. Composition is given by
choosing representatives and then taking the equivalence class of their compo-
sition (and this is well-defined thanks to the condition above). Then we have
a natural functor C → C/ ∼ (which is identity on objects), which is full, but
not in general faithful (unless all the equivalence relations are trivial). Here are
examples of such constructs. We can take C := Veck and say that T ∼ S if
dim Im(T −S) <∞ (working in the quotient category forces us to ignore finite-
dimensional information, so to speak). We can take C := Top, and say, given
f1, f2 : X1 → X2, that f1 ∼ f2 if f1 is homotopic to f2. Recall, this means that
there exists a continuous F : [0, 1] ×X1 → X2 such that F (0,−) = f1(−) and
F (1,−) = f2(−). The resulting quotient category is the homotopy category
HoTop.

An example of a fully faithful functor is the inclusion functor of a full sub-
category in a category. Another example is the functor Met → Top (sending a
metric space to itself viewed as a topological space).

1.2.5

We can compose functors: If we have functors F : C → D and G : D → E, we
can naturally form a functor G ◦ F : C → E. This has various straight-forward
properties that we omit.

1.3 Natural transformations

1.3.1

Let F,G : C → D be two functors. A natural transformation (or simply a
morphism (of functors)) α : F → G consists of a morphism αX : F (X) →
G(X) for every X ∈ C, such that:
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• For f : X → Y in C one has G(f) ◦ αX = αY ◦ F (f). One expresses this
condition usually by saying that the following is a commutative square:

F (X)
αX //

F (f)

��

G(X)

G(f)

��

F (Y )
αY // G(Y )

.

Another very common terminology is as follows. When we are given mor-
phisms αX : F (X)→ G(X) for all X ∈ C, we say that these are functorial in
X if these form a natural transformation, i.e. the condition of commutativity
above is satisfied.

1.3.2

Given F,G,H : C → D, if we have natural transformations α : F → G and
β : G → H it is clear how to define a natural transformation β ◦ α : F → H.
In this way, we can form the category of functors Fun(C,D) between C and
D. Its objects are functors C → D. For F,G : C → D, the set of morphisms
Hom(F,G) is the set of natural transformations F → G (notice that this is
indeed a set in our sense, although it can easily be non-small in this generality!).
As we said, it is straight-forward how to define composition, and to check that
there exist identities.

Exercise 1.2. Let F,G ∈ Fun(C,D). Let α : F → G be a morphism. Show
that α is an isomorphism if and only if αX : F (X)→ G(X) is an isomorphism
(in D) for all X ∈ C.

1.3.3

As an example of a category of functors, we can consider the category A whose
set of objects is {∗1, ∗2} and the only non-identity morphism is one morhpism
∗1 → ∗2. We consider then the category Fun(A,C). Its objects are morphisms
in C, i.e. triples (c1, c2, α) consisting of c1, c2 ∈ C and α : c1 → c2. A morphism
in this category, from (c1, c2, α) to (c′1, c

′
2, α

′) is a pair of morphisms (β, γ) fitting
in a commutative diagram

c1
α //

β

��

c2

γ

��

c′1
α′
// c′2

.

For example, given a field k, denoting by Vecfdk the full subcategory of Veck
consisting of vector spaces of finite-dimension, think what is π0(Fun(A,Vec

fd
k )).

Elements of this set are encoded by three numbers - the dimension of the source,
the dimension of the target and the rank of the transformation between them.
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This is the “first part of linear algebra”. One can also consider the category
B with one object ∗ and HomB(∗, ∗) := Z≥0 with composition being addition.
Then we can identify objects of Fun(B,C) with pairs (c, α) consisting of c ∈ C

and α : c→ c (this α is where 1 ∈ HomB(∗, ∗) goes; Then n goes to αn, so this
information is redundant). A morphism from (c, α) to (c′, α′) is a morphism β
fitting in a commutative diagram

c
α //

β
��

c

β
��

c′
α′
// c′

.

Now thinking about π0(Fun(B,Vec
fd
k )) is already the “second part of linear

algebra” - concretely, the theory of square matrices up to similarity. To describe
this we already need Jordan form etc.

1.3.4

Let us give another example of a category of functors. Let G be a group and con-
sider the groupoid G\∗ as before. Let C be a category. Then CG := Fun(G\∗,C)
is the category of objects in C equipped with an action of G. Namely, we can
explicitly describe an object in CG as the data (c, (αg)g∈G) where c ∈ C and

αg : c
∼−→ c, such that α1 = idc and αg1g2 = αg1 ◦ αg2 . A morphism from

such (c, (αg)g∈G) to another (c′, (α′
g)g∈G) is a morphism β : c → c′ in C which

satisfies β ◦ αg = α′
g ◦ β for all g ∈ G. For example, if C := Set, we obtain

the category G-Set := SetG of G-sets. If C := Veck, we obtain the category
Repk(G) := VecGk of representations of the group G over the field k.

1.3.5

Composition of functors and natural transformations have various straight-
forward interaction properties, which we omit.

2 Equivalence of categories

2.1 Contractible groupoids

A set S with one element is characterized as follows: S is non-empty (i.e. there
exists an element in S), and in addition if x, y ∈ S then x = y. Let us call such
a set contractible.

There is an analogous notion for groupoids: Let S be a groupoid. We say that
it is contractible if there exists an object in S, and for every two objects x, y ∈ S

the set HomS(x, y) is contractible (i.e. there exists a unique isomorphism from
x to y). We say that a category is contractible if it is a groupoid and it is
contractible (equivalently, if the class of objects is non-empty, and between any
two objects there exists a unique morphism).
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A philosophy of utmost importance is that a contractible groupoid can be
thought of as the trivial groupoid ∗ (admitting one object and one morphism).
One should think that there is precisely one way of specifying an object in a
contractible groupoid (you pick any object; If someone picked another object,
there is a unique identification, isomorphism, between these two objects, so
we are OK). How this philosophy fits into the current formal framework of
axiomatic mathematics is less satisfactory (we want to say that there is no choice
when wanting to specify an object in a contractible groupoid, however current
axiomatics require us, in order to have at our hands a determined object of this
groupoid, to choose one). As a side remark, Voevodsky’s homotopy type theory
tries to provide an axiomatic system in which this philosophy is respected.

Example 2.1. So, the category with two objects ∗1 and ∗2, where the morphisms
are the identity morphism of ∗1, the identity morphism of ∗2, one morphism
from ∗1 to ∗2 and one morphism from ∗2 to ∗1, is contractible. One should think
that it has one object, because any two objects in it are canonically identified
(there exists a unique isomorphism between them). However, in the standard
axiomatic framework, to work with that one object one has to name it, say x,
and then who, from the elements of the class {∗1, ∗2} of objects of our category
is x - ∗1 or ∗2? This is a matter of the language not being adapted to what
we desire to express.

Example 2.2. One can consider the full subcategory of Set consisting of sets
with one element. It is contractible (“all sets with one element are the same”).
Similarly, the full subcategory of Set consisting of empty sets is contractible.
However, the full subcategory of Set consisting of sets which have two elements
is not contractible.

Example 2.3. Let G be a non-trivial group, for example let us take it to be
the group with two elements. Then the groupoid G\∗ considered above is not
contractible. It has one element, but this element can be identified with itself in
several ways (two ways in our example).

Remark 2.4. A standard phrasing, given a contractible groupoid, is to say
that an object in it is unique, up to a unique isomorphism.

2.2 Fibers

Recall that given a map of sets f : S → T and t ∈ T , the fiber f−1(t) is
the set {s ∈ S | f(s) = t}. What is the analog for categories? The definition
will illustrate well the categorical thinking required when operating with
categories.

Let F : C → D be a functor. Let d ∈ D. We want to define a category
F−1(d), the fiber of F over d. What should be an object of it? It is not
correct for it to be an object c ∈ C such that F (c) is isomorphic to d, because in
categorical thinking we should try always remember how objects are identified,
not only whether they are identifiable. Thus, an object of F−1(d) is a pair

12



(c, α) consisting of an object c ∈ C and an isomorphism F (c)
α−→ d. A morphism

between (c, α) and (c′, α′) is a morphism β : c→ c′ in C such that α′ ◦F (β) = α,
i.e. the following diagram commutes:

F (c)

α
!!

F (β)
// F (c′)

α′

}}
d

.

I have now a bit of a pedagogical problem of what examples of fibers to
give, what extra terminology to introduce, how much “sophistication” to insert
at this particular point, etc. So the following examples and remarks perhaps
should be modified at some point. Anyway, they are not strictly neccesary at
this point, so a reader might skip them.

Example 2.5. A first approximation to understanding a category C is the un-
derstanding of the set π0(C), so let us understand those for some fibers. Let
us consider the forgetful functor F : Grp → Set. Check that π0(F

−1(X)) is
in a canonical bijection with the set of group structures on X (i.e. maps
X × X → X satisfying the group axioms). Similarly, for the forgetful functor
F : Top → Set, check that π0(F

−1(X)) is in a canonical bijection with the set
of topologies on X. Next, let us consider the example of F : Set→ Veck given
by F := k[−] which we considered before. We can check that π0(F

−1(V )) is in
a canonical bijection with the set of bases of V .

Remark 2.6. Let us say that a category C is set-like if it is a groupoid and
for every X,Y ∈ C we have |HomC(X,Y )| ≤ 1. Thus, a contractible category
is set-like. Also, given a set, we associated to it a groupoid in a natural way
in §1.1.6; it is set-like. We will explain in Remark 2.17 that if a category C is
set-like, we can think of it as carrying precisely the same information as the
set π0(C) (to justify this formally we need to have the notion of equivalence
of categories which we will discuss soon). A functor F : C → D is called
conservative if given any morphism α : X → Y in C, if F (α) is an isomorphism
then α is an isomorphism. One can do a simple exercise, that the fibers of a
conservative functor are set-like, and therefore to understand them is the same
as to understand their π0(−)’s. The forgetful functor Grp→ Set and the functor
k[−] : Set→ Veck are conservative.

Remark 2.7. The forgetful functor Top → Set is not conservative. And in-
deed its fibers are generally not set-like. What are they then? Let us say
that a category C is partially-ordered-set-like if for every X,Y ∈ C we have
|HomC(X,Y )| ≤ 1. Thus, a set-like category is a partially-ordered-set-like cat-
egory which is in addition a groupoid. Understand how, given a partially-
ordered-set-like category C, to construct canonically a partial order on π0(C).
Again, when we will have the notion of an equivalence of categories, we will be
able to explain in which sense the information carried in a partially-ordered-
set-like category C is precisely the information carried in π0(C) together with
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the partial order it carries. One immediately checks that the fibers of a faith-
ful functor are partially-ordered-set-like. In particular, the forgetful functor
F : Top → Set is faithful and so its fibers are partially-ordered-set-like. Un-
derstand that π0(F

−1(X)), viewed as a partially ordered set, is in a canonical
isomorphism of partially ordered sets with the partially ordered set of topologies
on X, where a topology is ≤ another topology if it is finer than it.

Example 2.8. Here is another example of a fiber. Let G be a group. Let us
denote by • the category with one object and the identity morphism from it to
itself, and nothing else. By some abuse of notation, we denote by • the object in
•, and by ∗ the object in G\∗. Consider the unique functor F : • → G\∗. What
is F−1(∗)? Unfolding definitions, we see that the class of objects of F−1(∗) is
in a natural bijection with the set G, and the morphisms we have in F−1(∗)
are solely the identity morphisms. So F−1(∗) can be thought of as the groupoid
associate with the set G. One thinks of this, informally, as “the point divided
by G-symmetry has a cover by the point, and the fiber is G”. Thus, informally,
“the map F is |G|-to-1”. Thus, it makes some sense, perhaps, to think of G\∗
as “having 1/|G| elements”.

2.3 Fibers and fully faithfulness

Of course, a map of sets f : S → T is injective if and only if all its fibers are
either empty or with one element. We now discuss the analog for categories.

Lemma 2.9. Let F : C → D be a functor. If F is fully faithful, then all fibers
of F are either empty or contractible.

Proof. Let d ∈ D. Let (c, α), (c′, α′) ∈ F−1(d). We need to show that there is
exactly one morphism from (c, α) to (c′, α′). By definition, such morphisms are
morphisms β : c→ c′ such that α′ ◦ F (β) = α, i.e. F (β) = (α′)−1 ◦ α. Since F
is fully faithful, the map HomC(c, c

′) → HomD(F (c), F (c′)) induced by F , i.e.
β 7→ F (β), is bijective. Hence the existence and uniqueness of β as required
follows.

Remark 2.10. Of course, a fiber F−1(d) is non-empty precisely when d lies in
the essential image of F (by definition).

For groupoids, which are more direct generalizations of sets, we also have
the converse:

Lemma 2.11. Suppose that F : C→ D is a functor, with D a groupoid. If all
fibers of F are either empty or contractible, then F is fully faithful.

Proof. Let c1, c2 ∈ C. Given α : F (c1) → F (c2), we want to show that there
exists a unique β : c1 → c2 such that F (β) = α. In the fiber F−1(F (c2)), we
have two objects - (c2, idF (c2)) and (c1, α) (of course, α is an isomorphism since
D is a groupoid). By the given, we have a unique morphism from (c1, α) to
(c2, idF (c2)) in F

−1(F (c2)); unfolding the definition of the fiber, this means that
there exists a unique morphism β : c1 → c2 such that idF (c2) ◦ F (β) = α, i.e.
F (β) = α.

14



2.4 A lemma on fully faithfulness in families

Oftentimes, one thinks of a functor D → C as a family of objects in C

parametrized by D. One expects that if a category C0 embeds in a category
C, then the category of D-families of objects in C0 embeds into the category of
D-families of objects in C. We formalize this in the lemma that follows. We
would like to draw attention how the proof of the lemma barely survives under
the current axiomatic regime. An additional remark is that it would be perhaps
ideologically pleasant to discuss the Grothendieck construction so that we can
think of the lemma as expressing the idea that given a family of contractible
categories, a choice of an object in each one of them, “coherent”/functorial in
the family, is also a contractible choice. But we don’t want to digress too much.

Lemma 2.12. Let I : C0 → C be a fully faithful functor and let D be a category.
Then the functor

Fun(D,C0)
I◦−−−→ Fun(D,C)

is fully faithful, and its essential image consists of functors F : D→ C such that
F (d) is in the essential image of I for all d ∈ D.

Proof. We leave to the reader to check that our functor is indeed fully faithful
(this is straight-forward). Clearly, for a functor F : D → C0, the functor I ◦ F
satisfies the condition claimed to characterize objects in the image of I ◦ −.
Conversely, let G : D → C be such that G(d) lies in the essential image of I
for every d ∈ D. Then, given d ∈ D, since G(d) lies in the essential image of
I we have that I−1(G(d)) is non-empty, and since I is fully faithful I−1(G(d))

therefore is in fact contractible. Let us fix an object (F̃ (d), ϵd) ∈ I−1(G(d))

(so F̃ (d) ∈ C0 and ϵd : I(F̃ (d))
∼−→ G(d)). Here we remark that in the current

axiomatics of mathematics, this is some “crazy” choice, as it is a choice for
every d ∈ D, requiring perhaps an axiom of choice; However, as we explained
above, since I−1(G(d)) is contractible, in fact we perceive no choice, and the
issue is that our language is not suitable for what we want to express. Given a
morphism α : d1 → d2, there is a unique morphism α′ : F̃ (d1)→ F̃ (d2) making
the following square commute, because the vertical morphisms are isomorphisms
and I is fully faithful:

G(d1)
G(α)

// G(d2)

I(F̃ (d1))
I(α′)

//

ϵd1

OO

I(F̃ (d2))

ϵd2

OO
.

We denote this α′ by F̃ (α). We leave to the reader the straight-forward check

that we obtain in this way a functor F̃ : D → C0 (having defined it on objects

and morphisms), and an isomorphism of functors ϵ : I ◦ F̃ ∼−→ G.
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2.5 Definition of equivalence of categories

In a set, we have equality. In a category, we have isomorphism. In the totality
of categories, what is the correct notion of “being the same”? In other words,
when does a functor between categories “identify” them? The technical terms
for such a functor will be an equivalence of categories.

Definition 2.13. Let C and D be categories. A functor F : C → D is called
an equivalence of categories if there exists a functor G : D→ C and isomor-
phisms of functors ϵ : F ◦G ∼−→ IdD and δ : IdC

∼−→ G ◦ F .

This definition is in the spirit “an indentification is something that has a
two-sided inverse”. One can also characterize equivalence of categories more in
the spirit of “an identification is something that is injective and surjective”:

Claim 2.14. Let F : C→ D be a functor. The following are equivalent:

1. The functor F is an equivalence of categories.

2. The functor F is fully faithful and essentially surjective.

Proof. (1) =⇒ (2): There exist a functor G : D → C and isomorphisms of
functors ϵ : F ◦G ∼−→ IdD and δ : IdC

∼−→ G ◦ F .

First, F is essentially surjective, because given any X ∈ D we have an
isomorphism ϵX : F (G(X))→ X.

Let us next see that F is faithful. Notice that, since G ◦ F is isomorphic to
IdC and IdC is faithful, G ◦ F is faithful. Hence F is faithful, by the following
immediate exercise:

Exercise 2.1. Let F : C → D and G : D → E be functors. If G ◦ F is faithful
then F is faithful.

Finally, let us see that F is full. Notice that by the just established faithful-
ness, but applied to G instead of F , we see that G is faithful. Notice in addition
that, since G ◦ F is isomorphic to IdC and IdC is full, G ◦ F is full. Hence F is
full, by the following immediate exercise:

Exercise 2.2. Let F : C→ D and G : D→ E be functors. If G if faithful and
G ◦ F is full then F is full.

(2) =⇒ (1): We will use Lemma 2.12 with C0 := C,C := D,D := D, I := F
(sorry for the confusing overlap - the notations on the left are of the Lemma,
while the notations on the right are the current notations). Since F is essentially
surjective, the functor IdD : D → D is such that every object in its image lies
in the essential image of F . Therefore by Lemma 2.12 there exists a functor
G : D→ C together with an isomorphism ϵ : F ◦G ∼−→ IdD.
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It remains to show that G◦F is isomorphic to IdC. Let us again use Lemma
2.12, this time with C0 := C,C := D,D := C, I := F . In Lemma 2.12 we consider
the functor

Fun(C,C)
F◦−−−−→ Fun(C,D) (2.1)

and state that it is fully faithful. One has the following simple exercise:

Exercise 2.3. Let F : C → D be a fully faithful functor. Let X,Y ∈ C. Given
an isomorphism of F (X) and F (Y ), we can construct an isomorphism of X
and Y . In particular, if F (X) and F (Y ) are isomorphic then X and Y are
isomorphic.

This exercise, together with the fully faithfullness of the functor in (2.1),
shows that in order to see that G ◦ F and IdC, two objects in Fun(C,C), are
isomorphic, it is enough to see that F ◦ (G ◦ F ) and F ◦ IdC, two objects in
Fun(C,D), are isomorphic. However, the latter functor is equal to F , while the
former functor is isomorphic to F :

F ◦ (G ◦ F ) = (F ◦G) ◦ F ϵ◦idF−−−→ IdC ◦ F = F.

Here the notation ◦ is as follows: Given functors F1, F2 : C → D, functors
G1, G2 : D → E and morphisms of functors α : F1 → F2 and β : G1 → G2, we
define a morphism of functors β◦α : G1 ◦ F1 → G2 ◦ F2 in a straightforward
manner (see that you understand how to define it). It has the property that if
both α and β are isomorphisms, then so is β◦α.

There are also some other characterizations of equivalences of categories, but
we will omit a discussion of these for now.

The ideology is that all “sensible” operations with categories should not care
when replacing a category by an equivalent one (as we try to emphasize, this
ideology is at tension with the currently ruling axiomatics). For example:

Lemma 2.15. Let F : C → D be an equivalence of categories. Let E be a
category. Then the functor

Fun(D,E)
−◦F−−−→ Fun(C,E)

is an equivalence of categories.

Proof. Let us leave this as an exercise.

What should be called the inverse of an equivalence of categories (sometimes
called quasi-inverse, but we will just say inverse)? In category theory, it is
important to be sensitive to differences between answers like “G such that there
exists an isomorphism ...” and “G equipped with an isomorphism ...”. Namely,
we want the inverse to be unique up to a unique isomorphism, in other words the
“pool” of inverses should form a contractible groupoid. Guided by this, one can
phrase the definition of the inverse to an equivalence in several slightly different
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but equivalent ways, but let us choose one. Namely, given an equivalence of
categories F : C → D, let us mean by an inverse to F a functor G : D → C

equipped with an isomorphism δ : IdC
∼−→ G◦F . It is convenient to think about

the category of such as the fiber over IdC of the functor

Fun(D,C)
−◦F−−−→ Fun(C,C).

Since by the lemma above this functor is itself an equivalence of categories, this
fiber is contractible, so that indeed we obtain that an inverse to an equivalence
of categories is unique up to a unique isomorphism.

Exercise 2.4. Define the category of inverses to F in a wrong way, for example
as the full subcategory of Fun(D,C) consisting of functors G : D→ C for which
there exists an isomorphism between IdC and G ◦ F , and show that it is then
not in general contractible.

Remark 2.16. From the above material we see that a functor F : C→ D, where
D is a groupoid, is an equivalence of categories if and only if all its fibers are
contractible. This is a very clear and pleasant characterization, which we thus
have when we talk about groupoids, rather than more general categories (let us
remind that groupoids are the direct generalization of sets, rather than more
general categories, which are perhaps more like the generalization of partially
ordered sets).

Remark 2.17. We can now justify the definition of a set-like category given in
Remark 2.17. Namely, recall that in §1.1.6, given a set S, we defined a groupoid,
let us denote it by Scat. Then one can check that a category C is equivalent
to Scat for some set S if and only if C is set-like. Another thing one can check
is that given a groupoid C, we have a natural functor F : C → π0(C)

cat (see
that you understand how it is defined). Then the groupoid C is set-like if and
only if this functor is an equivalence of categories. In other words, if a category
C is set-like, then there is a canonical equivalence of categories between C and
π0(C)

cat. Similarly, we can justify the definition of a partially-ordered-set-like
category given in Remark 2.7. Namely, recall that in §1.1.3, given a partially
ordered set P , we defined a category, let us denote it by P cat. One can check
that a category C is equivalent to P cat for some partially ordered set P if and
only if C is partially-ordered-set-like.

2.6 Simple examples of equivalence of categories

2.6.1

Let • denote the “trivial” category, which has one object, the identity morphism
from it to itself, and nothing else. We can see that a category C is contractible
if and only if the unique functor C→ • is an equivalence of categories.
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2.6.2

We give an example of equivalence which is a “duality”, where in general, with-
out getting into technicalities, a duality is an functor D : C → Cop such that
D ◦D ∼= IdC (notice that the composition is defined once we realize that a func-
tor F : C → D can be also considered as a functor F : Cop → Dop). Let k be

a field. Denote by Vecfdk the full subcategory of Veck consisting of the vector
spaces which are finite-dimensional. We have an equivalence of categories

D : Vecfdk
≈−→ (Vecfdk )op

(we use the “≈” sign to denote that the functor is an equivalence of categories),

defined as follows. For V ∈ Vecfdk we take D(V ) to be the dual vector space
V ∗. Given a morphism T : V → W , the corresponding morphism between the
duals is T ∗ : W ∗ → V ∗, given by T ∗(ζ)(v) := ζ(T (v)). The functor D is not
only an equivalence, but also satisfies the property that we have a canonical
isomorphism between D◦D and IdVecfd

k
(here there is a slight abuse of notation,

in that a functor C → Dop can also be considered as a functor Cop → D in a
very straight-forward and natural way, and the left copy of D in the expression
D ◦ D is understood as a functor (Vecfdk )op → Vecfdk following this remark).

2.6.3

Another example of a duality, a more complicated analog of the previous ex-
ample, is Pontryagin duality. Namely, let us consider the category LCAG of
locally compact abelian groups. We have an equivalence of categories

D : LCAG
≈−→ LCAGop,

which is the underpinning of the Fourier transform. Let us describe it briefly,
without going into details. As a set, we let D(A) to be the set of continuous
group homomorphisms from A to the circle group R/Z. This has the structure
of an abelian group by pointwise multiplication. We give it the compact-open
topology. In this way D(A) becomes a locally compact abelian group, one checks.
We have a straight-forward functoriality (in complete analogy with the above

case of dual vector spaces), given ϕ : A→ B constructing ϕ̂ : D(B)→ D(A) (by
sending χ : B → R/Z to ϕ̂(χ) : A→ R/Z defined by sending a to χ(ϕ(a))). We
therefore obtain our functor D, and need to check that it is an equivalence of
categories. Again we in fact have that D ◦ D admits a canonical isomorphism
with IdLCAG. Namely, we construct naturally a morphism IdLCAG → D◦D, and
then check that it is an isomorphism. To construct this morphism, one needs
to construct a morphism A → D(D(A)) for any locally compact abelian group
A. One does it by sending a to the morphism D(A)→ R/Z sending χ to χ(a).
Then one checks everything (some parts are not immediate, one can consult a
book on abstract harmonic analysis).

For example, Pontryagin duality sends compact groups to discrete groups
and discrete groups to compact groups.
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2.6.4

Now let us give an example, where the feeling is that we describe a “skeleton” of
our category, omitting repetitions of objects (i.e. leaving one object from each
isomorphism class). Let us denote by Matk the following category. The class
of objects is Z≥0. The set of morphisms from m to n is the set Mn×m(k) of
n×m-matrices over k. Composition is via multiplication of matrices. We have
a functor

Matk → Vecfdk

given as follows. It sends n to kn. It sends a morphism from m to n, so a matrix
A ∈ Matn×m(k), to the k-linear transformation km → kn sending the standard
basis vector ei to the linear combination of standard basis vectors

∑
Ajifj . This

functor is an equivalence of categories.

2.6.5

Here is another example of “skeletal” nature. Let G be a group. Recall that
a G-set is a pair consisting of a set X and an action map a : G × X → X,
satisfying a(g2, a(g1, x)) = a(g2g1, x) and a(1, x) = x. One usually abbreviates
and writes gx instead of a(g, x), so a is implicit. A morphism of G-sets from X
to Y is a map f : X → Y satisfying f(gx) = gf(x). One obtains the category
G-Set of G-sets. A G-set X is called a G-torsor if for any x1, x2 ∈ X there
exists a unique g ∈ G such that gx1 = x2. We denote by G-Tors the full
subcategory of G-Set consisting of G-torsors. We have a functor

Gop\∗ → G-Tors

given as follows. It sends ∗ to the G-torsor G (where the action is by multipli-

cation on the left). It sends a morphism ∗ g−→ ∗ to the morphism G → G given
by x 7→ xg. This functor is an equivalence of categories.

2.7 Theory of the fundamental groupoid and covering spaces

2.7.1

Let X ∈ Top. A set one attaches to X is the set π0(X) of path-connected
components of X. Namely, we define an equivalence relation on X (viewed
as a set), by declaring x1 ∈ X to be equivalent to x0 ∈ X if there exists a
continuous map p : [0, 1] → X such that p(0) = x0 and p(1) = x1 (we will call
such a continuous map a path from x0 to x1).

Exercise 2.5. Check that this is indeed an equivalence relation.

By definition, the set π0(X) of path-connected components of X is the set of
equivalence classes of this equivalence relation. For example, X is called path-
connected if |π0(X)| = 1 (i.e. π0(X) is a contractible set, in the terminology
discussed above).
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Thus, in π0(X) we consider points ofX “the same” if they are “connectable”.
But, similarly to the discussion above, one might think about remembering how
points can be connected, not only whether they are connectable, and this gives
rise to a groupoid, the fundamental groupoid Π(X) which we will now define.

For x0, x1 ∈ X, let p0, p1 : [0, 1] → X be two paths from x0 to x1. We
say that p1 is (fixed-end-point) homotopic to p0 if these are connected by
a “path of paths”, namely there exists a continuous map P : [0, 1]× [0, 1]→ X
such that P (−, 0) = x0, P (−, 1) = x1, P (0,−) = p0(−) and P (1,−) = p1(−).

Exercise 2.6. Check that being fixed-end-point homotopic is an equivalence
relation on the set of paths from x0 to x1.

We now define the fundamental groupoid Π(X) (maybe π≤1(X) is a better
notation) as follows. The class of objects of Π(X) is the set X. For x0, x1 ∈ X,
the set of morphisms from x0 to x1 in Π(X) is the set of equivalence classes of
paths from x0 to x1, under the fixed-end-point homotopy equivalence relation.
Composition is defined by concatenation of paths - if we have a path p from
x0 to x1 and a path q from x1 to x2, then we define a path from x0 to x2 as the
map [0, 1]→ X sending t ∈ [0, 1/2] to p(2t) and t ∈ [1/2, 1] to q(2(t− 1/2).)

Exercise 2.7. Check that in this way everything is well defined and we indeed
obtain a groupoid.

Remark 2.18. Notice that the sets π0(X) and π0(Π(X)) (where the latter is
the set of isomorphism classes in a groupoid, discussed above), are in natural
bijection.

The space X is called simply-connected if Π(X) is a contractible groupoid
(as discussed above), i.e. Π(X) is non-empty and in Π(X), between any two
objects there exists exactly one morphism. In other words, X should be non-
empty and connected (so that between any two points there exists a path) and
for every two points of X, and two paths from the one to the other, these paths
are fixed-end-point homotopic.

Exercise 2.8. Show that the open unit disc Dn is simply connected.

Example 2.19. A very basic mathematical ground fact is that the circle S1

is not simply connected. In fact, for a point x ∈ S1, the group EndΠ(X)(x) is
isomorphic to Z.

2.7.2

Given a category C and an object C ∈ C, one define the over-category C/C

as follows. An object of C/C is an object X of C equipped with a morphism
α : X → C in C. Given two such objects (X,α) and (X ′, α′), a morphism
from the first to the second is a morphism β : X → X ′ such that α′ ◦ β = α.
Composition is straight-forward.

Given our topological spaceX, we will now define a full subcategory Cov(X) ⊂
Top/X , consisting of covering maps of X.

21



2.7.3

Let us recall which morphisms Y → X in Top are called covering maps (i.e.
sit by definition in Cov(X)). Given a set F , which we consider as a discrete
topological space, and a topological space X, the trivial covering map of X
with fiber F is the morphism F×X → X of projection on the second factor. A
morphism Y → X is a trivializable covering map if it is isomorphic in Top/X
to a trivial covering map as above (for some F ). A morphism π : Y → X is a
covering map if locally on X it becomes a trivializable covering map. In other
words, the condition is that for every x ∈ X there exists an open x ∈ U ⊂ X
such that the morphism π|π−1(U) : π

−1(U)→ U is a trivializable covering map
(this now is an object in Top/U ).

A basic example of covering maps is the following. Consider the circle C ⊂ C
of numbers of norm 1. Given n ∈ Z≥1, we define πn : C → C by z 7→ zn. Then
πn is a covering map, all of whose fibers have cardinality n. A related example
is π : R→ C given by x 7→ e2πix. It is a covering map all of whose fibers are in
bijection (non-canonically) with Z.

2.7.4

Let us also mention pull-back of covering maps. First, recall that given topolog-
ical spaces X1, X2, X equipped with morphisms p1 : X1 → X and p2 : X2 → X,
we define the fiber product X1 ×

X
X2 as the subspace of X1 × X2 consisting

of (x1, x2) for which p1(x1) = p2(x2). Now, given a morphism f : X ′ → X in
Top and π : Y → X in Cov(X), we consider Y ′ := X ′ ×

X
Y equipped with the

π′ : Y ′ → X ′ sending (x′, y) to x′. One then checks that π′ : Y ′ → X ′ is a
covering map, which we denote f∗(π), and in this way one can naturally define
a functor f∗ : Cov(X)→ Cov(X ′).

2.7.5

Given a morphism π : Y → X in a category, a section of π is another name for
a right inverse for π, i.e. a morphism s : X → Y such that π ◦ s = idX .

Claim 2.20 (Path lifting lemma). Let π : Y → [0, 1]n be a covering map. Then
the map from the set of sections of π to the set π−1(0), given by sending s to
s(0), is a bijection.

Proof. We omit the proof.

2.7.6

Let X ∈ Top. Using Claim 2.20, we can construct a functor

Act : Cov(X)→ Fun(Π(X),Set)

as follows. Let π : Y → X be a covering map. We define the functor Act(π)
to send x ∈ X to π−1(x). Given a morphism x1 → x2 in Π(X), we need to
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define a map of sets π−1(x1) → π−1(x2). Let y1 ∈ π−1(x1). Choose a path
p : [0, 1] → X from x1 to x2 representing our morphism (which is a homotopy
class of paths). By Claim 2.20, there exists a unique section of p∗(π) whose
value over 0 is y1. We define our map π−1(x1) → π−1(x2) to send y1 to the
value of this section over 1. We leave to the reader to check, using Claim 2.20
for [0, 1]2 and some of its boundary copies of [0, 1], that this procedure does not
depend on the choice of the path p in the homotopy class. Then one can check
all the other compatibilities and conditions, verifying that indeed in this way
we obtain a functor Act as desired. The main theorem is:

Theorem 2.21. Assume the technical assumption that X is locally simply-
connected. Then the functor

Act : Cov(X)→ Fun(Π(X),Set)

is an equivalence of categories.

For X to be locally simply-connected means that for every x ∈ X there
exists an open x ∈ U ⊂ X such that U is simply-connected. This is a technical
assumption - one should imagine that all spaces are locally simply-connected,
in the kind of things we pursue here.

This theorem relates two objects of different “materiality”, so a good exam-
ple of an equivalence of categories. Indeed, Π(X) talks about paths in X, their
deformations, how freely we can travel inside X and so on. Cov(X) talks about
the construction of coverings of X, so ways of enlarging X by creating locally
several copies of it in a consistent manner (as in the example of π : R → C
above - instead of just thinking about a complex number of absolute value 1,
one thinks of such a number together with a representation of it as e2πix for
some real number x).

Let us sketch the construction of a functor inverse to Act, without going
into details of showing that indeed the constructions are inverse to each other
(i.e. the construction of isomorphisms of their compositions with the identity
functors). We construct a functor

Fun(Π(X),Set)→ Cov(X)

as follows. Given S ∈ Fun(Π(X),Set), we construct a topological space Y ,
as a set being the disjoint union

∐
x∈X S(x). We consider the topology on Y

generated by open sets of the following form. For open U ⊂ X, x0 ∈ U and
s0 ∈ S(x0), consider the subset of Y consisting of S(α)(s0) for all x1 ∈ U
and morphisms α : x0 → x1 in Π(X). We have a natural “projection” map
π : Y → X given by sending elements of S(x) to x. One shows that π is
continuous and is a covering map. One then naturally makes the construction
functorial, obtaining the desired functor.
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2.7.7

Given a groupoid S and an object s ∈ S, the set G := HomS(s, s) is naturally a
group, using composition as multiplication. We have a functor

Fun(S,Set)→ G-Set,

sending F : S → Set to F (s), where the action HomS(s, s) × F (s) → F (s) is
given by (α, ζ) 7→ F (α)(ζ). If S is connected, meaning that |π0(S)| = 1, i.e.
every two objects in S are isomorphic, then this functor is an equivalence of
categories.

In the setting of Theorem 2.21, let us suppose that X is connected (let us
remark here that if X is locally connected, then for X to be connected in the
usual topological sense is the same as for X to be path-connected). This is
equivalent to the groupoid Π(X) being connected (as a groupoid, in the sense
above). Fix a base point x0 ∈ X. The group HomΠ(X)(x0, x0) is called the
fundamental group of (X,x0), and denoted π1(X,x0). Then by the said
above, we have an equivalence of categories

Fun(Π(X),Set)→ π1(X,x0)-Set.

Pre-composing with our equivalence of categories Act, we obtain an equivalence
of categories

Actx0
: Cov(X)→ π1(X,x0)-Set.

2.7.8

Let us illustrate a bit using the equivalence Actx0
. We fix X ∈ Top which is

locally simply connected and connected, and x0 ∈ X a base point.

Lemma 2.22. Let π : Y → X be in Cov(X). Then Y is connected if and only
if Actx0

(Y ) is a transitive π1(X,x0)-set. Assuming that, Y is simply connected
if and only if Actx0

(Y ) is a free π1(X,x)-set.

Proof. This is left as an exercise.

Now, since there exists a free and transitive G-set, and all free and transitive
G-sets are isomorphic, using the previous lemma we obtain that there exists a
covering map Y → X such that Y is simply connected, and every two such cov-
ering maps are isomorphic. One calls such a covering map (or Y ) the universal
cover of X. For example, the universal cover of the circle C that we considered
above is R, via π : R→ C that we considered above.

2.8 Affine algebraic varieties

2.8.1

Let k be an algebraically closed field, for example C. Let us define the category
Affk of “concrete” affine algebraic varieties over k. An object of this
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category is a pair (n, V ) consisting of n ∈ Z≥0 and a subset V ⊂ kn, such that
V has the form

{(c1, . . . cn) ∈ kn | ϕ1(c1, . . . , cn) = 0, . . . , ϕm(c1, . . . , cn) = 0}

for some ϕ1, . . . , ϕm ∈ k[x1, . . . , xn] (polynomials in n variables with coefficients
in k). Given objects (n1, V1) and (n2, V2), a morphism from the first to the
second is a map m : V1 → V2 for which there exist polynomials ϕ1, . . . , ϕn2

∈
k[x1, . . . , xn1

] such that

m(c1, . . . cn1
) = (ϕ1(c1, . . . , cn1

), . . . , ϕn2
(c1, . . . , cn1

)) ∀(c1, . . . , cn1
) ∈ V1.

Composition is just composition of maps.

Some objects in Affk “look different” but are in fact isomorphic. A very
simple example is (1, k) and (2, {(c1, c2) | c2 = c1}). We have the morphism
c 7→ (c, c) in first direction and the morphism (c1, c2) 7→ c1 in second direction,
and those are mutually inverse.

2.8.2

Recall the notion of a commutative k-algebra - a k-vector space A equipped
with a k-bilinear multiplication map A×A→ A, which is associative, commu-
tative and with 1. Morphisms of k-algebras are defined in the obvious way, and
we obtain the category CAlgk of commutative k-algebras.

The basic example of a commutative k-algebra is k[x1, . . . , xn], the k-algebra
of polynomials in n variables with coefficients in k. It has the property that for
a commutative k-algebra A, the map

HomCAlgk(k[x1, . . . , xn], A) −→ An : ϕ 7→ (ϕ(x1), . . . , ϕ(xn))

is a bijection.

Given a k-algebra A, a sub k-algebra of A is a subset B ⊂ A which is a
sub k-vector space, such that 1 ∈ B and such that a1a2 ∈ B for a1, a2 ∈ B.

Let A be a commutative k-algebra. Let a1, . . . , an ∈ A. There exists a
unique k-algebra morphism k[x1, . . . , xn]→ A sending xi to ai; namely, it sends
a polynomial ϕ(x1, . . . , xn) to the evaluation ϕ(a1, . . . , an). The image of this
morphism is a sub k-algebra of A, containing the elements a1, . . . , an and con-
tained in any other sub k-algebra of A containing these elements. We say that
a1, . . . , an generate A (as a k-algebra) if this smallest sub k-algebra containing
these elements is the whole A; equivalently if the morphism k[x1, . . . , xn] → A
mentioned is surjective. We say that A is finitely generated (as a k-algebra)
if there exist a1, . . . , an ∈ A which generate A. Equivalently, if there exists a
surjective k-algebra morphism from some k[x1, . . . , xn] to A.

Given a commutative k-algebra A, recall that an ideal in A is a subset I ⊂ A
which is a sub k-vector space, and such that ai ∈ I for a ∈ A and i ∈ I. Given
i1, . . . , in ∈ A, one defines an ideal

(i1, . . . , in)A := {a1i1 + . . .+ anin : a1, . . . , an ∈ A}.
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This is an ideal containing the elements i1, . . . , in and contained in any other
ideal containing these elements. Given an ideal I ⊂ A, we say that I is finitely
generated if there exist i1, . . . , in ∈ A such that I = (i1, . . . , in)A.

Proposition 2.23. Let A be a finitely generated commutative k-algebra. Then
every ideal in A is finitely generated.

Given a commutative k-algebra A and an ideal I ⊂ A, one can form the
k-algebra A/I, the quotient k-algebra. Its elements are cosets a+ I := {a+
i : i ∈ I} in A, and all operation are done using choices of representatives
(and then showing that the result does not depend on the choices). One has
the isomorphism theorem: Given a surjective morphism of commutative
k-algebras t : B → A, the kernel Ker(t) is an ideal in B, and we have an
isomorphism of commutative k-algebras B/Ker(t)

∼−→ A given by sending b +
Ker(t) to t(b).

2.8.3

Let (n, V ) ∈ Affk. The set of morphisms from (n, V ) to (1, k) is called the set of
regular (or algebraic) functions on (n, V ). So those are functions f : V → k
for which there exists a polynomial ϕ ∈ k[x1, . . . , xn] such that f(c1, . . . , cn) =
ϕ(c1, . . . , cn) for all (c1, . . . , cn) ∈ V . Notice that the set of regular function on
(n, V ) has a natural structure of k-algebra, by pointwise addition, multiplication
and multiplication by scalar. Let us denote this k-algebra of regular function
on (n, V ) by O(n, V ). The assignment (n, V ) 7→ O(n, V ) can be naturally made
into a functor

(Affk)
op → CAlgk,

since we can pull back regular functions.

It is easy to find some conditions which objects in the essential image of this
functor must obey. Let (n, V ) ∈ Affk. We have a map k[x1, . . . , xn]→ O(n, V ),
given simply by considering the function on V defined by a polynomial. Clearly,
this map is a morphism of k-algebras. By the definition of O(n, V ), it is surjec-
tive. Thus, first of all, the k-algebra O(n, V ) is finitely generated. Second,
this k-algebra is reduced, meaning that it has no nilpotent elements except 0.
Indeed, this is an algebra of k-valued functions under pointwise multiplication,
and so it being reduced immediately follows from k being reduced, which is clear
as it is a field.

Let us denote by CAlgfg,redk ⊂ CAlgk the full subcategory consisting of
finitely generated and reduced k-algebras. We therefore have a functor

O : (Affk)
op → CAlgfg,redk : (n, V ) 7→ O(n, V ).

Theorem 2.24 (the basic theorem of basic algebraic geometry). The functor
O above is an equivalence of categories.
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Proof. It is quite easy to see that O is fully faithful (we leave this as an exercise).
That O is essentially surjective follows from Hilbert’s nullstellensatz:

Theorem 2.25 (Hilbert’s nullstellensatz). Let I ⊂ k[x1, . . . , xn] be an ideal.
Let ϕ ∈ k[x1, . . . , xn] be a polynomial such that ϕ(c1, . . . , cn) = 0 for every
(c1, . . . , cn) ∈ kn for which ψ(c1, . . . , cn) = 0 for all ψ ∈ I. Then for some
m ∈ Z≥1 one has ϕm ∈ I.

Now, givenA ∈ CAlgfg,redk , choose a surjective k-algebra morhism k[x1, . . . , xn]→
A. Denote by I its kernel. Then A is isomorphic to k[x1, . . . , xn]/I, so by defi-
nition it is enough to see that k[x1, . . . , xn]/I lies in the image of O. Consider
V ⊂ kn given by

V := {(c1, . . . , cn) ∈ kn | ψ(c1, . . . , cn) = 0 ∀ψ ∈ I}.

In fact, recall that I is a finitely generated ideal, so there exist ψ1, . . . , ψm ∈
k[x1, . . . , xn] such that I = (ψ1, . . . , ψm)k[x1,...,xn], and it is immediate to see
that

V = {(c1, . . . , cn) ∈ kn | ψ1(c1, . . . , cn) = 0, . . . , ψm(c1, . . . , cn) = 0},

so that (n, V ) is an affine algebraic variety. Now, we consider the morphism
of k-algebras k[x1, . . . , xn] → O(n, V ) given by sending a polynomial to the
function it defines on V by evaluation. As mentioned above, this is surjective.
The kernel consists of polynomials ϕ ∈ k[x1, . . . , xn] for which ϕ(c1, . . . , cn) = 0
for all (c1, . . . , cn) ∈ V . By Hilbert’s nullstellensatz we see that the kernel
consists of polynomials ϕ for which ϕm ∈ I for some m ∈ Z≥1. But, since
A is reduced, so is the isomorphic to it k[x1, . . . , xn]/I, and this translates by
definitions to the property that for ϕ ∈ k[x1, . . . , xn] for which ϕm ∈ I for
some m ∈ Z≥1, we have ϕ ∈ I. In other words, we see that the kernel of our
morphism k[x1, . . . , xn] → O(n, V ) is precisely I. Hence O(n, V ) is isomorphic
to k[x1, . . . , xn]/I, which is isomorphic to A.

We interpret the above equivalence of categories between (Affk)
op and CAlgfg,redk

as translating the study of geometric objects into pure algebra. Later, Grothendieck
created a reverse process, where one studies commutative rings which a-priori
seem to be distant from geometry, such as the ring of integers Z, by finding geo-
metric objects on which these rings are the rings of functions, in some sense (this
is the theory of affine schemes) - so establishing an equivalence of categories
between AffineSchemesop and CRng. In yet later treatments, when category
theory is absorbed even more, one arrives to simply defining the category of
affine schemes as CRngop (and we wonder, where is the geometry then?).

2.9 The Gelfand transform

It is also tempting to describe the equivalence of categories between the cate-
gory of commutative unital C∗-algebras and the category opposite to that of
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compact Hausdorff spaces. But we are not sure the generic reader has enough
background (such as spectral study of bounded operators on a Hilbert space)
to have motivation for that statement, so we leave this for now.

2.10 Galois theory

Another good example of an equivalence of categories, which we also omit for
now, is Galois theory (given a field K, choosing an algebraic closure of it and
thus obtaining a Galois group Γ (which carries a profinite topology), we have an
equivalence between the opposite of the category of finite-dimensional semisim-
ple K-algebras and the category of continuous finite Γ-sets).

3 Yoneda’s lemma, representing objects, limits

3.1 Yoneda’s lemma

We will now give the most important example of a fully faithful functor, the
contractibility of fibers of which serves a very important ideology.

3.1.1

Let C be a category. We consider the category of functors Fun(Cop,Set) (it is
also called the category of presheaves on C for reasons which are currently not
relevant for us). Let us note that functors Cop → D are also called contravari-
ant functors from C to D.

Any object c ∈ C provides a functor YndC(c) ∈ Fun(Cop,Set) as follows. We
set YndC(c)(x) := HomC(x, c). Given a morphism β : x1 → x2 we have the map

YndC(c)(x2) = HomC(x2, c)
−◦β−−−→ HomC(x1, c) = YndC(c)(x1).

We therefore think of functors F ∈ Fun(Cop,Set) as “imaginary objects” of
C. Namely, following the pattern of the above example YndC(c), we think of
F (x) as the set of morphisms from x to F , and given β : x1 → x2 we think of
the corresponding F (x1) → F (x2) as sending a morphism from x1 to F to its
pre-composition with β, yielding a morphism from x2 to F .

Now, the association c 7→ YndC(c) above can be made in a straight-forward
way into a functor YndC : C→ Fun(Cop,Set). Namely, to a morphism β : c1 →
c2 we associate the morphism YndC(c1) → YndC(c2) which for every x ∈ C is
specified by YndC(c1)(x)→ YndC(c2)(x) given by

YndC(c1)(x) = HomC(x, c1)
β◦−−−−→ HomC(x, c2) = YndC(c2)(x).

We call this functor
YndC : C→ Fun(Cop,Set)

the Yoneda embedding.
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3.1.2

Here is a precise formulation stemming from thinking about F (c) as the set of
morphisms from c to F :

Lemma 3.1. Let F ∈ Fun(Cop,Set) and let c ∈ C. The map

Hom(YndC(c), F )→ F (c) : α 7→ αc(idc)

is a bijection, whose inverse is the map

F (c)→ Hom(YndC(c), F )

sending ζ ∈ F (c) to αζ ∈ Hom(YndC(c), F ) given by taking (αζ)x : HomC(x, c)→
F (x) to send β ∈ HomC(x, c) to F (β)(ζ).

Proof. Let us check the functoriality of the collection ((αζ)x)x∈C, i.e. verify that
it gives a morphism of functors αζ from YndC(c) to F . So given γ : x1 → x2
we need to check that the diagram

Hom(x2, c)

−◦γ
��

(αζ)x2 // F (x2)

F (γ)

��

Hom(x1, c)
(αζ)x1 // F (x1)

commutes. Going right and then down sends β : x2 → c to F (γ)(F (β)(ζ)).
Going down and then right sends β : x2 → c to F (β ◦ γ)(ζ), and those are the
same.

Now one has to check that the two maps are inverse to each other. First,
given ζ ∈ F (c), we map to the morphism αζ , and then map back to (αζ)c(idc) =
F (idc)(ζ) = ζ. Second, given α : YndC(c)→ F , we map to ζ := αc(idc) ∈ F (c),
and then map back to αζ , and we need to check that α = αζ . So for every x ∈ C

we need to check that αx, (αζ)x : Hom(x, c)→ F (x) are equal. So for β : x→ c
we need to check that (αζ)x(β) is equal to αx(β). By definitions, it is equal
to F (β)(ζ), so we need to check that αx(β) = F (β)(αc(idc)). Considering the
commutative diagram

Hom(c, c)

−◦β
��

αc // F (c)

F (β)

��

Hom(x, c)
αx // F (x)

,

we track where idc goes. Going right and then down, it goes to F (β)(αc(idc)).
Going down and then right, it goes to αx(β). So those are equal as desired.

The word “embedding” in the name “Yoneda embedding” is justified by
the following lemma, which is known for being very trivial technically but very
far-reaching ideologically:
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Lemma 3.2 (Yoneda’s lemma). The functor

YndC : C→ Fun(Cop,Set)

is fully faithful.

Proof. Let c1, c2 ∈ C. We want to show that the map

Hom(c1, c2)→ Hom(YndC(c1),YndC(c2))

given by YndC is bijective. Applying Lemma 3.1 to c being c1 and F being
YndC(c2), we have that the map

Hom(YndC(c1),YndC(c2))→ YndC(c2)(c1) = Hom(c1, c2)

given by α 7→ αc1(idc1) is a bijection. So it is enough to show that the for-
mer map is right inverse to the latter map. Let β : c1 → c2. The for-
mer map associated to it the morphism α : YndC(c1) → YndC(c2) for which
αc : Hom(c, c1) → Hom(c, c2) is given by sending a morphism c → c1 to its
composition with α. So αc1(idc1), which is the result of applying the latter
map, is α ◦ idc1 = α. We are done.

3.2 Representing objects

3.2.1

As the Yoneda embedding

YndC : C→ Fun(Cop,Set)

is fully faithful, by Lemma 2.9 given F ∈ Fun(Cop,Set) which lies in the es-
sential image of YndC, the fiber Ynd−1

C (F ) is contractible. What does it mean
concretely? It means first of all that there exists c ∈ C and an isomorphism
α : YndC(c)

∼−→ F (this however is simply by definition of being in the essential
image). In other words, we are given for every x ∈ C a bijection

αx : HomC(x, c)
∼−→ F (x)

and it is functorial in x, meaning that given β : x1 → x2 in C the following
diagram is commutative:

HomC(x2, c)
αx2 //

−◦β
��

F (x2)

F (β)

��

HomC(x1, c)
αx1 // F (x1)

.

Second, the object c is unique, up to unique isomorphism, in the following
sense. Given another c′ ∈ C with an isomoprhism α′ : YndC(c

′)
∼−→ F , there
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exists a unique isomorphism ϵ : c → c′ such that the following diagram is
commutative:

YndC(c)

α
##

YndC(ϵ)
// YndC(c

′)

α′
zz

F

3.2.2

The above is the technical underpinning of a very important philosophy, pio-
neered (to our knowledge) by Grothendieck. Namely, in a problem one encoun-
ters one first constructs an “imaginary object” one desires, and then studies
whether it is “real” - no need to verify its “realness” straight away. The jargon
is that functors in Fun(Cop,Set) which sit in the essential image of the Yoneda
embedding are called representable. An object whose image under the Yoneda
embedding is isomorphic to the functor at question, together with this isomor-
phism (i.e. an object in the relevant fiber of the Yoneda embedding) is then
said to be a representing object. We explained above in what sense such an
object is unique, up to a unique isomorphism.

Remark 3.3. Let us reiterate that to say that an object c represents the functor
F means that we carry with us an isomorphism YndC(c)

∼−→ F , not just the
knowledge that such isomorphism exists.

3.2.3

Let us give a simple example of a representing object. Consider the functor

S : Setop → Set,

sending a set X to the set S(X) of subsets of X; if we have a map f : X → Y
we define a map S(f) : S(Y )→ S(X) by sending a subset A ⊂ Y to the subset
f−1(A) ⊂ X. The functor S is representable; indeed, consider B := {0, 1} and
consider the isomorphism of functors

α : YndSet(B)→ S

given by setting, for every X ∈ Set,

αX : Hom(X,B)→ S(X)

to be αX(f) := f−1(1). We leave to the reader to check that indeed in this way
we obtain an isomorphism of functors α. Informally, one says “to give a subset
of a set is the same as to give a map from this set to the set {0, 1}”.
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3.2.4

Let us give another reformulation of what it takes to have a representing object.
We can of course reformulate having an object c ∈ C and an isomorphism
YndC(c)

∼−→ F , as having an object c ∈ C and a morphism α : YndC(c) −→
F , which furthermore happens to be an isomorphism. By Lemma 3.1, the
information of α is the same as that of an element ζ ∈ F (c). To say that α is an
isomorphism is to say that for every x ∈ C, the map HomC(x, c)→ F (x) given by
β 7→ α(β) is a bijection. Recall from Lemma 3.1 that we have α(β) = F (β)(ζ).
Thus, we can reformulate that a representing object for F is an object c ∈ C

equipped with an element ζ ∈ F (c), such that for every object x ∈ C and every
ξ ∈ F (x), there exists a unique β : x → c such that ξ = F (β)(ζ). One usually
interprets this condition by saying that the pair (c, ζ) furnishes a “universal”
element (among the elements lying in various F (x)’s), or that is satisfies a
universal property.

3.2.5

Returning to the example of S and B we just had, to formulate it in the language
of a universal property, we have the element {1} ∈ S(B). Then (B, {1}) provides
the data of an object B in Set and a universal element in S(B) which, as we just
explained, is an equivalent way of describing an isomorphism α : YndSet(B)→
S. Informally, {1} ⊂ {0, 1} is a “universal” example of a subset of a set.
Formally, let us unfold again, this means that for every set X and every subset
A ⊂ X, there exists a unique map f : X → {0, 1} such that A = f−1({1}).

3.2.6

We will give a lot more examples of representing functors when we discuss limits
below. For now, let us provide a non-trivial example from topology, illustrating
a very important class of examples, that of moduli problems.

Given X ∈ Top, let us consider the full subcategory Cov2(X) of the category
Cov(X), consisting of those π : Y → X for which |π−1(x)| = 2 for all x ∈ X.

We first consider the functor

H : Topop → Set,

given by sending X to π0(Cov2(X)), i.e. the set of isomorphism classes of 2-
covering maps of X. This is functorial by pull-back of covering maps. The
following claim shows that it is not reasonable to expect this functor to be
representable. Recall that two morphisms of topological spaces f0, f1 : X ′ → X
are said to be homotopic if there exists a morphism f : [0, 1]×X ′ → X such
that f(0,−) = f0(−) and f(1,−) = f1(−).

Claim 3.4. Let X,X ′ ∈ Top, and let f0, f1 : X ′ → X be two homotopic
morphisms. Let π : Y → X be in Cov(X). Then f∗0 (π), f

∗
1 (π) ∈ Cov(X ′) are

isomorphic.
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Proof. Let us fix a homotopy f : [0, 1] × X ′ → X between f0 and f1. Let
us denote by i0, i1 : X ′ → [0, 1] × X ′ the morphisms i0(−) := (0,−) and
i1(−) = (1,−), so that by definition f◦i0 = f0 and f◦i1 = f1. We want to define
a map X ′ ×

f0;X;π
Y → X ′ ×

f1;X;π
Y and then check that it is gives isomorphism

as desired. So we are given y0 ∈ Y and x′ ∈ X ′ such that π(y0) = f0(x
′)

and we want to define y1 ∈ Y such that π(y1) = f1(x
′). We consider the path

p : [0, 1] → X given by p(t) := f(t, x′). By the path lifting lemma, it lifts
uniquely to a path in Y , whose value at 0 is y0. The value at 1 we call y1. We
omit all the checks one needs to do.

Thus, the claim hints to consider the following category HoTop, the ho-
motopy category of topological spaces. Objects of HoTop are the same
as objects of Top. As for morphisms, we let HomHoTop(X

′, X) to be the set
of equivalence classes in HomTop(X

′, X) with respect to homotopy (which one
checks is indeed an equivalence relation). One defines composition by choosing
representatives and performing the composition in Top, checking that this does
not depend on the choice of representatives.

Now instead of H, we consider the functor

H ′ : HoTopop → Set

given by the same prescription as H (the claim above shows that this is well
defined).

In fact, for technical reasons it is not good to work with all topological
spaces, as some are pathological. Let us (in a somewhat ad-hoc manner) consider
the full subcategories Toplsc,pc ⊂ Top and HoToplsc,pc ⊂ HoTop consisting of
topological spaces which are locally simply connected and paracompact. We
consider the restriction of our functor to that full subcategory

H ′ : (HoToplsc,pc)op → Set

(by abuse of notation denoted by the same name).

Theorem 3.5. The above functor

H ′ : (HoToplsc,pc)op → Set

is representable. The representing object is called the classifying space of the
group C2 (where C2 is the group with two elements), or the Eilenberg-Mac
Lane space K(C2, 1). The representing object can be concretely described (see
below).

In other words, one can find B ∈ Toplsc,pc and a 2-cover π : E → B, such
that for every X ∈ Toplsc,pc and every σ ∈ Cov2(X), there exists a morphism
of topological spaces f : X → B, unique up to homotopy, such that f∗(π) is
isomorphic to σ. Let us describe, without proof, a realization of such π : E → B.
We consider the R-vector space V with infinite basis e1, e2, . . .. We let B be
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the set of one-dimensional subspaces of V . It has a natural topology whose
description we omit for brevity. We let E be the set of elements in V whose
length (in the usual sense of sum of squares of coordinates) is 1. It is also
naturally topologized. We have the morphism π : E → B sending an vector to
the one-dimensional subspace spanned by it. One can see that π ∈ Cov2(B)
and it is universal as desired.

3.2.7

Working with Cop instead of C, we obtain dual notions of corepresentable func-
tors C → Set, corepresenting objects, etc. Let us give an important example
of corepresenting objects. Let k be a field. Let V,W ∈ Veck. We consider the
functor BV,W : Veck → Set given by setting BV,W (U) to be the set of k-bilinear
maps V × W → U . Functoriality is straight-forward. The functor BV,W is
corepresentable, and the corepresenting object is denoted V ⊗

k
W , called the

tensor product. Thus, we have by definition bijections

HomVeck(V ⊗
k
W,U)

∼−→ {k-bilinear maps V ×W → U}

functorial in U ∈ Veck. How to show the existence of V ⊗
k
W? One way is

as follows. Choose a basis (ei)i∈I for V and a basis (fj)j∈J for W . Consider
the vector space k[I × J ], with a basis consisting of formally created symbols
δi,j , one for each (i, j) ∈ I × J . Given a k-bilinear map Φ : V ×W → U , we
construct a k-linear map k[I × J ]→ U , given by sending

∑
(i,j)∈I×J ci,j · δi,j to∑

(i,j)∈I×J ci,j · Φ(ei, fj). One checks that this gives a bijection

HomVeck(k[I × J ], U)
∼←− {k-bilinear maps V ×W → U}

functorial in U , as desired. A different approach of constructing V ⊗
k
W , which

will generalize better, is to consider the “huge” vector space k[V ×W ] (with basis
element δv,w for every (v, w) ∈ V ×W ), and quotient it by the subspace spanned
by vectors of the form δv1+v2,w − δv1,w − δv2,w, δcv,w − cδv,w, and two similar
expressions, swapping v and w. Again, given a bilinear map Φ : V ×W → U ,
we obtain a linear map from this quotient space by sending δv,w to Φ(v, w), and
checking that everything is well-defined. Then one checks that this is bijective
and functorial.

It is very important to understand the ideology, that we don’t need a concrete
construction of an object to know what it is. The construction is simply a proof
that the tensor product exists. One might be able to prove it more abstractly,
without needing a concrete construction. One hopes that when working with the
tensor product, one will be able, mostly, to be satisfied by its universal property,
without needing to remember a concrete construction. Or, at least, one tries
that all the statements that one makes do not address a concrete construction,
while proofs sometimes will.
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Still on the ideological level, somewhat dually to the previous paragraph, we
can say that it can be useful to know of a construction/“realization”/“model”
of a representing object, rather than to know the mere fact of its existence.
Moreover, if we know one such “model”, it still might be useful to learn another
one (like in the example above of the tensor product, where we had two descrip-
tions of it). Each “model” can shed light on some other aspect. Moreover, the
comparison of two “models” (i.e. expliciting the isomorphism between them)
can also shed light on some things!

3.3 The definition of a limit

3.3.1

Let I be a category, of which we think as an “index category”. Of a functor
I→ C we think as a “diagram in C of shape I”.

For example, if I = ∗ then to give a diagram in C of shape I is the same as
to give an object of C. If I = {∗1, ∗2} is a set with two elements (considered as
a category with only identity morphisms), then to give a diagram in C of shape
I is the same as to give an ordered pair of objects of C. Of course, generalizing
this, if I is a set (considered as a category with only identity morphisms) then
to give a diagram in C of shape I is the same as to give an object of C for
each element in I. If I is the category having objects ∗1, ∗2, and whose only
non-identity morphism is one morphism from ∗1 to ∗2, then to give a diagram
in C of shape I is the same as to give a morphism in C.

3.3.2

Let us be given K : I → C. Let c ∈ C. By a cone with vertex c over K we
will understand the data of a morphism αi : c→ K(i) for every i ∈ I, such that
for any morphism β : i1 → i2 in I the following diagram is commutative:

K(i1)

K(β)

��

c

αi1

<<

αi2 ""

K(i2)

.

The set of such data we denote ConesK(c).

3.3.3

We naturally obtain a functor ConesK ∈ Fun(Cop,Set) (i.e. the reader should
explicit what it does to morphisms etc.). If this functor is representable, a
representing object is called the limit of K, and denoted limK, or limi∈I K(i).
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3.3.4

According to what we explained above, a reformulation of the notion of the
limit of K is that it is an object c ∈ C equipped with a cone (αi : c→ K(i))i∈I

with vertex c over K (we will refer to αi as the structural morphisms, or
evaluations/projections of the limit) which is universal: If c′ ∈ C is an object
equipped with a cone (βi : c

′ → K(i))i∈I with vertex c′ over K, there exists a
unique morphism γ : c′ → c such that βi = αi ◦ γ for all i ∈ I.

3.4 Examples of limits

3.4.1

Let us now consider C to be some typical relatively concrete category, like Set
or AbGrp or Veck or CRng etc.; Say C := CRng. Assume that I is a small
category (i.e. the Hom-sets are all small, and the class of objects of I is
a small set). Let us describe then completely explicitly what is limK. We
have the commutative ring

∏
i∈IK(i), whose elements are vectors (ki)i∈I where

ki ∈ K(i), and the sum and product are defined component-wise. We then
consider the subring A of

∏
i∈IK(i), consisting of vectors (ki)i∈I such that for

every morphism α : i→ j in I, one has K(α)(ki) = kj . We have ring morphsims
pri : A → K(i) for every i ∈ I, given by projecting onto the i-th coordinate.
These are clearly compatible, forming a cone with vertex A over K. We then
claim that this makes A to be limK. For this, one needs to check that given
a commutative ring B and a morphisms βi : B → K(i) for i ∈ I, compatible,
one has a unique morphism β : B → A such that pri ◦ β = βi for i ∈ I. Clearly
β(b) := (βi(b))i∈I will be the unique morphisms as desired - we leave to the
reader to check this.

3.4.2

For I = ∅ (so K : I → C is clear) we obtain the notion of the final object in C.
By definition, this is an object c ∈ C equipped with a bijection

HomC(c
′, c)

∼−→ ∗

for every c′ (because there exists a unique cone with vertex c′ overK - the empty
one). Notice that functoriality in c′ here is automatic. So, in other words, a final
object is an object such that from any object there exists a unique morphism
into it.

3.4.3

More generally, for I a set considered as a category with only identity mor-
phisms, and a diagram K : I → C, the limit limK, in this case commonly
denoted

∏
i∈IK(i) and called the product of the K(i)’s, is an object equipped

with “projection” morphisms πi :
∏

i∈IK(i) → K(i) for every i ∈ I, with the
property that for every object c ∈ C equipped with morphisms βi : c→ K(i) for
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all i ∈ I, there exists a unique morphism β : c→
∏

i∈IK(i) such that πi◦β = βi
for all i ∈ I. A common particular case is I = {∗1, ∗2}. Then K is the data of
two objects (c1, c2) in C, and the product is denoted c1× c2. It is equipped with
two projection morphisms π1 : c1× c2 → c1 and π2 : c1× c2 → c2, and for every
object c′ equipped with morphisms β1 : c′ → c1 and β2 : c′ → c2, there exists a
unique morphism β : c′ → c1 × c2 such that π1 ◦ β = β1 and π2 ◦ β = β2.

3.4.4

Let I be the category whose objects and non-identity morphisms are as depicted
here:

∗1

��
∗2 // ∗

.

Thus a diagram K : I → C is the data of three objects (c1, c2, c) and two
moprhisms p1 : c1 → c and p2 : c2 → c. Notice that one can interpret a
cone with vertex c′ over such K as the data of morphisms π1 : c′ → c1 and
π2 : c′ → c2 such that p1 ◦π1 = p2 ◦π2. The limit limK is in this case called the
fiber product of c1 and c2 over c, and is denoted c1×

c
c2 (this notation is a bit

ambigious, since p1 and p2 are not present in it; sometimes, if this is important,
people write something like c1 ×

p1,c,p2

c2 to clarify).

So, the fiber product is an object c1 ×
c
c2 equipped with morphisms π1 :

c1 ×
c
c2 → c1 and π2 : c1 ×

c
c2 → c2 such that p1 ◦ π1 = p2 ◦ π2. This satisfies

the universal property, that given another object c′ and morphisms π′
1 : c′ → c1

and π′
2 : c′ → c2 such that p1 ◦ π′

1 = p2 ◦ π′
2, there exists a unique morphism

β : c′ → c1 ×
c
c2 such that π1 ◦ β = π′

1 and π2 ◦ β = π′
2.

3.4.5

Let I be the category whose objects and non-identity morphisms are as depicted
here:

∗1
))
55 ∗2 .

Thus a diagram K : I→ C is the data of two objects (c1, c2) and two morphisms
α, β : c1 → c2. One can interpret a cone with vertex c′ over K as the data of
a morphism π : c′ → c1 such that α ◦ π = β ◦ π. The limit limK is called
the equalizer of α and β. It is an object e ∈ C equipped with a morphism
π : e → c1 such that α ◦ π = β ◦ π with the following universal property: For
every c′ ∈ C equipped with a morphism π′ : c′ → c1 satisfying α ◦ π′ = β ◦ π′,
there exists a unique morphism γ : c′ → e such that π′ = π ◦ γ.
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3.4.6

Let k be a field and consider the category Veck of vector spaces over k. Given
a morphism T : V →W in Veck, the fiber product of

V

T
��

0
0
// W

and the equalizer of

V
T
))

0

55 W

are the same. Indeed, both represent the functor sending a vector space U to the
set of morphisms S : U → V satisfying T ◦ S = 0. This limit is denoted Ker(T )
(the kernel of T ), and it comes equipped with a morphism S : Ker(T )→ V . It
satisfies the universal property, that T ◦S = 0, and given a morphism S′ : U → V
satisfying T ◦S′ = 0 there exists a unique morphism R : U → Ker(T ) such that
S′ = S ◦R.

3.4.7

Let I be the poset of negative integers. Let R be the poset of real numbers.
Then a diagram I → R is a decreasing sequence r−1 ≥ r−2 ≥ . . .. The limit
of this diagram exists if and only if the sequence is bounded below, and it is
given by the infimum of this sequence, which is the same as its limit in the usual
analysis sense.

3.4.8

Let us give a concrete example of a limit. Let p be a prime number. Consider
the partially ordered set Z≥1, and view it as a category like we explained before.
We have the functor (Z≥1)

op → CRng, sending n to Z/pnZ, and n ≤ m is sent
to Z/pmZ→ Z/pnZ given by x+ pmZ 7→ x+ pnZ. The limit of this functor is
denoted by Zp, and is known as the ring of p-adic numbers. Thus, explicitly,
an element of Zp is a sequence (xn)n∈Z≥1

where xn ∈ Z/pnZ (a residue of an
integer modulo pn), coordinated in the sense that given n ≤ m, the residue
of xm modulo pn is the same as xn. Addition and multiplication are done
component-wise. Such numbers arise when one wants to solve an equation such
as x2 = 2 in integers. There is no solution of course, but x1 := 3 is a solution
modulo 7: x21 ≡7 2. One then can see that one can find an integer x2 such that
x22 ≡72 2 and x2 ≡7 x1 (so x2 recovers x1 but is a solution of our equation to a
greater precision), then an integer x3 such that x23 ≡73 2 and x3 ≡72 x2, and so
on. One obtains a “tower” which defined an “imaginary” integer, in the sense
that we know which residues it leaves upon division by various powers 7n (but
there is no actual integer leaving all these residues). This is an element in the
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ring Z7. To conclude, the ideology has of course a strong commonality with that
of representable functors, complex numbers etc. - instead of solving a problem,
we create a bigger world with tailored solutions, and the object of study shifts
to the study of the whole bigger world and its relations with the smaller world,
and so on.

3.4.9

Let us remark here that ConesK(c) can be seen as the limit of the functor
I → Set given by i 7→ HomC(c,K(i)). Then, with some circularity, one might
rewrite the definition of a limit as having, for all c ∈ C and functorial in that c,
bijections

HomC(c, lim
i∈I

K(i))
∼−→ lim

i∈I
HomC(c,K(i)).

In other words, we have some primordial notion of a limit in the category of
sets, and then in a general category an object is a limit when we explicit how
Hom into it is the limit of Hom’s - Hom into a limit is the limit of Hom’s.

3.4.10

To exercise a bit, let us present the basics of the ideology of “working over a
base”, or the “relative point of view” (due to Grothendieck).

We fix a category C, assume for simplicity that all finite products exist in
C. Of a morphism in π0 : d0 → c0 we think, informally, as a ’family of object
in C parametrized by c0, or living over c0. Of c0 we think as the “base” of
the family and of d0 as the “total space” of the family. If we have a “partial
re-parametrization” α : c1 → c0, we form the fiber product

d1 //

π1

��

d0

π0

��
c1

α // c0

and think of π1 : d1 → c1 as the original family, pull-backed to c1 via α. One also
calls the process of obtaining π1 from π0 “base change” (the base has changed,
from c0 to c1).

Most clearly the intuition is seen when C = Set (or C = Top). Then π0 :
Y0 → X0 is informally the family of objects in C (i.e. sets) parametrized by
points of X0, where to each x0 ∈ X0 we associate the set π−1

0 (x0). Now if
we have α : X1 → X0, we obtain a new family naturally, simply associating
to x1 ∈ X1 the set π−1

0 (α(x1)). So we sample from the same family in a “re-
parametrized” way (and also in a partial way potentially, if α is not surjective).
Forming the fiber product

Y1 //

π1

��

Y0

π0

��

X1
α // X0

,
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it is easy to see that we have a canonical bijection π−1
0 (α(x1)) ∼= π−1

1 (x1), so
indeed π1 : Y1 → X1 captures the new family.

When we have a property P of objects in C, we would like to formulate a
property P′ of morphisms in the category C so that, informally, for a morphism
has P′ if and only if all its fibers have P, in some “continuous”/“coherent” way.
In particular, we always want the following two features:

• Denoting by • the final object in C, we want c ∈ C to have P if and only
if c→ • has P′.

• (“stability under base change”) Given a morphism π : d0 → c0 which has
P′, and given any α : c1 → c0, forming the fiber product

d1 //

π1

��

d0

π0

��
c1

α // c0

,

the morphism π1 has P′.

Oftentimes one also wants/has the following feature, basically saying that
the total space of a P′-family parametrized by a P-base is P:

• (“stability under composition”) Given morphisms ν : e0 → d0 and π :
d0 → c0, if both ν and π have P′ then π ◦ ν has P′.

As an example, we have the important property of a topological space, i.e.
object in Top, to be compact. The relative property is defined as follows: A
morphism π : Y → X in Top is proper, if for all compact K ⊂ X, the space
π−1(K) is also compact. Then one checks that, indeed, the three properties
above are satisfied. Notice that the fibers of a proper map are compact, but the
inclusion of an open interval to a closed interval gives an example of a map all
of whose fibers are compact, but which is not proper. This is why we said that
having property P′ should be thought of as all fibers having property P but in
some “coherent” way, with no “abruptions”.

3.5 Dualizing everything

By working with Cop instead of C, we obtain the category of pre-cosheaves
Fun(C,Set), the co-Yoneda lemma, corepresentability of functors, corepresenting
objects, the functor of cocones coConesK : C → Set, colimits. The colimit of
K : I → C is denoted colim K or colimi∈IK(i). We have the structural
morphisms, or insertions/embeddings K(i) → colim K for every i ∈ I.
Thus, we have for the colimit bijections, functorial in c ∈ C:

HomC(colim i∈IK(i), c)
∼−→ coConesK(c) ∼= lim

i∈Iop
HomC(K(i), c).
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In words, a morphism from a colimit is a coordinated system of morhisms from
the limitands, and the set of morphisms from a colimit is the limit of the sets
of morphisms from the limitands (briefly - Hom from the colimit is the limit of
Hom’s).

3.6 Examples of colimits

3.6.1

For I = ∅, one gets the notion of an initial object - an object such that, to
any other object, there exists precisely one morphism from it.

3.6.2

If I is a set considered as a category with only identity morphisms, colim K is
called the coproduct, denoted generally

∐
i∈IK(i).

Let us consider C := Set. Then
∐

i∈IK(i) is the disjoint union. If we
consider C := Mod(R), the category of R-modules for a ring R (so for example
vector spaces over a field R := k, or abelian groups (the case R := Z)), then
the coproduct is realized as the direct sum ⊕i∈IK(i). It is the sub-module of
the product

∏
i∈IK(i), consisting of vectors all of whose entries, except finitely

many, are zero. The cocone morphisms K(j)→ ⊕i∈IK(i) are given by sending
k ∈ K(j) to the vector whose j-th coordinate is k and all other coordinates
are 0. If C := Grp then again the description of coproducts is different. For
example, the coproduct of Z and Z is a group, to give a morphism from which
is the same as to give two elements. It is the free group on two generators, and
we see that the construction of the coproduct must be a bit more sophisticated
in this case.

So, we see that colimits tend to be “calculated differently” in the various
standard categories (later we will be able to formalize this, by saying that the
forgetful functors do not generally commute with colimits). This is a big differ-
ence between limits and colimits, at the base pointing to the asymmetry between
subobjects and quotient objects in the axiomatics of sets.

3.6.3

Suppose that C := Set and I is small, and let us give the concrete description
of the colimit colim K. We first consider the disjoint union C ′ :=

∐
i∈IK(i)

(let us write the element k ∈ K(i) considered as an element of the disjoint
union as (i, k)). We then consider the equivalence relation on this disjoint
union generated by relations (i1, k) ∼ (i2,K(α)(k)) where α : i1 → i2 and
k ∈ K(i1). We then consider the quotient C of the disjoint union by this
equivalence relation. We have maps K(i) → C given by the obvious maps
K(i)→ C ′ (sending k to (i, k)) followed by the projection C ′ → C. We leave as
an exercise to check that this gives a universal cocone, i.e. makes C the colimit
of K.
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We can repeat a similar construction in some other categories, for example
C := Top (in particular, all small colimits exist in Top). Here, we will have to
pay attention to topologies, recalling the disjoint union topology and then the
quotient topology.

If we would like to describe a general small colimit in C := AbGrp, for
example, then we proceed by first considering the direct sum ⊕i∈IK(i) and then
considering the quotient group of this by the subgroup generated by elements
(i1, k)− (i2,K(α)(k)) where α : i1 → i2 and k ∈ K(i1).

3.6.4

If I is the category whose objects and non-identity morphisms as follows:

∗ //

��

∗1

∗2

,

the colimit colim K is called the push-out, denoted K(∗1)
∐

K(∗)
K(∗2). Here one

can illustrate graphically, for example how the push-out of two discs along their
boundaries is a sphere.

3.6.5

Let I be the category whose objects and non-identity morphisms are as depicted
here:

∗1
))
55 ∗2 ,

the colimit colim K is called the coequalizer. Here one can illsutrate graph-
ically, for example how the coequalizer of the two end points of an interval is
the circle.

3.6.6

Again we can consider a morphism T : V → W in Veck, and the coequalizer of
T, 0 : V →W is the same as the pushout 0

∐
V

W . This object is the cokernel of

T , concretely given as the quotient of W by the image of T .

3.7 General colimits in terms of special ones

Let us choose to talk about colimits in this subsection, instead of limits. As
before, there is no difference since we can always dualize, it is just that in the
concrete examples colimits will be the more interesting choice to think about.
Namely, we can motivate the discussion by the desire to show that in the cate-
gory Grp there exist arbitrary small colimits (we have already seen that there
exist arbitrary small limits in Grp by a concrete construction).
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We say that a category is Hom-small if all Hom-sets in it are small.

Proposition 3.6. Let C be a Hom-small category. Suppose that all small co-
products and all coequalizers exist in C. Then all small colimits exist in C.

Proof. Let I be a small category and K : I→ C. We consider two morphisms

α0, α1 :
∐

i,j∈I, β:i→j

K(i)→
∐
i∈I

K(i)

defined as follows. To define a morphism from the coproduct on the left, we
need to define, for each β : i → j, a morphism from K(i). For α0, we let it
be the the structural inclusion of K(i). For α1, we let it be K(β) followed by
the structural inclusion of K(j). We consider now the coequalizer E of α0 and
α1. We have morphisms from K(i)’s to E, by the structural inclusion to the
coproduct on the right followed by the structural morphism to the coequalizer.
We leave to the reader to check that these maps form a cocone, and the universal
property is satisfied.

Thus, for example, to check that arbitrary small colimits in the category
Grp exist,it is enough to check that arbitrary small coproducts exist, as well as
coequalizers. It is easy to see what are coequalizers (quotient of the target by
the normal subgroup generated by some quotients), so one is left with showing
the existence of corpoducts.

A small category I is called filtered, if two conditions are satisfied. First,
for every i1, i2 ∈ I there exists i3 ∈ I and morphisms i1 → i3 and i2 → i3.
Second, for every i1, i2 ∈ I and morphisms β1, β2 : i1 → i2, there exists i3 ∈ I

and a morphism β3 : i2 → i3 such that β3 ◦β1 = β3 ◦β2. Small filtered colimits,
that is colimits over a small filtered category, tend to be more straight-forward
to calculate than general small colimits (intuitively speaking, the filtered colimit
of objects is in some sense their “accumulation”, rather than a more delicate
“gluing”). For example, small filtered colimits in categories such as Grp and
Mod(R) can be given the same description as those in Set (and in particular
they exist). For example, let as consider Grp and let K : I → Grp be a small
filtered diagram. We consider the set

∐
i∈IK(i) (for clarity, let us write (i, k),

where i ∈ I and k ∈ K(i), for the element k in the disjoint union at the i-th
place) and the equivalence relation on it - (i1, k1) and (i2, k2) are equivalent if
there exist β1 : i1 → i3 and β2 : i2 → i3 such that K(β1)(k1) = K(β2)(k2). One
checks that this is indeed an equivalence relation. Then one defines a group
structure on the set of equivalence classes as follows. Given (i1, k1) and (i2, k2),
we find i3 ∈ I and morphisms β1 : i1 → i3 and β2 : i2 → i3, and define the
product of (i1, k1) and (i2, k2) to be (i3,K(β1)(k1) · K(β2)(k2)). One checks
that this does not depend on the choice, etc. One then checks that the thus
obtained group, together with the obvious morphisms from the various K(i)’s,
gives the desired colimit.

Proposition 3.7. Let C be a category. Suppose that all finite coproducts and
all small filtered colimits exist in C. Then all small coproducts exist in C.
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Proof. Let I be a small set, and (ci)i∈I a family of objects in C. We want to
show that the coproduct of this family exists. Let us consider the partially
ordered set J whose elements are finite subsets of I and the partial order is that
of containment. We consider the partially ordered set J as a category in our
usual way. It is easy to see that J is a small filtered category. We have a functor
K : J → C defined as follows. We let K(S) be the coproduct

∐
i∈S ci. We leave

the reader to define precisely the functoriality of K. Let us remark momentarily
that here we again face what we tried to stress - we “choose” a coproduct for
every S ∈ J , a lot of choice in the standard axiomatics, but really no choice (a
contractible category of choice). Now we claim that colim K, together with the
morphisms from the ci’s given by ci

∼−→ K({i})→ colim K, is a coproduct, and
leave it to the reader.

We also have the following easier proposition:

Proposition 3.8. Let C be a category. Suppose that it has an initial object and
coproducts of any two objects. Then it has all finite coproducts.

Proof. Left as an exercise.

The last two propositions reduce further the statement that Grp contains
all small colimits to showing that it has coproducts of two groups (as clearly
there is an initial object - the trivial group). This coproduct can be described
concretely, it is known in group theory as the “free product”, denoted G ∗ H.
But later we will see also an abstract justification for the existence of G ∗H.

4 Adjoint functors

4.1 Bifunctors

When dealing with expressions like HomC(c1, c2), we better get used to bifunc-
tors.

Given categories C and D, we can form the product category C × D.
Its objects are pairs (c, d) consisting of an object c ∈ C and an object d ∈ D.
Morphisms between (c1, d1) and (c2, d2) are pairs (α, β) consisting of a morphism
α : c1 → c2 and a morphism β : b1 → b2. Composition is again component-wise.
We leave to the reader to see that the information of a functor

F : D→ Fun(C,E)

is “the same” as the information of a functor

F× : C×D→ E

where the relation is F×(c, d) = F(d)(c) (so formally we have an identification
of the categories Fun(D,Fun(C,E)) and Fun(C × D,E); This identification is
an equivalence of categories but in fact stronger (it is “propositional” in some
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sense)). A bifunctor is just the terminology for a functor out of a product of
two categories.

Let us notice here that, given G1, G2 : C×D→ E, a morphism α : G1 → G2

is a family (αc,d)c∈C,d∈D of morphisms αc,d : G1(c, d) → G2(c, d) satisfying
functoriality. We leave to the reader to see that functoriality in this case can
be stated as the validity of two separate conditions, functoriality in c and func-
toriality in d. Functoriality in c means that given a morphism β : c1 → c2 in C

and d ∈ D the following square is commutative:

G1(c1, d)
αc1,d

//

G1(β,idd)

��

G2(c1, d)

G2(β,idd)

��

G1(c2, d)
αc2,d

// G2(c2, d)

,

and functoriality in d means that given a morphism β : d1 → d2 in D and c ∈ C

the following square is commutative:

G1(c, d1)
αc,d1 //

G1(idc,β)

��

G2(c, d1)

G2(idc,β)

��

G1(c, d2)
αc,d2 // G2(c, d2)

.

4.2 The definition of adjoint functors

We have a functor

LC,D : Fun(C,D)op → Fun(D× Cop,Set)

given by sending F : C → D to ((d, c) 7→ HomD(F (c), d)). We leave to the
reader to understand what we mean everything to do to morphisms, i.e. how
we mean to complete the definition.

Similarly, we have a functor

RC,D : Fun(D,C)→ Fun(D× Cop,Set)

given by sending C←− D : G to ((d, c) 7→ HomC(c,G(d))).

Given F : C→ D and C←− D : G, an adjunction between F and G, making
F the left adjoint of G and making G the right adjoint of F is, by definition,
an isomorphism α : LC,D(F )

∼−→ RC,D(G). In other words, it is a family of
bijections, for c ∈ C and d ∈ D,

αc,d : HomD(F (c), d)
∼−→ HomC(c,G(d)),

functorial in c and d (as explicated above).
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Let us discuss uniqueness of adjoints. Let us notice that the functors LC,D

and RC,D are fully faithful. Indeed, for example discussing RC,D, notice that
by identifying Fun(D× Cop,Set) with Fun(D,Fun(Cop,Set)), our functor RC,D

becomes the functor

(YndC ◦ −) : Fun(D,C)→ Fun(D,Fun(Cop,Set)).

By Lemma 2.12, this functor is fully faithful, and so RC,D is fully faithful.

Since, looking at the defintion, a right adjoint of F can be thought of as an
object in the fiber of RC,D over LC,D(F ), and this fiber is either contractible
or empty, we obtain the uniqueness of right adjoints, up to a unique
isomoprhism: Given two right adjoints (G,α) and (G′, α′) of F , there exists
a unique isomorphism β : G

∼−→ G′ such that

HomC(c,G(d))

βd◦−

��

αc,d

((

HomD(F (c), d)

HomC(c,G
′(d))

α′
c,d

66

for all c ∈ C and d ∈ D.

Symmetrically, we obtain the uniqueness, up to a unique isomorphism,
of left adjoints.

Let us conduct a preliminary discussion of existence of adjoints, for example
considering right adjoints. So let F : C→ D. Let us identify Fun(D× Cop,Set)
with Fun(D,Fun(Cop,Set)) as above. As we mentioned, we then reinterpret
RC,D as composition with the Yoneda embedding

(YndC ◦ −) : Fun(D,C)→ Fun(D,Fun(Cop,D))

an the existence of a right adjoint for F means that LC,D(F ) sits in the essential
image of this (YndC ◦ −). By Lemma 2.12, LC,D(F ) sits in the essential image
of (YndC ◦−) if and only if for any d ∈ D, LC,D(F )(d) sits in the essential image
of YndC, i.e. if and only if for any d ∈ D the functor

c 7→ HomD(F (c), d)

is representable.

In other words, “object-wise existence of the adjoint implies its existence”.
This means that if we know that

c 7→ HomD(F (c), d)
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is representable for any d ∈ D, we call a representing object by G(d), and then
we automatically obtain from these data what G should do to morphisms, so
giving G the structure of a functor, which will have the structure of a right
adjoint of F . It is good to understand this explicitly, but it is folded inside the
above conceptualizations.

4.3 Some examples of adjoint functors

For a “forgetful” functor, the left adjoint is usually interpreted as a “free con-
struction” (i.e. in the spirit of having generators without relations). For
example, let k be a field. We have the forgetful functor − : Veck → Set. It
has a left adjoint, which we have already described above: It is the functor
k[−] : Set→ Veck sending S to k[S], a vector space with basis (δs)s∈S (we have
created a formal symbol δs for every s ∈ S). To construct the adjunction we
need, given S ∈ Set and V ∈ Veck, to construct a bijection

αS,V : HomSet(S, V )
∼−→ HomVeck(k[S], V ),

and then show that it is functorial in S and V . We construct αS,V as sending
f : S → V to Tf : k[S] → V given by Tf (

∑
s∈S cs · δs) :=

∑
s∈S cs · f(s). We

leave to the reader to verify everything that is left. In words, this adjunction
can be formulated as the usual linear algebra statement “to give a linear map
from a vector space with a basis, is the same as to say where basis elements go”.

The above example can be generalized as follows. Given a ring R, we consider
the category Mod(R) of left R-modules. There is the forgetful functor − :
Mod(R) → Set, and it has a left adjoint R[−] : Set → Mod(R) (everything is
done the same as above). In particular, we can set R := Z. Here Mod(Z) can
be identified with the category of abelian groups. We obtain the construction
of a free abelian group on a set of generators.

If we consider the forgetful functor − : Grp → Set from the category of
groups, it again has a left adjoint. It is the construction of a free group on a set
of generators. This is more involved than the commutative examples above -
the free group is constructed using words of arbitrary length etc. We will later
see another approach, showing that the left adjoint exists abstractly, without a
specific construction.

Let k be a field. We can consider the forgetful functor − : CAlgk → Set
from commutative k-algebras. The left adjoint will send a set S to the k-algebra
P (S) of polynomials in variables (xs)s∈S . So, for example, for S = {1, . . . , n},
we obtain the relation we have already mentioned above:

An ∼−→ HomSet({1, . . . , n}, A)
∼−→ HomCAlgk(k[x1, . . . , xn], A).

Let k be a field. Consider this time the forgetul functor − : CAlgk → Veck
from commutative k-algebras to k-vector spaces. It has a left adjoint, sending
V to the “free symmetric algebra on V ”, whose invariant description requires
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to know a little bit about tensor products. However, we can proceed without,
as follows. We want to describe the value of the left adjoint on a vector space
V . Since every vector space admits a basis, we can replace V by an isomorphic
vector space k[S] for a set S. We then obtain:

HomVeck(k[S], A)
∼←− HomSet(S,A)

∼−→ HomCAlgk(P (S), A)

(we here follow the usual practice of omitting the name of the forgetful functor,
it being implicit by observing in which category the Hom-set is taken), which
shows that k[S] is the value of the desired left adjoint on V . A further reflection
on such a construction, involving a choice, is to think what happens when we
choose another basis T for V . We will also get a realization of P (T ) as the
value of the left adjoint on V . By our above discussions, we obtain a canonical
isomorphism of k-algebras P (S)

∼−→ P (T ). One can trace the definitions and
make the isomorphism explicit (we leave this to the reader).

The above examples where of functors “forgetting extra structure”.
There are also functors “forgetting extra property”, whose left adjoints
have the feeling of “projecting onto a full subcategory”. As a first example,
consider the category Grp of groups and its full subcategory AbGrp ⊂ Grp of
abelian groups. We denote by I : AbGrp → Grp this embedding. It has a left
adjoint. To find it, one needs to think: Given a group G, what is an abelian
group G′ such that to give a homomorphism from G to any abelian group is the
same as to give a homomorphism from G′ to that abelian group? The answer
is G/[G,G], the quotient of G by the commutator subgroup (the subgroup gen-
erated by expressions ghg−1h−1). So, we leave the details: Construct a functor
G 7→ G/[G,G] and show that it is left adjoint to I, i.e. construct functorial
bijections

HomGrp(G,A)
∼−→ HomAbGrp(G/[G,G], A)

for a group G and an abelian group A.

Another example in the spirit of forgetting extra property is as follows.
Consider the category Met... of metric spaces, with morphisms being, say, maps
f : X → Y for which there exists a constant C > 0 such that d(f(x1), f(x2)) ≤
C ·d(x1, x2) for all x1, x2 ∈ X. We have the full subcategory I : Metcmp

... ⊂ Met...
consisting of complete metric spaces. This inclusion I admits a left adjoint, the
completion functor. It can be constructed by sending a metric space X to the
the metric space of equivalence classes of Cauchy sequences in X. We leave the
details.

One can also give plenty of negative examples. For example, The forgetful
functor G : Veck → Set does not have a right adjoint. Indeed, we claim that
W := Gr({∗1, ∗2}) (the value on a set with two elements) does not exist. This
is an object equipped with bijections

HomVeck(V,W )
∼−→ HomSet(G(V ), {∗1, ∗2}),

functorial in V ∈ Veck. In words, W is a vector space, a linear map to which
is the same as specifying a subset. Plugging in V := 0, we obtain a bijection
between a set with one element and a set with two elements - a contradiction.
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4.4 Adjoint functors in terms of units and counits

Let F : C ⇄ D : G be adjoint functors, so we are given bijections

αc,d : HomD(F (c), d)
∼−→ HomC(c,G(d))

functorial in c and d. We then obtain a morphism

ϵc := αc,F (c)(idF (c)) : c→ G(F (c)),

and we leave to the reader to check that it is functorial in c, so we obtain a
morphism

ϵ : IdC → G ◦ F,

called the unit of the adjunction. Similarly, we have a morphism

δd := α−1
G(d),d(idG(d)) : F (G(d))→ d

which is functorial in d, so that we obtain a morphism

δ : F ◦G→ IdD,

called the counit of the adjunction. We leave to the reader to verify that one
has the following relation:

F
F (ϵ)−−−→ F ◦G ◦ F δF−−→ F is equal to F

idF−−→ F

where the left expression uses a notation which is not hard to decipher, and
explicitly it will yield the morphism that for c ∈ C is given by

F (c)
F (ϵc)−−−→ F (G(F (c)))

δF (c)−−−→ F (c).

Similarly, one also has

G
ϵG−→ G ◦ F ◦G G(δ)−−−→ G is equal to G

idG−−→ G.

One now also has the converse procedure. Namely, Suppose we are given
functors F : C→ D and C←− D : G and morphisms

ϵ : IdC → G ◦ F, δ : F ◦G→ IdD

satisfying

F
F (ϵ)−−−→ F ◦G ◦ F δF−−→ F is equal to F

idF−−→ F

and

G
ϵG−→ G ◦ F ◦G G(δ)−−−→ G is equal to G

idG−−→ G.

Then we can form an adjunction between F and G, i.e. bijections

αc,d : HomD(F (c), d)
∼−→ HomC(c,G(d))
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functorial in c and d, as follows. Given β : F (c) → d, we need to produce

γ : c → G(d). We do it by considering c
ϵc−→ G(F (c))

G(β)−−−→ G(d). Conversely,
given γ : c→ G(d), we need to produce β : F (c)→ d. We do it by considering

F (c)
F (γ)−−−→ F (G(d))

δd−→ d. We leave to the reader to check that those are
mutually inverse.

One can now check that the two procedures, passing from α to (ϵ, δ) and
vice versa, are mutually inverse.

4.5 Adjoint functors in terms of counits

There is also a third option for defining an adjunction between F : C→ D and
C←− D : G. Namely, one can define an adjunction as a morphism δ : F◦G→ IdD
such that for all c ∈ C and d ∈ D the composition

HomC(c,G(d)) −→ HomD(F (c), F (G(d))
δd◦−−−−→ HomD(F (c), d)

(where the first map is by applying F ) is a bijection. We let the reader to
complete the details of the equivalence of that definition with the previous ones
(and, of course, one can also dualize and give a definition in terms of units).

4.6 Left adjoints to fully faithful functors

Here we present a piece of the formalization of examples above of left adjoints
to forgetting extra property, such as the left adjoints to the embeddings of
abelian groups in groups and complete metric spaces in metric spaces, in terms
of counits.

Lemma 4.1. Let G : D→ C be a functor. Suppose that G admits a left adjoint
F , with counit ϵ : F ◦ G → IdD. Then G is fully faithful if and only if ϵ is an
isomorphism.

Proof. Let d1, d2 ∈ D. Let us consider the composition

HomD(d1, d2) −→ HomD(F (G(d1)), d2)
∼−→ HomC(G(d1), G(d2))

where the first map is by precomposing with ϵd1 and the second map is by the
adjunction of F and G. We now claim that the composition is equal to the
map β 7→ G(β) given by the data of the functor G. This is an exercise in the
definitions. Namely, denote by

αc,d : HomD(F (c), d)
∼−→ HomC(c,G(d))

the bijections of the adjunction. Let β : d1 → d2. Then the image of β under
the first of our maps is β ◦ ϵd1

= β ◦ α−1
G(d1),d1

(idG(d1)) and then the image of

that under the second of our maps is αG(d1),d2
(β ◦ α−1

G(d1),d1
(idG(d1))), which is

equal by the functoriality of α to G(β) ◦ αG(d1),d1
(α−1

G(d1),d1
(idG(d1))) = G(β).
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Now, from the above we see that G is fully faithful if and only if the first map
above is a bijection for all d1 and d2. By Yoneda’s lemma, this happens if and
only if ϵd1

is an isomorphism for all d1, i.e. if and only if ϵ is an isomorphism.

Exercise 4.1. Formulate the lemma dual to Lemma 4.1 (with a right adjoint,
the unit, etc.).

Remark 4.2. The reader can return to examples of AbGrp ⊂ Grp and Metcmp
... ⊂

Met.... The lemma says things like “the abelianization of an abelian group is
canonically isomorphic to that group” and “the completion of a complete metric
space is canonically isomorphic to that metric space”.

Remark 4.3. The lemma is the analog of the statement that a map of sets
is injective if and only if it admits a left inverse. However, in the categorical
setting this left inverse has to be “regulated”. So, as an exercise, you can find a
functor which is not fully faithful and which admits a left inverse (a left inverse
to a functor is a functor in the opposite direction and an isomorphism of the
composition (in the relevant order) of these two with the identity functor). And
also you can find a functor which is fully faithful but does not admit a left
inverse.

Remark 4.4. Suppose that we have a full subcategory C0 ⊂ C, and denote the
embedding by I. Assume that I admits a left adjoint P . We can usually omit
I, since I(c) is the same as c (but thought of as objects of different categories),
so the adjunction is given by isomorphisms HomC(P (c1), c2) ∼= HomC(c1, c2)
for c1 ∈ C and c2 ∈ C0. Recall that given a finite-dimensional inner product
space C and a subspace C0 ⊂ C, we have a canonical projection linear operator
p : C → C0, characterized by ⟨p(v), w⟩ = ⟨v, w⟩ for v ∈ C,w ∈ C0. This formula
is similar to the adjunction formula above, and so it is not bad to think of P as
a “projection” onto C0 (the most “efficient” one, as witnessed by the adjunction
formula, with some similarity to the orthogonal projection being most “efficient”
(for example in terms of minimizing some distances)). But, one should note that
I might admit a right adjoint P ′, which will generally differ from P , and will be
also a legitimate choice for a most “efficient” projection (so we have two choices
and not one).

5 Limit and adjunction

5.1 Functors commuting with limits

Let F : C→ D be a functor. Let K : I→ C be a diagram. Suppose that limK
exists. Recall that we have the canonical “universal” cone with vertex limK
over K, i.e. morphisms pri : limK → K(i) for all i ∈ I, coordinated in the
suitable sense. Applying F , we clearly obtain a cone with vertex F (limK) over
F ◦K, by considering the morphisms F (pri) : F (limK)→ F (K(i)) for all i ∈ I.
We can then ask whether this renders F (limK) the limit of F ◦K, i.e. if this is
a universal cone over F ◦K. If this is so, we say that F commutes with the
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limit of K, or F preserves the limit of K. By the definitions, this means
that for any d ∈ D the map

Hom(d, F (limK))
β 7→(F (pri)◦β)i∈I−−−−−−−−−−−→ ConesF◦K(d)

should be a bijection.

Remark 5.1. In other words, the cone with vertex F (limK) over F ◦K gives
as a canonical morphism

F (limK)→ lim(F ◦K)

(verbally if lim(F ◦K) exists, and working in Fun(Dop,Set) otherwise), and F
commutes with the limit of K if this morphism is an isomorphism. To reiterate
in a different graphical rendition, one asks whether the canonical morphism

F (lim
i∈I

K(i))→ lim
i∈I

F (K(i))

is an isomorphism. Notice, in particular, that in our terminology, if F commutes
with limit of K (so a-priori the limit of K is supposed to exist), then the limit
of F ◦K exists.

5.2 Right adjoints commute with limits

The following lemma is important:

Lemma 5.2. Let F : C ⇄ D : G be adjoint functors. Then G commutes with
all limits which exist in D, while F commutes with all colimits which exist in C.

Proof. It is enough to discuss G, as the discussion of F is symmetric. Let us
denote by

αc,d : HomC(c,G(d))
∼−→ HomD(F (c), d)

the adjunction data. We fix a diagram K : I → D and assume that its limit
exists.

Given c ∈ C we would like to check whether the canonical map

Hom(c,G(lim
i
K(i)))

β 7→(G(pri)◦β)i∈I−−−−−−−−−−−→ Conesc(G ◦K)

is a bijection. Let us abbreviate [−,−] := Hom(−,−). Given j ∈ I, we consider
the following diagram of sets:

[c,G(limiK(i))]
αc,limK

//

G(prj)◦−
��

[Fc, limiK(i)]
β 7→(pri◦β)i∈I

//

prj◦−

''

ConesK(Fc)

prj
ww

// ConesG◦K(c)

prj

��

[c,G(K(j))]
αc,K(j)

// [Fc,K(j)]
α−1

c,K(j)
// [c,G(K(j))]

.
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The top right morphism in the diagram sends (βi : Fc→ K(i))i∈I to (α
−1
c,K(i)(βi))i∈I.

The three maps on the top row are bijections, and thus the composition on the
top row is a bijection. The three areas (two squares and one triangle) are com-
mutative, one sees. Therefore considering the big outer square, we can write
the following commutative triangle, whose top arrow is a bijection:

[c,G(limiK(i))] //

G(prj)◦−

((

ConesG◦K(c)

prj
ww

[c,G(K(j))]

.

But this triangle precisely means that the top map is the one we wanted to
check is an bijection, so we are done.

Remark 5.3. Recall that we can interpret ConesK(c) as limi∈I Hom(c,K(i)).
Then someone used to categories might want to abbreviate the last proof to:

HomC(c,G(lim
i∈I

K(i))) ∼= HomD(F (c), lim
i∈I

K(i)) ∼= lim
i∈I

HomD(F (c),K(i)) ∼=

∼= lim
i∈I

HomC(c,G(K(i)) ∼= HomC(c, lim
i∈I

G(K(i))),

deducing from Yoneda’s lemma that G(limi∈I K(i)) ∼= limi∈I G(K(i)). Of
course, one should be careful when making such an abbreviation, for various
reasons.

5.3 Cofinality and limits

Let L : J → I be a functor. Given a diagram K : I → C and an object c ∈ C,
every cone with vertex c over K defines in a clear way a cone with vertex c over
K ◦ L. This is functorial in c. So we obtain a morphism

ConesK → ConesK◦L,

and if those are representable a morphism

limK → lim(K ◦ L).

We want conditions on L such that for all K this will be an isomorphism.

Let us say that L is initial, or cofinal if the following two conditions are
satisfied:

• For every i ∈ I there exists a j ∈ J and a morphism γ : L(j)→ i.

• For i ∈ I, j, j′ ∈ J and morphisms γ : L(j) → i and γ′ : L(j′) → i,
there exists j′′ ∈ J and morphisms δ : j′′ → j and δ′ : j′′ → j′ such that
γ′ ◦ L(δ′) = γ ◦ L(δ).
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Lemma 5.4. Suppose that L : J → I is initial. Let K : I → C be a diagram.
Then the morphism above

ConesK → ConesK◦L

is an isomorphism.

Proof. Let us be given a cone (βj : c→ K(L(j)))j∈J with vertex c over K ◦ L.
We want to define a cone (αi : c → K(i))i∈I with vertex c over K. Since L is
initial, given i ∈ I there exists j ∈ J and a morphism γ : L(j)→ i. Let us define
αi := K(γ) ◦ βj . One needs to check that this is well-defined. Namely, suppose
that we have j′ ∈ J and a morphism γ′ : L(j′) → i. We need to check that
K(γ′) ◦ βj′ = K(γ) ◦ βj . Since L is initial, there exists j′′ ∈ J and morphisms
δ : j′′ → j and δ′ : j′′ → j′ such that γ′ ◦ L(δ′) = γ ◦ L(δ). Thus

K(γ′) ◦ βj′ = K(γ′) ◦K(L(δ′)) ◦ βj′′ = K(γ′ ◦ L(δ′)) ◦ βj′′ =

= K(γ ◦ L(δ)) ◦ βj′′ = K(γ) ◦K(L(δ)) ◦ βj′′ = K(γ) ◦ βj .

Having defined the map between the sets of cones in the opposite direction,
it is now easy, in the same spirit, to see that it is inverse to our map.

Remark 5.5. Suppose that L : J → I is initial. Let K : I → C be a diagram.
Suppose that limK exists (and so by the above lim(K ◦ L) exists as well). Let
F : C → D be a functor. We then notice that F commutes with limit of K if
and only if F commutes with the limit of K ◦ L. Indeed, we have the following
commutative diagram of objects in Fun(Dop,Set):

YndD(F (limK)) //

��

ConesF◦K

��

YndD(F (lim(K ◦ L))) // ConesF◦K◦L

where the horizontal morphisms are the comparison morphisms we discussed
when defining the commutation of functors with limits and the vertical mor-
phisms are as we currently discuss. As we showed, since L is initial both verti-
cal morphisms are isomorphisms. Hence the upper horizontal morphism is an
isomorphism if and only if the lower horizontal morphism is.

5.4 A detour on retracts and idempotents

Let C be a category. Let c ∈ C. By a retract of c we will mean a triple (e, i, r)
consisting of e ∈ C and morphisms i : e→ c and r : c→ e such that r ◦ i = ide.
One naturally defines the category of retracts of c (morphisms are morphisms
between the e’s commuting with the i’s and r’s). A morphism α : c → c is
called an idempotent (or projector) if α ◦ α = α. Given a retract (e, i, r) of
c, we have an idempotent i ◦ r : c → c. We call a retract (e, i, r) an image of
the idempotent α if α = i ◦ r.
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Lemma 5.6. Let C be a category, c ∈ C and α : c → c an idempotent. Then
the full subcategory of the category of retracts of c, consisting of images of α, is
contractible.

Proof. Given two images (e, i, r) and (e′, i′, r′) of α, a morphism β : e → e′

between these images will have to satisfy i′ ◦ β = i and therefore β = r′ ◦ i′ ◦
β = r′ ◦ i. Conversely, β := r′ ◦ i provides a morphism: i′ ◦ (r′ ◦ i) = i and
(r′ ◦ i) ◦ r = r′ ◦ α = r′ ◦ (i′ ◦ r′) = r′.

Lemma 5.7. Let C be a category, c ∈ C and α : c→ c an idempotent.

1. Suppose that (e, i, r) is a retract of c which is an image of α. Then i : e→ r

is an equalizer of c
α
''

id

77 c .

2. Suppose that there exists an equalizer i : e→ c of c
α
''

id

77 c . Then there

exists a unique r : c → e such that (e, i, r) is a retract of c which is an
image of α.

Proof. (1) Clearly α ◦ i = i. Let f : x→ c be such that α ◦ f = f . We want to
show that there exists a unique f ′ : x→ e such that i◦f ′ = f . Composing with
r, we see that f ′ = r ◦ f . Conversely, we indeed have i ◦ (r ◦ f) = α ◦ f = f .

(2) We have the map α : c → c which satisfies α ◦ α = α and therefore
by the universal property of the equalizer there exists a unique r : c → e such
that i ◦ r = α. We want to also check that r ◦ i = ide. Notice that i is a
monomorphism (this in general holds for an equalizer, as the universal property
shows that composing with i is injective on Hom-sets). Therefore, to check that
r ◦ i = ide, it is enough to check that i ◦ (r ◦ i) = i ◦ ide. The right hand side is
i, while the left hand side is i ◦ (r ◦ i) = (i ◦ r) ◦ i = α ◦ i = idc ◦ i = i as well.

Remark 5.8. Notions of retracts, idempotents, images of idempotents are “bet-
ter” than limits in the following sense. For a functor to commute with limits
is a request which is not automatic. However, let F : C → D be a functor
and let c ∈ C. If (e, i, r) is a retract of c, then it is immediate to see that
(F (e), F (i), F (r)) is a retract of F (c). If α : c → c is an idempotent, then
F (α) : F (c) → F (c) is an idempotent. If (e, i, r) is a retract of c which is the
image of an idempotent α : c → c, then (F (e), F (i), F (r)) is a retract of F (c)
which is the image of the idempotent F (α) : F (c) → F (c). In addition, in
view of the lemma above, it is also therefore easy to see that F commutes with

equalizers of c
α
''

id

77 c whenever α : c → c is an idempotent. So all functors

commute with some very specific limits (and dually, colimits). Fundamentally,
this is because of the basic distinction, that in the current case one can write
everything in terms of morphisms and some equations that their compositions
satisfy - all functors preserve such relations.
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Lemma 5.9. Let C be a category, and suppose that images of idempotents exist
in C. Let F ∈ Fun(Cop,Set) and assume that F is the retract of a representable
functor. Then F is representable.

Proof. Let c ∈ C be such that F is a retract of YndC(c). Form the idempotent
α : YndC(c) → YndC(c) whose image F is. By Yoneda’s lemma, there exists
a unique β : c → c such that YndC(β) = α, and clearly β is an idempotent.
Consider the image e of β, which exists by assumption. Then, as we remarked,
YndC(e) is the image of YndC(β) = α, so by a lemma above, we see that YndC(e)
is isomorphic to F .

5.5 The general AFT (adjoint functor theorem)

Let C ←− D : G be a functor. We want to find some general conditions for the
existence of its left adjoint.

First we introduce some notation. Given c ∈ C, let us consider the category
G←−(c) whose objects are pairs (d, α) consisting of d ∈ D and α : c → G(d),
and morphisms between (d, α) and (d′, α′) are morphisms β : d→ d′ such that

G(β) ◦ α = α′. We have the “forgetful” functor Frg
G←−(c)
D : G←−(c) → D given

by (d, α) 7→ d. Let us abbreviate K := Frg
G←−(c)
D in this subsection. (remember

to rewrite notations)

Lemma 5.10. Let c ∈ C. Let us suppose that limK exists, and that G commutes
with this limit. Suppose also that images of idempotents exist in D. Then Gl(c)
exists (it is the image of some idempotent on limK).

Proof. Notice that we have a tautological morphism c→ lim(G ◦K) - to define
such a morphism we need for every (d, α) ∈ G←−(d) to define a morphism c →
G(K((d, α)) = G(d) so that the result family of morphisms is compatible; α gives
such a morphism and it is straight-forward to check the compatibility. Therefore,
by our assumption that G(limK)

∼−→ lim(G ◦K) we obtain a morphism γ : c→
G(limK). We now consider, for d ∈ D, the map

δd : HomD(limK, d) −→ HomC(c,G(d))

given by sending β : limK → d to G(β) ◦ γ. Clearly this is functorial in d. On
other hand, we also have a map

HomD(limK, d)←− HomC(c,G(d)) : ϵd

given by, given a morphism α : c → G(d), constructing the object (d, α) ∈
G←−(c) and then the morphism pr(d,α) : limK → K((d, α)) = d. This is also
functorial in d. We obtain morphisms in Fun(D,Set):

δ : HomD(limK,−) ⇄ HomC(c,G(−)) : ϵ,

and we leave to the reader to check that one has δ ◦ ϵ = id. This means that the
functor HomC(c,G(−)) is a retract of the representable functor HomD(limK,−).
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By Lemma 5.9, since we assume that images of idempotents exist in D, we de-
duce that HomC(c,G(−)) is representable, which by definition is the existence
of Gl(c).

The problem with this “abstract non-sense” lemma is that even if dealing
with categories such as Set, where all limits of small diagrams exist, it is not
clear whether a limit such as limK above exists, since the category G←−(c) is
not small (one can not form the product of small sets parametrized by a class
and still have a small set). Even if in some approach one would say that one is
willing to have “bigger” sets as part of Set to ensure the existence of more limits
(as is basically done in the conception of Grothendieck’s universes), we will
have the problem of a snake eating its tail, as the category G←−(c) becomes
accordingly bigger. The solution is to be able to reduce the size of the category
G←−(c) while keeping the same limit. At the base of this is the important
philosophy that the category is big (and has some ugly objects), but it
is determined by a small subcategory (of nice objects).

Let us say that G satisfies the solution set condition if for every c ∈ C

there exists a small full subcategory D0 ⊂ D such that for every d ∈ D and a
morphism α : c→ G(d) we can find d0 ∈ D0, a morphism α′ : c→ G(d0) and a
morphism β : d0 → d such that G(β) ◦ α′ = α.

Theorem 5.11 (General adjoint functor thoerem). Let G : D→ C be a functor.
Suppose that all Hom-sets in D are small, and that all small limits exist in D.
Then G admits a left adjoint if and only if G commutes with all small limits
and G satisfies the solution set condition.

Proof. Assume that G admits a left adjoint F . We already saw that G then
commutes with all small limits. Let us show that G satisfies the solution set
condition. Let c ∈ C. We take D0 to be the full subcategory of D spanned by
the one object F (c). For d ∈ D and α : c → G(d), the adjunction corresponds
to α a morphism β : F (c) → d, and we leave as an exercise in manipulating
with the data of an adjunction that α is equal to the composition of the unit

morphism c→ G(F (c)) with G(F (c))
G(β)−−−→ d.

Now we get to the main part, showing the converse. Let us fix c ∈ C. We
want to establish the existence ofGl(c) using Lemma 5.10. Image of idempotents
exist in C as all small limits exist in C. If we find an initial functor L : I→ G←−(c)
with I small, then by assumption lim(K ◦L) exists, and therefore limK exists.
Moreover, by assumption G commutes with the limit of K ◦L, and therefore G
commutes with the limit of K. So it is enough to show the existence of such L.
Let D0 ⊂ D be as in the definition of the solution set condition and denote by
I : D0 → D the inclusion functor. The category (G ◦ I)←−(c) is obviously small,
and we have the obvious inclusion functor L : (G◦I)←−(c)→ G←−(c). It is left to
check that L is initial. The first condition in the definition of an initial functor is,
when unfoldedin our case, precisely the solution set condition. As for the second
condition, we are given c

α−→ G(d) , c
α1−→ G(d1), c

α2−→ G(d2) and β1 : d1 → d,
β2 : d2 → d such that G(β1) ◦ α1 = α and G(β2) ◦ α2 = α (here d1, d2 ∈ D0).
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We want to see that there exists c
α3−→ G(d3) (where d3 ∈ D0) and morphisms

d3
γ1−→ d1 and d3

γ2−→ d2 such that G(γ1) ◦ α3 = α1 and G(γ2) ◦ α3 = α2

and β1 ◦ γ1 = β2 ◦ γ2. Let us first consider the object d12 := d1 ×
d
d2 ∈ D

(where the structural morphisms of the fiber product are β1 and β2), with its
two projections p1 : d12 → d1 and p2 : d12 → d2. Since G commutes with
small limits, and in particular with fiber products, we have a unique morphism
α12 : c→ G(d12) such that G(p1) ◦ α12 = α1 and G(p2) ◦ α12 = α2. Now, again

by the solution set condition, we can find some c
α3−→ G(d3) (with d3 ∈ D0) and

a morphism ϵ : d3 → d12 such that G(ϵ) ◦ α3 = α12. Then, in fact, by setting
γ1 := p1 ◦ ϵ and γ2 := p2 ◦ ϵ we obtain what we wanted.

5.6 Free groups

Let us consider the forgetful functor Set ←− Grp : Frg. All conditions of the
general adjoint functor theorem are clearly satisfied, except the solution set
condition. For that, let S ∈ Set. What we need to check is the existence of a
small full subcategory K ⊂ Grp such that for any group G and a morphism of
sets f : S → G, there exists G′ ∈ K, a morphism of groups θ : G′ → G and a
morphism of sets f ′ : S → G′ such that f = θ ◦ f ′. Let κ be the cardinality
of S if S is infinite, and ℵ0 if S is finite. We can fix a set T of cardinality
κ and consider K to be the set of groups with underlying set being a subset
of T . Given our f : S → G, the subgroup H ⊂ G generated by f(S) has
cardinality ≤ κ. Therefore this subgroup is isomorphic to some G′ ∈ K. Thus,
fixing such an isomorphism ϵ : H

∼−→ G′, our f : S → G factors as θ ◦ f ′ with
f ′ : S

f−→ f(S) ⊂ H ϵ−→ G′ and θ : G′ ϵ−1

−−→ H ⊂ G.

Thus, the forgetful functor Set←− Grp : Frg admits a left adjoint Fre : Set→
Grp. The group Fre(S) is the free group on S. It admits a map of sets i :
S → Fre(S) (this is the unit of the adjunction), and for every group G together
with a map of sets f : S → G, there exists a unique group homomorphism
θ : Fre(S) → G such that f = θ ◦ i. One can see that i injective, for example
as follows. Given s ∈ S, we can consider some non-trivial group G and consider
the function f : S → G sending s to some 1 ̸= g ∈ G and all the other elements
of S to 1. Then writing f = θ ◦ i as above, we clearly obtain that s is mapped
under i to a different element than the element to which any other element of
S is mapped.

There is also an explicit construction of Fre(G), using formal words in ele-
ments of S and their formal inverses. One can ponder regarding the two ap-
proaches, how the general adjoint functor theorem were able to provide an object
without constructing it, and so on.

Let us now see, as promised somewhere above, that given groupsG1, G2, that
their coproduct, denoted G1 ∗G2 and called the free product in this context (as
already mentioned above), exists. Recall that above we saw that this is all what
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is needed in order to deduce the existence of arbitrary small colimits in the
category Grp. First, suppose that α : H1 → G1 is a surjective homomorphism
and that H1 ∗ G2 was shown to exist (and we will show that G1 ∗ G2 then
exists). Denote by K ⊂ H1 the kernel of α. Denote by i : H1 → H1 ∗ G2

and j : G2 → H1 ∗ G2 the structural insertions. Denote by N ⊂ H1 ∗ G2 the
normal subgroup generated by i(K). We have (H1 ∗G2)/N equipped with the
homomorphisms i′ : G1

∼= H1/K → (H1 ∗ G2)/N and j′ : G2 → (H1 ∗ G2)/N
clearly obtained using i and j, and we claim that this furnishes the coproduct of
G1 and G2. Indeed, to give a homomorphism from (H1∗G2)/N is the same as to
give a homomorphism from H1∗G2 which is trivial on N , which is the same as to
give a homomorphism from H1∗G2 which is trivial on i(K), which is the same as
to give a homomorphism from H1 ∗G2 which when precomposed with i is trivial
on K. Since H1 ∗G2 is a coproduct, this is the same as giving homomorphisms
from H1 and G2, the first one being trivial on K, and this is the same as giving
homomorphisms from G1 and G2 (let us leave the reader to formalize this). Of
course, we have the symmetric thing for G2, so when showing the existence of
the coproduct we can replace G1 and G2 by groups surjecting homomorphically
to them. Let S1 ⊂ G1 and S2 ⊂ G2 be generating subsets (for example, we
can take Si := Gi). By adjunction, corresponding to the inclusion maps of sets
S1 → G1 and S2 → G2, we obtain homomorphisms of groups Fre(S1) → G1

and Fre(S2)→ G2. Those are surjective (does the reader see why?). Therefore,
as we just explained, it is enough to see that Fre(S1) ∗Fre(S2) exists. However,
Fre, being a left adjoint, preserves all small colimits (which exist in its domain).
Therefore Fre(S1

∐
S2) is in fact a realization of Fre(S1) ∗ Fre(S2).

5.7 Stone-Cech compactification

Let us consider the forgetful functor Top←− Topch : Frg, where Topch is the full
subcategory of Top consisting of compact Hausdorff topological spaces. Again
one verifies the conditions of the general adjoint functor theorem, very similarly
to the above example with its cardinality trick, replacing the smallest normal
subgroup construction by the closure construction (let us note, and leave as an
exercise for the reader, that small limits in Topch exist and are the same as in
Top, and so are respected by the forgetful functor - one needs to use Tychonoff’s
theorem, and seeing that the limit is realized as a closed subspace of a product).

Therefore there exists a left adjoint of Frg, a functor SC : Top → Topch,
called the Stone-Cech compactification. So, SC(X) is in some sense the
“best” compact Hausdorff space with a map from X, and we have bijections

HomTop(X,Y )
∼−→ HomTopch(SC(X), Y )

functorial in Y ∈ Topch.

Again we note that there are several explicit constructions of SC(S) (which
we currently omit), and it is interesting to contrast the topical intuition/“expertise”
needed to perform/figure out the explicit constructions, with how we simply
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characterized uniquely this space and showed its existence, while preserving our
ignorance.

As a corollary, one can deduce the existence of arbitrary small colimits in
Topch (provided that we performed the easier exercise of establishing the exis-
tence of arbitrary small colimits in Top). Indeed, let K : I→ Topch be a small
diagram. We construct the following bijecions, functorial in Y ∈ Topch:

HomTopch(SC(colim i∈I Frg(K(i))), Y )
∼−→ HomTop(colim i∈I Frg(K(i)),Frg(Y ))

∼−→

∼−→ lim
i∈I

HomTop(Frg(K(i)),Frg(Y ))
∼−→ lim

i∈I
HomTopch(K(i), Y )

(the first bijection is by adjunction of SC and Frg, the second bijection is by
the structure of a colimit, the third bijection is by Frg being, by definition, fully
faithful). The composed bijection gives SC(colim i∈I Frg(K(i))) the structure
of the colimit of K in Topch. Thus, less formally, to compute the colimit of
compact Hausdorff spaces Xi in Topch, we compute their colimit in Top and
apply SC.
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