
PERVERSE SHEAVES ON THE STRATIFIED LINE

SASHA YOM DIN

1. Generalities

We deal with complex algebraic varieties X. Recall that there is the notion
of an algebraic smooth stratification S of X (to be called just stratification) - S
is a partition of X into locally closed smooth connected non-empty subvarieties
(”strata”), such that the closure of each stratum is union of strata. A sheaf on X
is called constructible w.r.t S if its restriction (i.e. ”upper star”) to each stratum
is a locally constant (i.e. a ”local system”). A sheaf on X is called constructible if
there exists an algebraic smooth stratification w.r.t which it is constructible.

We have the basic object - the bounded derived category of sheaves on X with
constructible cohomologies, denoted D(X). It is a triangulated subcategory of
the bounded derived category of sheaves on X. If S is a stratification of X ,
we have the full subcategory DS(X) ⊂ D(X), consisting only of those complexes
whose cohomology is smooth when restricted to strata in S. This is a triangulated
subcategory.

If f : X → Y is an algebraic morphism, we have triangulated functors f!, f∗ :
D(X)→ D(Y ) and f !, f∗ : D(Y )→ D(X). f∗ is right adjoint to f∗, and f! is left
adjoint to f !. We have a morphism of functors f! → f∗, which is an isomorphism if
f is proper. We also have a functor Hom : D(X)op ×D(X)→ D(X).

We define DX = π!C to be the dualizing complex on X. Here C is the constant
sheaf on the point and π : X → pt is the projection from X to the point. We define
the duality functor D : D(X)op → D(X) by D = Hom(·, DX). Then wee have an
isomorphism D ◦ D = Id. We also have isomorphisms, for a morphism f : X → Y ,
D◦f∗ ◦D = f! and D◦f∗ ◦D = f !. If S is a stratification of X, D preserves DS(X).

If X is smooth, of pure (complex) dimension d, DX [−2d] is a local system. If L
is a local system on such an X, (DL)[−2d] is a local system.

If f is an open embedding, we have f ! = f∗ and isomorphisms (via adjunction)
f !f! = Id, f∗f∗ = Id. If g is a closed embedding, we have (since g is proper) g! = g∗,
and isomorphisms (via adjunction) g!g! = Id, g∗g∗ = Id.

If g is a closed embedding and f the emebedding of its open complement, we
have f∗g∗ = 0, and thus by adjunction also g!f∗ = 0 and g∗f! = 0. Also, we have
distinguished triangles g!g

! → Id → f∗f
∗ → and f!f

! → Id → g∗g
∗ →, where the

first two arrows are via adjunction. The third arrow is then uniquely determined,
since Hom(f!·, g∗·) = Hom(g!·, f∗·) = 0.

2. Gluing

2.1. Triangulated setup. Let us be given D,DU , DZ - three triangulated cate-
gories, and exact functors i• : DZ → D, j• : D → DU (also denoted i• = i∗ = i!
and j• = j∗ = j!). We assume that i• and j• admit exact left and right ad-
joints (adjunctions denoted (i∗, i•, i

!) and (j!, j
•, j∗)). We also assume j•i• = 0.
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We assume that there are distinguished triangles i!i
! → Id → j∗j

∗ → and j!j
! →

Id → i∗i
∗ →, where the first two arrows are via adjunction. The third arrow is

uniquely determined (since i∗j! = i!j∗ = 0 (follows from j•i• by adjunction) and
thus Hom(i!·, j∗·) = Hom(j!·, i∗·) = 0). Finally, we assume that the adjunction
morphisms Id→ i!i•, i∗i• → Id, Id→ j•j! and j•j∗ → Id are isomorphisms.

This is a ”short exact sequence” of triangulated categories.
We have a morphism of functors i! → i∗; It is the one that after composition with

(the fully faithful functor) i• becomes the composition i•i
! → Id → i•i

∗. We also
have a morphism of functors j! → j∗; It is the only one that after precomposition
with j• becomes the composition j!j

• → Id→ j∗j
•.

2.2. t-structure. Now, suppose that we are given t-structures on DU and DZ .
We define a t-structure on D as follows: F ∈ D is in D≤0 if j∗F and i∗F are in
corresponding D0. Similarly, F ∈ D is in D≥0 if j!F and i!F are in corresponding
D≥0.

Claim 2.1. This is indeed a t-structure.

Proof. All checkings are easy except the axiom about existence of ”decomposition”
into negative and positive parts. Let us show this. So, fix F ∈ D. We have the
morphism τ≤0j

!F → j!F , and thus we get a morphism j!τ≤0j
!F → F . Complete

it to j!τ≤0j
!F → F → G →. In the same way, construct i!τ≤0i

!G → G → H →.
Finally, construct K → F → H →. Then it is easy to see that H ∈ D≥1. To
see that K ∈ D≤0, use octahedron axiom for composition F → G → H to get
j!τ≤0j

!F → K → i!τ≤0i
!G →, and then the assertion is easy. �

We note that if the t-structures in DZ and DU are non-degenerate, so is our
t-structure on D.

We denote by PZ , P, PU the corresponding hearts.

2.3. Hearts. The functors i• and j• are clearly t-exact, while i!, j∗ are left t-exact
and i∗, j! are right t-exact.

As usual, precomposibg with the inclusion P → D and composing withH0 : D →
P , we get functors and adjunctions between hearts: (pi∗, i•,

pi!) and (pj!, j
•, pj∗).

We have also the relation j•i• = 0. The following sequences are exact: 0→ i•
pi! →

Id → pj∗j
• and pj!j

• → Id → i•i
∗ → 0. The following adjunction morphisms are

isomorphisms: Id→ pi!i•, pi∗i• → Id, Id→ j•pj! and j•pj∗ → Id.
So we get a ”short exact sequence” of abelian categories PZ → P → PU . Namely,

i• is fully faithful, and its image is a Serre subcategory; PU is the Serre quotient of
P by PZ .

2.4. Extensions. An F ∈ P is called an extension of G ∈ PU , if j•F = G. We
have clearly the extensions pj!G and pj∗G.

Note that j!G → j∗G factors through j!G → pj!G → pj∗G → j∗G. The image of
pj!G → pj∗G we denote by j!∗G; It is the minimal extension functor.

We have cohmological characterization of these three extensions. We first state
a lemma.

Lemma 2.2. Let G ∈ PU , and let k ∈ Z. Then there exists, up to a unique
isomorphism, a unique extension F of G which satisfies: i∗F ∈ D≤k−1 and i!F ∈
D≥k+1 (let us call it, for briefness, the k-extension).



PERVERSE SHEAVES ON THE STRATIFIED LINE 3

Proof. As for existence, construct truncation i∗j∗G → τ≥ri
∗j∗G and then by ad-

junction j∗G → i•τ≥ri
∗j∗G. The cocone of this morphism is seen to satisfy the

properties. Uniqueness is similar; If F is such an object, we have a morphism
F → j∗G, and then it is not hard to show that F must be the cocone of the above
mentioned morphism... �

Claim 2.3. For G ∈ PU , pj!G is its −1-extension, pj∗G is its 1-extension, and j!∗G
is its 0-extension.

Proof. The proofs are some easy exact triangle chasings... �

We also have the following characterizations (we say that an object is supported
on Z, if its j• is 0 or, equivalently, it is i• of something):

Claim 2.4. For G ∈ PU : pj∗G has no subobjects supported on Z, and it is the
”biggest” extension with this property (any other embeds into it); pj!G has no
quotients supported on Z, and it is the ”biggest” extension with this property (any
other is a quotient of it); j!∗G has no subobjects and no quotients supported on Z,
and this characterizes it up to a unique isomorphism.

Now, we determine the simple objects in P :

Claim 2.5. The simple objects in P are: i•G for simple G ∈ PZ , and j!∗G for
simple G ∈ PU .

Finally, we have:

Claim 2.6. If PU and PZ have finite length (i.e. any object has finite length), then
so does P .

Proof. The proof is not difficult, by induction on the length of restriction to U . �

3. Notations for baby case

X denotes the complex projective line. i : Z → X denotes the closed inclusion
of the origin point, and j : U → X denotes the open complement to Z. We get a
stratification of U ,Z by themselves, and of X by U and Z. We change notation and
write D(Z), D(U), D(X) for the derived categories with cohomologies constructible
w.r.t. these stratifications.

4. Perversity and the perverse t-structure

Let p = (p0, p1) ∈ Z2. This data is called ”perversity”.
We define a t-structure onD(Z) as follows: Dp,≤0(Z) = D≤p0(Z) andDp,≥0(Z) =

D≥p0(Z). It is clear that this is a t-structure, with heart equivalent to f.d. vector
spaces (but ”sitting” in degree p0).

We define a t-structure onD(U) as follows: Dp,≤0(U) = D≤p1(Z) andDp,≥0(U) =
D≥p1(U). It is clear that this is a t-structure, with heart equivalent to local systems
on U (but ”sitting” in degree p1). In our case, local systems are equivalent to f.d.
vector spaces.

Our D = D(X), DU = D(U), DZ = D(Z) satisfy the formalism of gluing that
we handled before. Thus, we have a t-structure on D(X), glued from the ones on
D(U) and D(Z).
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We denote by P p(X) the heart of D(X) w.r.t. the t-structure associated to
p. This is the abelian category of p-perverse sheaves. For example, the trivial
perversity (0, 0) yields the usual t-structure, with heart usual constructible sheaves.

Now let us observe what the duality D does to these t-structures. Write p∗ =
(−p0,−2− p1) (the ”dual” perversity).

Claim 4.1. We have D : Dp,≤0 → Dp∗,≥0, and D : Dp,≥0 → Dp∗,≤0.

In particular, D : P p(X) → P p∗
(X). Note that there is a (unique) auto-dual

perversity; p = (0,−1). This is the most important one, and we write P (X) perverse
sheaves w.r.t. this perversity.

5. Some calculations

I have done some calculations. I consider the perversity p = (0,−n). Note that
this will describe all situations, since (a + r, b + r) and (a, b) are isomorphic by a
shift. I write CU for the constant sheaf on U , shifted by n, and CZ for the constant
sheaf on Z.

-2 -1 0 1 2 3 4
j!CU = pj!CU X X X X
pj!CU = j!∗CU X X X X X
pj!CU = j!∗CU = pj∗CU X X X X
j!∗CU = pj∗CU X X X X X
pj∗CU = j∗CU X X X X
dim Ext1(j!∗CU , i•CZ) 0 0 0 1 1 0 0
dim Ext1(i•CZ , j!∗CU ) 0 0 1 1 0 0 0

Now, let us describe the categories P p(X) for the different perversities. In all
cases, we have two irredcible objects j!∗CU and i•CZ . Ext1 between one of this
irreducibles with itself is 0. The projective cover of j!∗CU is pj!CU .

For n ≥ 3 or n ≤ −1, P p(X) is semi-simple, and so everything is clear.
For n = 0: The object that we get as an extension, using a non-zero class in

Ext1(i•CZ , j!CU ), is a projective cover of i•CZ (in fact, this object is just the
constant sheaf on X). We can compute everything, and get that our category
P p(X) is equivalent to the category of representations of the quiver ◦ → ◦.

For n = 2: i•CZ is projective. We get the same quiver description as for n = 0.
For n = 1: The object that we get as an extension, using anon-zero class in

Ext1(i•CZ , j!CU ), is a projective cover of i•CZ . We can compute everything, and
get that our category P p(X) is equivalent to the category of representations of the
quiver ◦� ◦, with the composition of the arrows in one direction being zero (only
in one direction).


