PERVERSE SHEAVES ON THE STRATIFIED LINE

SASHA YOM DIN

1. Generalities

We deal with complex algebraic varieties X. Recall that there is the notion of an algebraic smooth stratification S of X (to be called just stratification) - S is a partition of X into locally closed smooth connected non-empty subvarieties ("strata"), such that the closure of each stratum is union of strata. A sheaf on X is called constructible w.r.t S if its restriction (i.e. "upper star") to each stratum is a locally constant (i.e. a "local system"). A sheaf on X is called constructible if there exists an algebraic smooth stratification w.r.t which it is constructible.

We have the basic object - the bounded derived category of sheaves on X with constructible cohomologies, denoted D(X). It is a triangulated subcategory of the bounded derived category of sheaves on X. If S is a stratification of X, we have the full subcategory $D_S(X) \subset D(X)$, consisting only of those complexes whose cohomology is smooth when restricted to strata in S. This is a triangulated subcategory.

If $f: X \to Y$ is an algebraic morphism, we have triangulated functors $f_!, f_*: D(X) \to D(Y)$ and $f^!, f^*: D(Y) \to D(X)$. f_* is right adjoint to f^* , and $f_!$ is left adjoint to $f^!$. We have a morphism of functors $f_! \to f_*$, which is an isomorphism if f is proper. We also have a functor $Hom: D(X)^{op} \times D(X) \to D(X)$.

We define $D_X = \pi^! C$ to be the dualizing complex on X. Here C is the constant sheaf on the point and $\pi: X \to pt$ is the projection from X to the point. We define the duality functor $\mathbb{D}: D(X)^{op} \to D(X)$ by $\mathbb{D} = Hom(\cdot, D_X)$. Then wee have an isomorphism $\mathbb{D} \circ \mathbb{D} = \mathrm{Id}$. We also have isomorphisms, for a morphism $f: X \to Y$, $\mathbb{D} \circ f_* \circ \mathbb{D} = f_!$ and $\mathbb{D} \circ f^* \circ \mathbb{D} = f^!$. If S is a stratification of X, \mathbb{D} preserves $D_S(X)$.

If X is smooth, of pure (complex) dimension d, $D_X[-2d]$ is a local system. If \mathcal{L} is a local system on such an X, $(\mathbb{D}\mathcal{L})[-2d]$ is a local system.

If f is an open embedding, we have $f^! = f^*$ and isomorphisms (via adjunction) $f^! f_! = \operatorname{Id}, f^* f_* = \operatorname{Id}$. If g is a closed embedding, we have (since g is proper) $g_! = g_*$, and isomorphisms (via adjunction) $g^! g_! = \operatorname{Id}, g^* g_* = \operatorname{Id}$.

If g is a closed embedding and f the embedding of its open complement, we have $f^*g_*=0$, and thus by adjunction also $g^!f_*=0$ and $g^*f_!=0$. Also, we have distinguished triangles $g_!g^!\to \mathrm{Id}\to f_*f^*\to \mathrm{and}\ f_!f^!\to \mathrm{Id}\to g_*g^*\to$, where the first two arrows are via adjunction. The third arrow is then uniquely determined, since $Hom(f_!\cdot,g_*\cdot)=Hom(g_!\cdot,f_*\cdot)=0$.

2. Gluing

2.1. **Triangulated setup.** Let us be given D, D_U, D_Z - three triangulated categories, and exact functors $i_{\bullet}: D_Z \to D$, $j^{\bullet}: D \to D_U$ (also denoted $i_{\bullet} = i_* = i_!$ and $j^{\bullet} = j^* = j^!$). We assume that i_{\bullet} and j^{\bullet} admit exact left and right adjoints (adjunctions denoted $(i^*, i_{\bullet}, i^!)$ and $(j_!, j^{\bullet}, j_*)$). We also assume $j^{\bullet}i_{\bullet} = 0$.

We assume that there are distinguished triangles $i_!i^! \to \operatorname{Id} \to j_*j^* \to \operatorname{and} j_!j^! \to \operatorname{Id} \to i_*i^* \to$, where the first two arrows are via adjunction. The third arrow is uniquely determined (since $i^*j_! = i^!j_* = 0$ (follows from $j^{\bullet}i_{\bullet}$ by adjunction) and thus $\operatorname{Hom}(i_!\cdot,j_*\cdot) = \operatorname{Hom}(j_!\cdot,i_*\cdot) = 0$). Finally, we assume that the adjunction morphisms $\operatorname{Id} \to i^!i_{\bullet}$, $i^*i_{\bullet} \to \operatorname{Id}$, $\operatorname{Id} \to j^{\bullet}j_!$ and $j^{\bullet}j_* \to \operatorname{Id}$ are isomorphisms.

This is a "short exact sequence" of triangulated categories.

We have a morphism of functors $i^! \to i^*$; It is the one that after composition with (the fully faithful functor) i_{\bullet} becomes the composition $i_{\bullet}i^! \to \operatorname{Id} \to i_{\bullet}i^*$. We also have a morphism of functors $j_! \to j_*$; It is the only one that after precomposition with j^{\bullet} becomes the composition $j_!j^{\bullet} \to \operatorname{Id} \to j_*j^{\bullet}$.

2.2. t-structure. Now, suppose that we are given t-structures on D_U and D_Z . We define a t-structure on D as follows: $\mathcal{F} \in D$ is in $D^{\leq 0}$ if $j^*\mathcal{F}$ and $i^*\mathcal{F}$ are in corresponding D^0 . Similarly, $\mathcal{F} \in D$ is in $D^{\geq 0}$ if $j^!\mathcal{F}$ and $i^!\mathcal{F}$ are in corresponding $D^{\geq 0}$.

Claim 2.1. This is indeed a t-structure.

Proof. All checkings are easy except the axiom about existence of "decomposition" into negative and positive parts. Let us show this. So, fix $\mathcal{F} \in D$. We have the morphism $\tau_{\leq 0}j^!\mathcal{F} \to j^!\mathcal{F}$, and thus we get a morphism $j_!\tau_{\leq 0}j^!\mathcal{F} \to \mathcal{F}$. Complete it to $j_!\tau_{\leq 0}j^!\mathcal{F} \to \mathcal{F} \to \mathcal{G} \to \mathbb{R}$. In the same way, construct $i_!\tau_{\leq 0}i^!\mathcal{G} \to \mathcal{G} \to \mathcal{H} \to \mathbb{R}$. Finally, construct $\mathcal{K} \to \mathcal{F} \to \mathcal{H} \to \mathbb{R}$. Then it is easy to see that $\mathcal{H} \in D^{\geq 1}$. To see that $\mathcal{K} \in D^{\leq 0}$, use octahedron axiom for composition $\mathcal{F} \to \mathcal{G} \to \mathcal{H}$ to get $j_!\tau_{\leq 0}j^!\mathcal{F} \to \mathcal{K} \to i_!\tau_{\leq 0}i^!\mathcal{G} \to \mathbb{R}$ and then the assertion is easy.

We note that if the t-structures in D_Z and D_U are non-degenerate, so is our t-structure on D.

We denote by P_Z , P, P_U the corresponding hearts.

2.3. **Hearts.** The functors i_{\bullet} and j^{\bullet} are clearly t-exact, while $i^!, j_*$ are left t-exact and $i^*, j_!$ are right t-exact.

As usual, precomposibe with the inclusion $P \to D$ and composing with $H^0: D \to P$, we get functors and adjunctions between hearts: $({}^pi^*, i_{\bullet}, {}^pi^!)$ and $({}^pj_!, j^{\bullet}, {}^pj_*)$. We have also the relation $j^{\bullet}i_{\bullet} = 0$. The following sequences are exact: $0 \to i_{\bullet}{}^pi^! \to \mathrm{Id} \to {}^pj_*j^{\bullet}$ and ${}^pj_!j^{\bullet} \to \mathrm{Id} \to i_{\bullet}i^* \to 0$. The following adjunction morphisms are isomorphisms: $\mathrm{Id} \to {}^pi^!i_{\bullet}, {}^pi^*i_{\bullet} \to \mathrm{Id}, \mathrm{Id} \to j^{\bullet p}j_!$ and $j^{\bullet p}j_* \to \mathrm{Id}$.

So we get a "short exact sequence" of abelian categories $P_Z \to P \to P_U$. Namely, i_{\bullet} is fully faithful, and its image is a Serre subcategory; P_U is the Serre quotient of P by P_Z .

2.4. **Extensions.** An $\mathcal{F} \in P$ is called an extension of $\mathcal{G} \in P_U$, if $j^{\bullet}\mathcal{F} = \mathcal{G}$. We have clearly the extensions ${}^p j_! \mathcal{G}$ and ${}^p j_* \mathcal{G}$.

Note that $j_!\mathcal{G} \to j_*\mathcal{G}$ factors through $j_!\mathcal{G} \to {}^p j_!\mathcal{G} \to {}^p j_*\mathcal{G} \to j_*\mathcal{G}$. The image of ${}^p j_!\mathcal{G} \to {}^p j_*\mathcal{G}$ we denote by $j_!_*\mathcal{G}$; It is the minimal extension functor.

We have cohmological characterization of these three extensions. We first state a lemma.

Lemma 2.2. Let $\mathcal{G} \in P_U$, and let $k \in \mathbb{Z}$. Then there exists, up to a unique isomorphism, a unique extension \mathcal{F} of \mathcal{G} which satisfies: $i^*\mathcal{F} \in D^{\leq k-1}$ and $i^!\mathcal{F} \in D^{\geq k+1}$ (let us call it, for briefness, the k-extension).

Proof. As for existence, construct truncation $i^*j_*\mathcal{G} \to \tau_{\geq r}i^*j_*\mathcal{G}$ and then by adjunction $j_*\mathcal{G} \to i_{\bullet}\tau_{\geq r}i^*j_*\mathcal{G}$. The cocone of this morphism is seen to satisfy the properties. Uniqueness is similar; If \mathcal{F} is such an object, we have a morphism $\mathcal{F} \to j_*\mathcal{G}$, and then it is not hard to show that \mathcal{F} must be the cocone of the above mentioned morphism...

Claim 2.3. For $\mathcal{G} \in P_U$, ${}^p j_! \mathcal{G}$ is its -1-extension, ${}^p j_* \mathcal{G}$ is its 1-extension, and $j_{!*} \mathcal{G}$ is its 0-extension.

Proof. The proofs are some easy exact triangle chasings... \Box

We also have the following characterizations (we say that an object is supported on Z, if its j^{\bullet} is 0 or, equivalently, it is i_{\bullet} of something):

Claim 2.4. For $\mathcal{G} \in P_U$: ${}^pj_*\mathcal{G}$ has no subobjects supported on Z, and it is the "biggest" extension with this property (any other embeds into it); ${}^pj_!\mathcal{G}$ has no quotients supported on Z, and it is the "biggest" extension with this property (any other is a quotient of it); $j_{!*}\mathcal{G}$ has no subobjects and no quotients supported on Z, and this characterizes it up to a unique isomorphism.

Now, we determine the simple objects in P:

Claim 2.5. The simple objects in P are: $i_{\bullet}\mathcal{G}$ for simple $\mathcal{G} \in P_Z$, and $j_{!*}\mathcal{G}$ for simple $\mathcal{G} \in P_U$.

Finally, we have:

Claim 2.6. If P_U and P_Z have finite length (i.e. any object has finite length), then so does P.

Proof. The proof is not difficult, by induction on the length of restriction to U. \square

3. Notations for baby case

X denotes the complex projective line. $i:Z\to X$ denotes the closed inclusion of the origin point, and $j:U\to X$ denotes the open complement to Z. We get a stratification of U,Z by themselves, and of X by U and Z. We change notation and write D(Z),D(U),D(X) for the derived categories with cohomologies constructible w.r.t. these stratifications.

4. Perversity and the perverse t-structure

Let $p = (p_0, p_1) \in \mathbb{Z}^2$. This data is called "perversity".

We define a t-structure on D(Z) as follows: $D^{p,\leq 0}(Z) = D^{\leq p_0}(Z)$ and $D^{p,\geq 0}(Z) = D^{\geq p_0}(Z)$. It is clear that this is a t-structure, with heart equivalent to f.d. vector spaces (but "sitting" in degree p_0).

We define a t-structure on D(U) as follows: $D^{p,\leq 0}(U) = D^{\leq p_1}(Z)$ and $D^{p,\geq 0}(U) = D^{\geq p_1}(U)$. It is clear that this is a t-structure, with heart equivalent to local systems on U (but "sitting" in degree p_1). In our case, local systems are equivalent to f.d. vector spaces.

Our D = D(X), $D_U = D(U)$, $D_Z = D(Z)$ satisfy the formalism of gluing that we handled before. Thus, we have a t-structure on D(X), glued from the ones on D(U) and D(Z).

We denote by $P^p(X)$ the heart of D(X) w.r.t. the t-structure associated to p. This is the abelian category of p-perverse sheaves. For example, the trivial perversity (0,0) yields the usual t-structure, with heart usual constructible sheaves.

Now let us observe what the duality \mathbb{D} does to these t-structures. Write $p^* = (-p_0, -2 - p_1)$ (the "dual" perversity).

Claim 4.1. We have
$$\mathbb{D}: D^{p,\leq 0} \to D^{p^*,\geq 0}$$
, and $\mathbb{D}: D^{p,\geq 0} \to D^{p^*,\leq 0}$.

In particular, $\mathbb{D}: P^p(X) \to P^{p^*}(X)$. Note that there is a (unique) auto-dual perversity; p = (0, -1). This is the most important one, and we write P(X) perverse sheaves w.r.t. this perversity.

5. Some calculations

I have done some calculations. I consider the perversity p = (0, -n). Note that this will describe all situations, since (a + r, b + r) and (a, b) are isomorphic by a shift. I write C_U for the constant sheaf on U, shifted by n, and C_Z for the constant sheaf on Z.

	-2	-1	0	1	2	3	4
$j_!C_U = {}^p j_!C_U$	X	X	X	X			
$^p j_! C_U = j_{!*} C_U$	X	X	X			X	X
$p_{j!}C_U = j_{!*}C_U = p_{j*}C_U$	X	X				X	X
$j_{!*}C_U = {}^p j_* C_U$	X	X			X	X	X
$p_{j_*C_U} = j_*C_U$				X	X	X	X
$\dim \operatorname{Ext}^1(j_{!*}C_U, i_{\bullet}C_Z)$	0	0	0	1	1	0	0
$\dim \operatorname{Ext}^1(i_{\bullet}C_Z, j_{!*}C_U)$	0	0	1	1	0	0	0

Now, let us describe the categories $P^p(X)$ for the different perversities. In all cases, we have two irredcible objects $j_{!*}C_U$ and $i_{\bullet}C_Z$. Ext^1 between one of this irreducibles with itself is 0. The projective cover of $j_{!*}C_U$ is ${}^pj_!C_U$.

For $n \geq 3$ or $n \leq -1$, $P^p(X)$ is semi-simple, and so everything is clear.

For n=0: The object that we get as an extension, using a non-zero class in $Ext^1(i_{\bullet}C_Z, j_!C_U)$, is a projective cover of $i_{\bullet}C_Z$ (in fact, this object is just the constant sheaf on X). We can compute everything, and get that our category $P^p(X)$ is equivalent to the category of representations of the quiver $\circ \to \circ$.

For n=2: $i_{\bullet}C_Z$ is projective. We get the same quiver description as for n=0. For n=1: The object that we get as an extension, using anon-zero class in $Ext^1(i_{\bullet}C_Z, j_!C_U)$, is a projective cover of $i_{\bullet}C_Z$. We can compute everything, and get that our category $P^p(X)$ is equivalent to the category of representations of the quiver $o \rightleftharpoons o$, with the composition of the arrows in one direction being zero (only in one direction).