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1 Remarks and notations

This text just follows Lurie’s ”Higher Algebra”, appendix A (”Constructible
Sheaves and Exit Paths”).

There might be errors, inaccuracies, and unpleasancies in the following text.
I will be happy if you let me know about it.

In this text, proofs are ”proofs”.

We denote by (+,) the mapping spaces in different oco-categories, and by 1
the final object.

2 Presentable co-categories

Presentable oco-categories are, in particular, cocomplete and complete.
A cocontinuous functor between presentable co-categories has a right adjoint.
An accessible continuous functor between presentable co-categories has a
left adjoint. Accessibility is a technical condition (it means that the functor
commutes with x-filtered colimits for some regular cardinal ); It suffices for us
to know that a functor which admits a left or right adjoint is accessible, and a
composition of accessible functors is accessible.

3 oo-Topoi

3.1 oo-Topoi and geomteric morphisms

An oco-topos is an oo-category with extra properties. It is, in particular, pre-
sentable. Also, pull-backs commute with small colimits (if z — y is an arrow in
an oo-topos, then - x,  commutes with small colimits).

A geomteric morphism o : X — ) between oo-topoi is, by definition, an
adjoint pair o* : X &= ) : 0., such that ¢* commutes with finite limits.



3.2 The oco-topos of spaces

We denote by S the oo-topos of spaces (the coherent nerve of the simplicial
category of Kan complexes). It is final in the category of co-topoi - every oo-
topos admits a (up to homotopy) unique geometric morphism to S.

Let X be an co-topos and 7 : X — S the geometric morphism to S (we will
always denote it by 7 in what follows). One might call 7, the global sections
fucntor; it can be identified with (1,-) (since mi(z) = (1,mx) = (7*l,z) =
(1,z)). We might call 7* the constant object functor; it can be identified with
s+ colimg1 (sending a Kan complex s to the colimit over s, thought of as an
indexing co-category, of the constant diagarm with value 1).

3.3 Essential geometric morphisms

A geometric morphism 7 : X — ) is called essential, if 7* admits a left adjoint.
We denote then this left adjoint by 7.

3.4 Etale geometric morphisms

Let X be an oco-topos. Let u € X. We will consider the over-co-category
Xy Let us recall that the forgetful functor &), — & reflects equivalences and
commutes with colimits.

The over-category X/, is an oo-topos. We have an essential geometric mor-
phism j : X, — X. j* is given by j*(x) = = x u (equipped with the second
projection). ji is just the forgetful functor. j,. seems not to be describable by a
”simple formula”.

If o0 : X — ) is a geometric morphisms of co-topoi and u € ), then we have
a pullback square (in an appropriately understood category of co-topoi)

X/U*u — y/u

L

X—)

Let us also note that if we consider j : X, — A&, then we can identify
(u,z) = (woj).j*z (a generalization of (1,z) = m.x).

3.5 Coverings

Let X be an oo-topos. Let (u, — 1) be a family of morphisms. Such a family
is called a covering if [Ju, — 1 is an effective epimorphism (a — b is called
an effective epimorphism if b is the coequalizer of the Cech diagram ... —
aXpaXpa—aXp,a—a).



4 Shape

4.1

Let X be an oco-topos. We will call X of constant shape if 7, o 7* is corepre-
sentable. The corepresenting object is then called the shape of X.

We will call X' locally of constant shape if &/, is of constant shape for every
u€e X.

Claim 4.1. Let X be an oco-topos. Then X is locally of constant shape if and
only if 7 is essential.

Proof. Let uw € X and denote as usual j : X/, - X and 7 : & — S. Also,
denote p = o j (it is the unique geometric morphism X, — §). The sought
for mu should satisfy (mu,s) = (u,7*s) = (pi o j).j*(7*s) = pup*s. So, we see
that m exists if and only if p,p* is corepresentable for every v € X, and that
m(u) is then the shape of X/,,.

O

So, m1 is the shape of X'. It can also be called the fundamental co-groupoid
of X.
There is a projection formula:

Claim 4.2. Let X be an oo-topos locally of constant shape. Then for any
se€ S,z e X and arrows s — t and max — t,, the natural arrow:

(T Xpey T°8) = (M) X4 8
is an equivalence.

Proof. The first step of devissage is to reduce to ¢ being equal to 1. Write
t = colim(t,), with t,, contractible (i.e final in §). Then x = colim(x X 7+t T*t4)
(as objects in X /ﬂ*t). Since both sides are cocontinuous in z, this reduces us to
show the claim for a situation where mz — t has a factorization max — t; — t,
where t; is contractible. But then we can set s; = s X; t; and then the left
side equals my(z X+, 7 51) and the right side equals ma X, s1, so that we can
assume that t is contractible.

The second step of devissage is to reduce to s being equal to 1. Indeed, both
sides are cocontinuous in s.

Now, when s =t = 1, the claim is trivial.

5 Locally Constant Objects

Definition 5.1. Let X be an co-topos. An object © € X is called constant, if it
is in the image of 7*. An object x € X is called locally constant, if there exists
a covering (uq — 1) such that (j,)*z is a constant object in X/, , for every a
(where j, denotes the usual geometric morphism X, — X).



Of course, pullbacks under geometric morphisms of locally constant objects
are locally constant.

Lemma 5.2. Let X be an oo-topos, t € S, and ¢ : X — S;; some geometric
morphism. Then the image of ¥* consists of locally constant objects.

Proof. Let us first fix an object & — t in S/, with k being contractible (i.e. a
final object in §). Then if we consider the diagram

X/ka *>S/k

L

X——8,

and notice that S/, is equivalent to S, we realize that objects in the image of

1™ become constant when pullbacked to X/y«;. All what is left to do is to find
a covering of ¢ by contractible objects; One can take the covering by simplices.
O

Lemma 5.3. Let X, be co-topoi, and i : X — Y an essential geometric mor-
phism such that (1) = 1 and ¢¥* is fully faithful. Then every locally constant
object in X is in the image of ¥*.

Proof. Is this true? I tried to extract it from the text, but did not check details.
Let x € & be a locally constant object. Note that if z is actually constant,
then it belongs to the inverse image under any geomteric morphism (because
the geomteric morphism into S factors through any oco-topos). We can find a
relation colim(vg) = 1 in X, so that (jz)*z is a constant object in X/, (we
achieve it by considering a covering of 1 on which z is constant, and take the
Cech nerve). Note that then colim(ivg) = 1. T am not sure what exactly
happens now; X is the limit of X/, , ) is the limit of V,y,,,, and the fully-
faithful functor ¢* is the limit of fully-faithful functors (¢g)*. Thus it is enough

to check for every 3, where it is trivial since the object is already constant.
O

Let X be an co-topos of locally constant shape. Then the functor m : X — S
induces a functor ¢, : X = X1 — S/x,1. 1 admits a right adjoint ¢, described
by ¢*(s = ml) = (7*8) Xz«m1 1. We see that * commutes with colimits, and
hence admits a right adjoint ¢,. Summarazing, we get an essential geometric
morphism ¢ : X — §/1.

Theorem 5.4. In the above assumptions and notation, ¥* is fully faithful, and
its image consists exactly of locally constant objects.

Proof. Let us show first that ¢* is fully faithful. For this, we will show that
Pp* — id is an equivalence, on every object. Indeed, if for an object s — m1,
if we apply ¥9* to it we get m(7*s Xq+m1 1) = m1, and by the projection
formula from above, it is equivalent to s — m1.

The second claim follows from the two lemmas above.



6 Topological spaces

6.1 Sheaves on topological spaces

Let X be a topological space. We have the partially ordered set U(X) of open
subsets of X. We denote by PSh(X) the category of functors U(X)°? — S. It
has a full subcategory Sh(X), consisting of objects p € PSh(X) which satisfy
”descent”. This just means that we take the biggest full subcategory in which
for a covering (U, ) of X in the point-set-topological sense, the family (U, — X)
will be a covering in the oo-topos sense.

Sh(X) is an oco-topos. Lurie notes that Sh(X) differs from the more common
version - the one extracted from the local model structure. The later takes into
account hypercovers. In general, the later is the hypercompletion of the former.
I do not know for which class of spaces they coincide.

A morphism of topological spaces X — Y gives rise to a geomteric morphism
Sh(X) — Sh(Y). If U is an open subset of X, then j : Sh(U) — Sh(X)
identifies with Sh(X) ;1 — Sh(X).

6.2 Shape for topological spaces

Claim 6.1. Let X be a paracompact topological space. Then, considering
the geometric morphism 7 : Sh(X) — S, we have m.7*(s) = Map(X, |s]).
Here, Map(Y,Z) is the Kan complex whose n-simplices are continuous maps
Y x |A™ = Z.

Proof. Not from this appendix, but from ”Higher topos theory”.
O

Corollary 6.2. Let X be a paracompact topological space. Then Sh(X) has
constant shape if and only if there exists a Kan complex k& and a morphism
X — |k| such that for every Kan complex s, the map (k,s) = Map(|k|,|s|) —
Map(X,|s|) is an equivalence.

For example, if X is a paracompact topological space which has the homo-
topy type of a CW-complex, then Sh(X) has constant shape, being Sing(X).
Indeed, the weak equivalence |Sing(X)| — X is then an homotopy equialence,
thus we obtain a map X — |Sing(X)|.

Definition 6.3. Let X be a paracompact topological space. We will say that
X has singular shape if for every CW-complex Y, the map Map(X,Y) —
Map(|Sing(X)|,Y) is an equivalence.

Thus, the remark above shows that a paracompact topological space which
has the homotopy type of a CW-complex has singular shape.

Definition 6.4. Let X be a paracompact topological space. We will say that
X is locally of singular shape if for every open subspace U C X, U has singular
shape.



The lemma A.4.14 says that if we cover a paracompact topological space
X by open subspaces, such that every finite intersection of them is of singular
shape, then X is of singular shape. This shows, for example, that topological
manifolds are locally of singular shape.

6.3 Description of the Galois correspondence

Let X be a paracompact topological space locally of singular shape. Then the
00-t0pos S/ging(x) is equivalent to the oco-topos of locally constant sheaves on
X. For s € §/ging(x), the corresponding sheaf can informally be described as
having sections (Sing(U), s)sing(x) o0 an open subset U (it is a mapping space
in the co-category S/ging(x))-

We can perefer a different model for S/ging(x) (I hope that what I tell here
is correct). Note that in the current model S/, objects are spaces together with
a morphism to t. Morphisms are, morally, morphisms which commute with the
structure map to ¢ up to homotopy. Instead, we can consider only fibrations
over t, but then consider only morphisms which commute with the structure
map on the nose. lLe., let us consider the simplicial category of Kan fibrations
over t, and denote it by S;zmp

In such terms, the association to an space over Sing(X) of a sheaf on X
becomes more concrete. To a Kan fibration s — Sing(X) we associate the

sheaf U +— Hom geimp ( )(Sing(U), s). So our sheaf is an actual 1-functor, so to
/Sing(X

speak.

7 Constructible sheaves

7.1 Stratifications

Let A be a partially ordered set. We can regard A as a topological space by
declaring a set U C A to be open if x € U and =z < y imply y € U.

Definition 7.1. An A-stratification of a topological space X is a morphism of
topological spaces X — A. X — A is then called a stratified topological spce.
The strata X, are the inverse images of singletons {a} € A. There is an obvious
notion of a morphism of stratified spaces (which includes a morphism of the
partially ordered sets and a morphism of the spaces, commuting appropriately).

Definition 7.2. Let X — A be a stratified topological space. It is said to be
conically stratified if...

7.2 Constructible sheaves

Definition 7.3. Let X — A be a stratified topological space. A sheaf p €
Sh(X) is called A-constructible if (i,)*p is locally constant, for all 4, : Sh(X,) —



Sh(X) (the geometric morphism induced by the inclusion X, — X). We de-
note by Sh*(X) the full co-subcategory of Sh(X) consisting of A-constructible
sheaves.

7.3 Exit path category

Let us stratify |A™ = {(to,...,tn)|to + ... + ¢, = 1,t; > 0} by {0,...,n}, by
sending each vector to the index of the last non-zero entry.

Definition 7.4. Let X — A be a stratified topological space. We define a
simplicial subset Sing”(X) C Sing(X) as follows. An n-simplex |A"| — X
will belong to Sing”(X) if and only if this morphism extends to a morphism of
stratified spaces.

Claim 7.5. Let X — A be a conically stratified topological space. Then
Sing(X) is an co-category.

7.4 The theorem

Let X — A be a conically stratified topological space. Suppose that A is finite
(Lurie deals more generally with A which satisfies ascending chain condition).
Suppose that X is a paracompact topological space locally of singular shape.

Then the oco-category Sh*(X) is equivalent to the co-category S/ SingA(x)-
Here, for an oo-category ¢, we denote by S/; the oo-category which classifies
functors from ¢ to S. So, a possible model for S/; is the coherent nerve of the
simplicial category of left fibrations to ¢.
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