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1. The theorem

Let G be a locally compact group, H an unitary representation of G. We will say
that H is C0, if every matrix coefficient decays to zero at infinity (becomes small
when we exit compact sets).

Let us note that if H contains a finite-dimensional subrepresentation, it can
not be C0. This is because the determinant function on this subspace would be of
absolute value 1 on one hand, but on the other hand it is expressable as a polynomial
in matrix coefficients.

In particular, a C0 representation can not contain G-invariant vectors.
The Howe-Moore theorem states:

Theorem 1.1. Let G = SL(n,R) (or, more generally, a simple Lie group with
finite center). Then any unitary representation of G without invariant vectors is
C0.

2. Some lemmas

We first note a useful reformulation: Suppose thatH is an unitary representation
of G, and as gn → ∞, not all matrix coefficients tend to zero. Then for some
u,w ∈ H, (gnu,w) 6→ 0, and so we can extract a subsequence (call it gn again) so
that (gnu,w) stays uniformly away from zero. Then by compactness of the unit
ball in the weak topology, we can extract a subsequence (call it gn again) so that

gnu
w−→ v for some v ∈ H, v 6= 0. We will use it later.

Mautner’s lemma is the following:

Lemma 2.1. Let G be a locally compact group, H an unitary representation of G.

Let ak be a series of elements of G, n ∈ G, v, u ∈ H. Suppose that akv
w−→ u, and

a−1k nak → 1. Then nu = u.

Proof. For any w ∈ H:

(nu− u,w) = lim(nakv − akv, w) = lim(a−1k nakv − v, a−1k w)

But lim||a−1k nakv − v|| = 0, while ||a−1k w|| is bounded, so by Cauchy-Schwartz
our limit is zero. So nu− u = 0. �

Another lemma which we will need is the following:

Lemma 2.2. Suppose that G = KAK, where K is a compact subgroup, and A is
any subgroup. Let H be an unitary representation of G. Then it is C0 i.f.f. all the
matrix coefficients, restricted to A, vanish at infinity.

1



2 SASHA YOM DIN

Proof. Suppose that all matrix coefficients, restricted to A, vanish at infinity, but
gn →∞ and (gnu, v) 6→ 0 for gn ∈ G and some u, v ∈ H.

We can extract a subsequence of gn (call it gn again) so that (gnu, v) stays
uniformly away from zero. Write now gn = knank

′
n with kn, k

′
n ∈ K, an ∈ A. We

can extract a subsequence of gn (call it gn again) so that kn → k, k′n → k′, for some
k, k′ ∈ K. Then still (gnu, v) stays uniformly away from zero, hence in particular
(gnu, v) 6→ 0. On the other hand, it is clear that an →∞, so that:

(gnu, v) = (knank
′
nu, v)− (kank

′
nu, v) + (kank

′
nu, v)− (kank

′u, v) + (kank
′u, v) =

= (ank
′
nu, k

−1
n v − k−1v) + (k′nu− k′u, (kan)−1v) + (ank

′u, k−1v)

The first and second terms converge to zero by Cauchy-Scwhartz, the last one
by assumption. Contradiction.

�

3. Cartan decomposition

Let G = SL(n,R). Denote by B (N) the subgroup of (unipotent) upper-
triangular matrices. Denote by A+ the subgroup of diagonal matrices with positive
entries on the diagonal. Denote by K the subgroup of orthogonal matrices.

Lemma 3.1. We have G = KA+K.

Proof. Let g ∈ G. ggt is positive, hence by spectral theory it has a positive square
root

√
ggt. Writing g =

√
ggtk, we calculate explicitly kkt = 1, i.e. k ∈ K. Thus,

we can express any element as the product of a positive one by a orthogonal one
(polar decomposition). Furthermore, the spectral theory again says that a positive
element we can express as sast for s ∈ K, a ∈ A+ (if det(s) = −1, we can change
the situation by multiplying by the element diag(−1, 1, . . . , 1)). All together, any
element lies in KA+K. �

4. The case of SL(2,R)

Let G = SL(2,R).

Lemma 4.1. Let H be a unitary representation of G. Suppose that v ∈ H is
N -invariant. Then it is G-invariant.

Proof. Write φ(g) = (gv, v). This is a continuous function on G.
Note the easy equivalences, for some subgroup H ⊂ G:

• φ is constant on H.
• v is H-invariant.
• φ is H-bi-invariant.

So our φ is N -bi-invariant. Thus we can interpret it as N -invariant function on
G/N , which can be thought of as the real plane without the origin (this is since G
acts on this plane, and N is the stabilizer of (1, 0)t). The N -orbits are the lines
y = a (a ∈ R − {0}), and the points of the x-axis. Thus, our φ is constant on the
lines y = a, and so from continuity is also constant on the x-axis. But the x-axis is
the B-orbit of (1, 0)t, so we get that φ is constant on B. From the remark above,
φ is B-bi-invariant.
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Now, in the same manner, we interpret φ as a B-invariant function on G/B,
which can be thought of as the real projective line. Since this line has an open
dense B-orbit, we get that φ is constant on the whole projective line, so we get that
φ is constant on G. By the remark above, v is G-invariant.

�

Now we can prove the special case of Howe-Moore theorem, when G = SL(2,R).

We introduce the character α(a) = a21,1. Then a

(
1 x
0 1

)
a−1 =

(
1 α(a)x
0 1

)
.

Theorem 4.2. The Howe-Moore theorem holds for G = SL(2,R).

Proof. Let H be an unitary representation of G, and assume that H is not C0.
From G = KA+K and the relevant lemmas, we can find an ∈ A+, an → ∞, and

v, u ∈ H, u 6= 0, such that anv
w−→ u. Since an → ∞, we can find a subsequence

(call it an again) so that α(an) converges to zero or to infinity, suppose to infinity

(the zero case is analogous). Then a−1n

(
1 x
0 1

)
an → 1, and so by Mautner’s

lemma u is N -invariant. Hence by the previous lemma, u is G-invariant. �

5. The case of SL(n,R)

Let G = SL(n,R). For 1 ≤ i < j ≤ n, we write Ei,j(x) (E−i,j(x)) for the

matrix with x in the (i, j) ((j, i)) place, 1’s on the diagonal, and 0 everywhere else
(where x is real). We write Hi,j(t) for the diagonal matrix with t in the i place,
t−1 in the j place, and 1’s everywhere else (where t is real non-zero). We have the
subgroup Gi,j , isomorphic to SL(2,R), containing Ei,j(x), E−i,j(x), Hi,j(t), and the

corresponding Wi,j = Ei,j(1)− E−1i,j (1). We also write αi,j(a) = ai,ia
−1
j,j (character

of A), so that aEi,j(x)a−1 = Ei,j(αi,j(a)x).
By Gauss elimination, G is generated by the Gi,j ’s.

Lemma 5.1. Let H be an unitary representation of G, and suppose that for some
(i0, j0), we have a Ei0,j0(x)-invariant vector v ∈ H. Then v is G-invariant.

Proof. By the SL(2,R)-lemma that we saw, v is Gi0,j0-invariant. For any j0 6=
j > i0, Hi0,j0(t−1)Ei0,j(x)Hi0,j0(t) = Ei0,j(t

−1x), so by Mautner’s lemma, Ei0,j(x)
fixes v. By SL(2,R)-lemma, Gi0,j fixes v. In the same way, if i0 6= i < j0, Gi,j0

fixes v. Thus we conclude that all Gi,j fix v, so G fixes v. �

Theorem 5.2. The Howe-Moore theorem holds for G = SL(n,R).

Proof. Let H be an unitary representation of G, and assume that H is not C0.
From G = KA+K and the relevant lemmas, we can find an ∈ A+, an → ∞, and

v, u ∈ H, u 6= 0, such that anv
w−→ u. Since an → ∞, we can find a subsequence

(call it an again) so that for some 1 ≤ i ≤ n− 1, αi,i+1(an) converges to zero or to
infinity, suppose to infinity (the zero case is analogous). Then a−1n Ei,i+1(x)an → 1,
and so by Mautner’s lemma u is Ei,i+1(x)-invariant. Hence by the previous lemma,
u is G-invariant. �

6. Application to property (T )

Claim 6.1. Suppose that the Lie group G satisfies:
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• Every unitary representation of G which has no non-zero G-invariant vec-
tors is C0.
• G contains a copy of SLn(R) nRn (n ≥ 2).

Then G has property (T ).

Proof. Let H be a unitary representation of G, which has almost invariant vectors.
Then H has almost invariant vectors as a representation of SLn(R)nRn. From the
relative property (T ) of (SLn(R) n Rn,Rn), Rn has an invariant vector in H. As
Rn is not compact, this prevents H to be C0. Hence it has a G-invariant vector. �

Corollary 6.2. SL(n,R) has property (T ), where n ≥ 3.

6.1. the real rank. Now we want to define the real rank of a reductive linear Lie
group. We suppose that G is embedded in GL(n,R), and the definition will not
depend eventually on this embedding (although we will not show it). We define a
real torus to be a closed connected Lie subgroup of G, which can be conjugated
inside GL(n,R) to sit in the diagonal. Equivalent to this conjugation property
is the requirement of this subgroup to be abelian, and every element of it to be
diagnolizable. The real rank of G is defined as the dimension of a maximal real
torus.

Example: The real rank of SL(n,R) is n− 1. Indeed, the connected component
of the diagonal subgroup of SL(n,R) is clearly an n − 1-dimensional real torus.
Since any real torus will have an embedding into this diagonal subgroup, we see
that the real rank is n− 1.

Example: The real rank of a compact group is 0. Indeed, a compact subgroup
of the group of diagonal matrices must be finite (a subgroup of a product of {±1}).

Example: The real rank of SO(p, q) is min(p, q). Recall that SO(p, q) is the
group of transformations of V = Rp+q preserving the (say) standard symmetric
bilinear form of index (p, q) ((x, y) = x1y1 + . . . + xpyp − xp+1yp+1 − . . . − xqyq).
We will show that the real rank coincides with the maximal possible dimension of
an isotropic subspace of V (i.e. a subspace such that the restriction of the form to
it vanishes).

Let us recall first that indeed, the dimension of a maximal isotropic subspace
is min(p, q). If U ⊂ V is an isotropic subspace, with basis u1, . . . , um, from linear
algebra we can find an isotropic subspace W ⊂ V , with basis w1, . . . , wm, such
that (ui, wj) = δi,j . Then U +W is unisotropic, and so we can take its orthogonal
complement Z ⊂ V . From linear algebra, U +W is a sum of hyperbolic planes, so
that we have at least m pluses and m minuses in our form. Thus, m ≤ min(p, q).
Conversely, it is very easy to write our space as an orthogonal sum of min(p, q)
hyperbolic planes and a definite space, showing the converse.

Now, suppose that U ⊂ V is an isotropic subspace, with basis u1, . . . , um, and
W , etc. as in the previous paragraph. Then if we consider transformations which
are identity on Z, and act by scalars on the ui‘s and wi‘s, with the scalar acting
on ui the inverse of the scalar acting on wi, we get an m-dimensional torus (taking
the connected component).

Conversely, let T be a real torus. Consider a basis v1, . . . , vn of V , which diag-
nolizes T , say with eigencharacters χi. We can order the vi so that for any two of
the first k characters (possibly coinciding), one is not the inverse of the other, and
the later ones are already inverses of some of the first k, or of themselves. Then for
any i, j ≤ k, we have that (vi, vj) = (tvi, tvj) = χi(t)χj(t)(vi, vj) for any t ∈ T , and
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since χi 6= χ−1j , we conclude (vi, vj) = 0. Thus U = span{v1, . . . , vk} is isotropic.

On the other hand, the map T → Rk defined by t 7→ (χ1(t), . . . , χk(t)) has clearly
a finite kernel, thus dim(T ) ≤ k.

6.2. continuation. Now, we have the following technical claim:

Claim 6.3. A simply-connected algebraic Lie group of real rank ≥ 2, has inside it
a copy of SL(2,R) nR2 or of SL(3,R) nR3.

The Howe-Morre theorem can be proved for any simple linear Lie group, and
thus we conclude:

Theorem 6.4. A simple simply-connected algebraic Lie group of real rank ≥ 2 has
property (T ).


