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1 Remarks and notations

There might be errors, inaccuracies, and unpleasancies in the following text. I
will be happy if you let me know about it.

2 Counting fixed points of powers

Let X be a compact smooth connected oriented manifold. Let φ : X → X be a
smooth map. We suppose the following (technical) condition: For every n ≥ 1,
φn has finitely many fixed points, all of which are simple (the determinant of
the map Id− d(φn) on the tangent space to each fixed point of φn is positive).
Note that if X is a complex manifold and φ a holomorphic map, then the con-
dition on the determinant above is equivalent to the condition that the complex
differential map d(φn) hasn’t 1 as an eigenvalue.

We denote by O the set of finite orbits of φ. We denote by bn the number of
fixed points of φn. We denote by an the number of formal non-negative integer
combinations

∑
miOi, Oi ∈ O, such that

∑
mi|Oi| = n. We define:

z(t) =
∑
n≥0

ant
n =

∏
O∈O

1

1− t|O|

and

w(t) =
∑
n≥1

bnt
n.

Then w(t) = t ddt logz(t) and z(t) = exp(
∫ w(t)

t ).

2.1 First claim - how zeta looks

Let us denote by ck,j the eigenvalues (counted with multiplicities) of φ∗ acting
on Hk(X,C). Let us also denote pk(t) :=

∏
j(1 − ck,jt) (which is det(Id −

tφ∗, Hk(X,C)), a slightly normalized characteristic polynomial).
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Theorem 2.1 (Rationality).

z(t) =

∏
k odd pk(t)∏
k even pk(t)

.

A trivial manipulation (passing from z(t) to w(t)) shows that this formula
is equivalent to the following one:

bn =
∑
k

(−1)k
∑
j

(ck,j)
n

which can be rewritten:

bn =
∑
k

(−1)kTr((φ∗)n, Hk(X,C)),

and this is just the Lefschetz fixed point formula.

2.2 Second claim - duality

We now assume that the dimension d of X is even, and that the degree Q of φ
is positive (the degree is the scalar by which φ∗ acts on Hd(X,C)).

Theorem 2.2 (Functional equation).

z((Qt)−1) = ε · (−1)χ · tχ ·Qχ/2 · z(t)

where χ =
∑
k(−1)kdimHk(X,C) is the Euler characteristic and ε is the

sign of the determinant of φ∗ acting on Hd/2(X,C).

Indeed, it is immedaite, using Poincare duality, to see that the multiset
cd−k,j is equal to the multiset Q

ck,j
. After this, the theorem is a matter of simple

manipulations.

2.3 Third claim - the roots

We now suppose that X is a Kahler manifold, with Kahler form ω. Also, we
suppose that φ∗[ω] = q[ω], where [ω] denotes the cohomology class of ω and
q > 0 is some positive number.

Theorem 2.3 (Riemann hypothesis). All the ck,j are algebraic integers, all of
whose complex conjugates have an absolute value qk/2.

Notice that once we show that the ck,j have absolute value qk/2, the rest
is clear (since φ∗ acts already on the Z-form Hk(X,Z) and the conjugates of
eigenvaules are other eigenvaules).

We will prove this theorem after some preliminaries on Hodge theory.
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3 Hodge theory - Results

Let X be a compact smooth complex manifold of complex dimension n. Assume
that X is equipped with a Kahler class c.

3.1 Since X is a compact oriented manifold

The cohomology ring H · := H ·(X,C) is a super-commutative unital finite-
dimensional graded ring, with Hk = 0 if k < 0 or k > 2n. There is an isomor-
phism

∫
: H2n → C.

Theorem 3.1 (Poincare). The pairing Hk ⊗C H
2n−k → H2n

∫
−→ C is perfect.

Remark 3.2. All the structure above has a real form, and so we can speak about
real operators, conjugation, etc.

Remark 3.3. If f : X → Y is a smooth map, f∗ : H ·(Y,C)→ H ·(X,C) is a real
algebra homomorphism.

3.2 Since X is Kahler

Theorem 3.4 (Hodge decomposition). There is a canonical decomposition
Hk = ⊕Hp,q, where p, q run over non-negative integers, with sum k. Also,
Hp,q = Hq,p.

Remark 3.5. We have Hp,q = 0 if p > n or q > n.

Remark 3.6. The multiplication respects this decomposition: Hp1,q1 ·Hp2,q2 ⊂
Hp1+p2,q1+q2 .

Remark 3.7. If f : X → Y is a holomorphic map, f∗ respects the decomposition:
f∗Hp,q(Y,C) ⊂ Hp,q(X,C).

3.3 Since X has a chosen Kahler class

The class c belongs to H1,1. We define L : H · → H ·+2 as L(x) = cx. It is a
real operator.

Theorem 3.8 (Hard Lefschetz). For 0 ≤ k ≤ n,

Lk : Hn−k → Hn+k

is an isomorphism.

Definition 3.9. For 0 ≤ k ≤ n, we define Hn−k
pr to be the kernel of Lk+1 :

Hn−k → Hn+k+2.

Corollary 3.10. For 0 ≤ k ≤ n, we have a decomposition:

Hk = ⊕i≥0L
iHk−2i

pr .
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Remark 3.11. Since L shifts degree by (1, 1), it is clear that:

LiHk−2i
pr = ⊕p,q

(
LiHk−2i

pr ∩Hp,q
)
.

Definition 3.12. For 0 ≤ k ≤ n, we define a Hermitian form on Hn−k as
follows:

Q(x, y) = ik
∫
Lk(x) · ȳ

.

Remark 3.13. The coefficient ik makes the form symmetric (in the complex
sense - swapping becomes conjugation).

Remark 3.14. It is clear that the form Q is non-degenerate.

Theorem 3.15 (Hodge-Riemann bilinear relations). For 0 ≤ k ≤ n, the Her-
mitian form Q restricted to LiHk

pr ∩Hp,q is, up to a scalar (which depends on
i, p, q, n), positive definite.

Remark 3.16. We can also define a Lefschetz decomposition and a form Q, with
the same results, for Hn+k (0 ≤ k ≤ n); One can just transport everything from
Hn−k to Hn+k via Lk (So that Q is a L-invariant form on H ·).

4 Proof of the theorem on absolute values of
roots

We have the operator φ∗ on Hk(X,C). Notice that it is an algebra homomor-
phism of H ·(X,C). We normalize it T := q−k/2φ∗, so that T ([ω]) = [ω]. So,
T commutes with L. Also, it acts as 1 on H2n(X,C) (since T ([ωn]) = [ωn]).
Finally, T is a real operator. We conclude from all this that T preserves the
form Q, and the Lefschetz and Hodge decompositions (the later also takes into
account that φ is holomorphic). But then it is clear that T is unitary w.r.t. a
form which we can define on Hk(X,C) (by choosing different multiples of Q on
the different LiHk−2i

pr (X,C) ∩Hp,q(X,C)). In particular, all the eigenvalues of

T are of absolute value 1. This means that φ∗ has all eigenvalues on Hk(X,C)
of absolute value qk/2.

5 Weil conjectures for varieties over finite fields

Let X1 be a smooth, projective and geometrically connected variety over a finite
field k1. Let d denote the dimension of X1. Let q = |k1|. Let us denote by kn
an extension field of k1 of degree n. Let bn denote the number of elements in
X1(kn) (the number of kn-rational points of X1). We then form the generating

series w(t) =
∑
n≥1 ant

n as before, and set z(t) = exp(
∫ w(t)

t ) as before.
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5.1 First claim - how zeta looks

Theorem 5.1 (Rationality). One can construct (canonically) polynomials pk(t) ∈
Z[t], for 0 ≤ k ≤ 2d, so that:

z(t) =

∏
k odd pk(t)∏
k even pk(t)

.

Also, all pk(t) have free coefficient 1, p0(t) = 1− t and p2n(t) = 1− qnt.

Remark 5.2. Moreover, if X1 is the reduction modulo a maximal ideal of a
smooth projective variety X̃ over a number field, then deg(pk(t)) is equal to
dimHk(X̃(C),C)!

5.2 Second claim - duality

Theorem 5.3 (Functional equation).

z((qdt)−1) = ±tχ · qdχ/2 · z(t)

where χ is the Euler characteristic of X (which can be defined as the self-
intersection of the diagonal of X ×X, where X is the base change of X1 to an
algebraic closure of k1).

Remark 5.4. One can be as precise about the sign in the above functional
equation as in the Kahler case, once one has the language of l-adic cohomology.

5.3 Third claim - the roots

Theorem 5.5 (Riemann hypothesis). The roots of pk(t), when considered as
complex numbers, have absolute value qk/2.

5.4 The facts above have a proof

To prove the facts above, one first considers X - the base change of X1 to an
algebraic closure of k1. Then one notices that there is the Frobenius morphism
F : X → X, and that the fixed points of Fn are in bijection with X1(kn).
Grothendieck developed a theory of l-adic cohomology, and proved things like
Poincare duality and Lefschetz fixed point formula. This gives the first two
claims. For the third claim, Grothendieck envisioned the so-called ”standard
conjectures”, from which it will follow (similarly to the Kahler case above). But
these are still conjectures, and meanwhile Deligne proved the third claim (it is
not easy at all).

A Hodge theory - Riemannian manifolds

Let X be a compact smooth connected manifold.
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A.1 Forms and de-Rham cohomology

Denote by Ak the space of smooth complex-valued k-forms on X (these are
non-zero for 0 ≤ k ≤ dim(X)). Recall that we have the exterior differential
d : Ak → Ak+1, and that d2 = 0. Recall Hk(X,C) := Ker(d)/Im(d).

A.2 Hodge theorem

Let us now fix an orientation and a Riemannian metric on X. These induce
an inner product on the spaces Ak. The operator d : Ak → Ak+1 admits a
(unique) formal adjoint; That is, an operator d∗ : Ak+1 → Ak which satisfies
(dα1, α2) = (α1, d

∗α2) for all α1 ∈ Ak, α2 ∈ Ak+1. Let us also recall that one
usually denotes ∆ = dd∗ + d∗d (the Laplacian).

Would Ak be finite-dimensional, since ∆ is formally self-adjoint, we would
obviously have Ak = Im(∆) ⊕Ker(∆). Nevertheless, it is true in our case as
well:

Theorem A.1. Ak = Im(∆)⊕Ker(∆).

This theorem is ”not easy”, it requires Sobolev analysis.

Corollary A.2. Ak = Im(d∗)⊕ Im(d)⊕ (Ker(d∗) ∩Ker(d)).

Definition A.3. A form α ∈ Ak is called harmonic if d(α) = 0 and d∗(α) = 0.
We denote tha space of harmonic k-forms by Akh ⊂ Ak.

So, the previous corollary can be written Ak = Im(d∗)⊕ Im(d)⊕Akh.

Corollary A.4. Akh projects isomorphically onto Hk(X,C).

One can think of it as a beautiful section map: a space classifying ”real”
things is usually presented as a space classifying ”rigidified” things, up to some-
thing (many times - there is more than one possible presentation). Then, we
might wonder if among all ”rigidified” things representing the same ”real” thing
there is a most efficient one, in some sense. The elementary example on which
the current instance is based is: In a finite dimensional inner product space, a
quotient space admits a subspace as a model - the orthogonal complement. It
picks in any coset the element which is closest to the origin. Indeed:

Claim A.5. The following are equivalent for a form α ∈ Ak:

1. d(α) = 0 and d∗(α) = 0.

2. ∆(α) = 0.

3. d(α) = 0 and α has the smallest norm among elements of its cohomology
class α+ Im(d).

6



B Hodge theory - Complex manifolds

Let X be a complex smooth connected manifold of (complex) dimension n.
Recall that X is then canonically oriented (to wit - canonically after we choose
a square-root of 1 in C, which we assume we did, and call it i).

B.1 Types of forms and Dolbeault cohomology

In that case, we have a decomposition Ak = ⊕Ap,q where p, q ≥ 0 and p+q = k.
To describe it, it is enough to do so in the ”punctual” case of a complex finite-
dimensional vector space V and the space of k-forms W := HomR(

∧k
R V,C).

We then can describe a subspace W p,q as the subspace of maps φ :
∧k

R V → C
which satisfy φ(cv1, . . . , cvk) = cp−qφ(v1, . . . , vk) for all c ∈ C of absolute value
1.

Notice that for k = 1 we get just W = W 1,0⊕W 0,1 where W 1,0 is the space of
complex-linear maps and W 0,1 is the space of complex-antilinear maps. We can
describe then W p,q in general as the space of k-forms which can be obtained as
a sum of products of p complex-linear 1-forms and q complex-antilinear 1-forms.

We proceed to notice that d : Ak → Ak+1 maps Ap,q into Ap+1,q + Ap,q+1

(we can see this by noticing that any k-form can be written in local complex
coordinates z1, . . . , zn as a sum of products of a function, 1-forms dzi and 1-
forms dz̄i).

One denotes then d = ∂+ ∂̄, where ∂ : Ap,q → Ap+1,q and ∂̄ : Ap,q → Ap,q+1.
The relation d2 = 0 translates into the three relations ∂2 = 0 , ∂̄2 = 0 and
∂∂̄+ ∂̄∂ = 0. In what follows we write claims and definitions for ∂, and all have
the obvious analogs for ∂̄.

We also write Hp,q
∂ (X,C) = Ker(∂)/Im(∂). So, to contrast, H0(X,C) is

the space of locally constant functions on X, while H0,0

∂̄
(X,C) is the space

of holomorphic functions on X. As another elucidation, H ·(X,C) calculates
the sheaf cohomology of the constant sheaf C, while Hp,·

∂̄
calculates the sheaf

cohomoloy of the sheaf Ωp of holomorphic p-forms on X.

B.2 Hodge theorem

Let us now fix an Hermitian metric on X. It induces a Riemannian metric (its
real part). So, we again get inner products on the spaces Ak. One has that
the different Ap,q are orthogonal to each other. Thus the formal adjoint ∂∗ of ∂
maps Ap,q into Ap−1,q. Again, one writes ∆∂ = ∂∂∗ + ∂∗∂. Similarly to before:

Theorem B.1. Ap,q = Im(∆∂)⊕Ker(∆∂).

Definition B.2. A form α ∈ Ap,q is called ∂-harmonic if ∆∂α = 0. We denote
the space of ∂-harmonic (p, q)-forms by Ap,q∂−h.

Corollary B.3. Ap,q∂ projects isomorphically onto Hp,q
∂ (X,C).
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C Kahler manifolds

Let X be a complex smooth connected manifold of (complex) dimension n.
Suppose that we are given a Hermitian metric on X. Before we considered the
Riemannian metric which it induces - its real part. But we can also consider
its imaginary part; It can be considered as a real form ω ∈ A1,1. X is called
Kahler if d(ω) = 0. We assume this in the current section.

C.1 Identities

We introduce an operator L : Ak → Ak+2, defined as ω ∧ ·. We note that L
maps Ap,q into Ap+1,q+1. We denote by Λ its formal adjoint.

Claim C.1. We have:

[Λ, ∂] = i∂̄∗, [Λ, ∂̄] = −i∂∗

We will not prove this claim; It is proved first on Cn, and then reduced to
this case.

Corollary C.2. We have (commutators are written in the ”super”-sense):

1. [∂, ∂̄∗] = 0.

2. ∆∂ = ∆∂̄ .

3. ∆ = ∆∂ + ∆∂̄ = 2∆∂ = 2∆∂̄ .

4. [L,∆] = 0.

Corollary C.3. ∆ commutes with projection onto (p, q)-types. In particular,
the (p, q)-components of an harmonic form, are harmonic (So that Akh = ⊕Ap,qh ).

C.2 Hodge theorem

Let us denote by Hp,q(X,C) the subspace of Hk(X,C) which consists of classes
which can be represented by a closed form of type (p, q).

Theorem C.4. Hk(X,C) = ⊕Hp,q(X,C).

Proof. Indeed, from Akh = ⊕Ap,qh and a previous Hodge theorem, it is clear that
Hk(X,C) =

∑
Hp,q(X,C). For the independence it is enough to show that

a closed (p, q)-form α is cohomologous to a harmonic (p, q)-form. Indeed, we
can write α = ∆(β) + γ, where γ is harmonic. Projecting this equality to the
(p, q)-type (and recalling that ∆ preserves types in our Kahler case), we get
an equality α = ∆(β1) + γ1, with γ1 an harmonic (p, q)-form and β1 a (p, q)-
form. Since α and γ1 are closed, we see that ∆(β1) = dd∗β1, and hence α is
cohomologous to γ1.

Remark C.5. It is clear that we also have the property Hp,q(X,C) = Hq,p(X,C).
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D Lefschetz theory

We continue with our X, a complex smooth connected manifold of (complex)
dimension n, which is equipped with a Kahler metric inducing a Kahler form ω.

D.1 Lefschetz theorem

We define P : Ak → Ak to be the operator of multiplying by (n− k).

Lemma D.1. [L,Λ] = P , [P,L] = 2L , [P,Λ] = −2Λ.

The two last equalities are trivial. The first one is a computation purely in
linear algebra.

So now, from the theory of locally finite representations of sl2 (or from simple
explicit calculations) we get:

Theorem D.2. For 0 ≤ k ≤ n, the map Ln−k : Ak → A2n−k is an isomor-
phism.

Since L commutes with d and with ∆ , this theorem enables us to deduce the
following one (using the fact that harmonic forms represent cohomology classes
bijectively):

Theorem D.3. For 0 ≤ k ≤ n, the map Ln−k : Hk(X,C) → H2n−k(X,C) is
an isomorphism.

D.2 Lefschetz decomposition

Define, for 0 ≤ k ≤ n:

Akpr(X,C) = Ker(Ln−k+1), Hk
pr(X,C) = Ker(Ln−k+1).

Then the following theorem follows easily from the Lefschetz theorem:

Theorem D.4. For 0 ≤ k ≤ n:

Ak(X,C) = ⊕i≥0L
iAk−2i

pr (X,C).

and

Hk(X,C) = ⊕i≥0L
iHk−2i

pr (X,C).

Notice that this decomposition respects the Hodge decomposition into types.
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D.3 Hodge-Riemann bilinear relations

Lemma D.5. For 0 ≤ k ≤ n, let α ∈ Ap,q ∩ Akpr(X,C). Then Ln−kα = c · ∗α
where c is a non-zero number which depends only on p, q, n (and ommited by
laziness).

This lemma is a computation purely in linear algebra.
Let us now define an Hermitian pairing on Hk(X,C):

Q(x, y) = ik
∫
Ln−kx ∧ ȳ.

The coefficient ik is put there to make the pairing Hermitian for odd k (and
not anti-Hermitian). This pairing is non-degenerate by Poinacre duality and
Lefschetz theorem. One easily sees that the Hodge decomposition is orthogonal
w.r.t. this pairing. One also easily sees that the Lefschetz decomposition is
orthogonal w.r.t. this pairing. The lemma above shows:

Theorem D.6. The restriction of Q(x, y) to every Hp,q(X,C)∩LiHk−2i
pr (X,C)

is positive definite, up to some non-zero scalar.
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