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1 Conventions, reminders, etc.

1.1
We will follow [1, section I.3].

Imprecisions: We consider morphisms into G(Q;), say they are contin-
uous and so on, when we really mean that the morphism factors through and
is continuous into some G(FE), where E/Qy is a finite extension. We even write
Z, at some point, when we again mean O}, etc.

1.2
Throughout, we fix the following. k; will denote a finite field, and k/k; an
algebraic closure. We write ¢ := |k1|. We fix a prime £ relatively prime to g,

and an algebraic closure Q;/Q. We also fix an identification 7 : Q, = C.



By X1,Y7 etc. we mean normal geometrically connected algebraic schemes
over ki, and denote X := k ®, X1. By k1 C k, C k we denote the unique
extension field of k; inside k of degree n. We denote X, := k,, ®, X;.

Given a closed point « € X, we might think of it as a morphism Spec(k) —
X1 over Spec(ki). Its image is a closed point v € X1, we denote by ki (z) the
corresponding residue field, and ¢, := |k1(2)].

1.3

Let z € X be a closed point. One has a short exact sequence
1->m(X,z) > m(Xy,2) = Gal(k/k)? — 1

of profinite groups. One also has, corresponding to Spec(ki(z)) — X1, a mor-
phism Gal(k/ki(x))°? — m1(X1,x). We denote by Fr, € m1 (X1, ) the image
under this morphism of the geometric Frobenius. Notice that under the thru-
morphism Gal(k/k1(2))P — m1(X1,2) — Gal(k/k1)°P the geometric Frobenius
in Gal(k/ki(x))°P goes to the [k1(z) : k1]-th power of the geometric Frobenius
in Gal(k/ky)°P.

One denotes by W(k/k1) C Gal(k/k1)°P the subgroup generated by the

geometric Frobenius, and by W (X1, z) C 71 (X1, x) the corresponding subgroup,
i.e. one now has

1l->mX,z) > W(Xy,2) > W(k/k) — 1.

Then, as noted above, F'r, € W (X1, z). Note, however, that the topology that
we take on W (k/ky) is the discrete one, and not the one induced on it as a
subgroup of Gal(k/k1)°P! Accordingly we define the topology of W (X7, z).

Identifying W (k/ky) with Z by sending the geometric Frobenius to 1, the
resulting map W (X;,x) — Z we call the degree map, and denote deg.

1.4

All sheaves are assumed to be constructible Qp-sheaves (in fact, we will only
deal with smooth sheaves in this lecture). Given a Weil sheaf F; on Xp, we
will denote by F the corresponding sheaf on X. Given a closed point x € X,
we have an equivalence of categories between smooth Weil sheaves on X; and
continuous finite-dimensional representations of W (X5, x) over Qp, which we
will utilize a lot; It is given by sending F; to the geometric fiber (F1)|,.

1.5
For A € Q/, let us denote wl(\) = log,i/z |T(A)].

Recall that for a real number 5 € R, a Weil sheaf F; on X; is said to be
punctually 7-pure of weight § if for every x € X, all the eigenvalues A of
Fr, € W(Xy,x) on (F1)|, satisfy wi=(\) = 3.



A Weil sheaf F7 on X is said to be punctually 7-pure if it is punctually
7-pure of weight 8 for some 3. Such a 3 is then uniquely determined (unless
F1 =0) and we set w(Fy) := 5.

Note that given a morphism 7 : Y7 — X; and a Weil sheaf F; on X; which
is punctually 7-pure of weight /3, the Weil sheaf 7* F; on Y7 is punctually 7-pure
of weight 8 as well.

Note that, for m € Z>1, if .7-"{@’” is punctually 7-pure of weight 8 then F is
punctually 7-pure of weight §/m.

2 Purity of smooth Weil sheaves of rank 1

Definition 2.1. We will say that an abelian topological group I" is almost
pro-p if it is an extension of a finite group by a pro-p-group.

Remark 2.2. The extension of a finite group by an almost pro-p group is again
an almost pro-p group. Also, almost pro-p-groups are stable under quotients and
finite products.

Remark 2.3. Let I' be an almost pro-p group. Then any character x : I' — @[X
is of finite order (i.e. there exists m € Z>; such that x™ = 1). Indeed, since
an almost pro-p group is compact, the image of x lands in 2;7 which is an
almost pro-£ group, and thus the claim easily follows noticing that there are no
non-trivial morphisms from a pro-p-group to a pro-¢-group.

We denote by 71(X)? the abelianization of 7 (X,z) (and similarly for
71 (X1)%, W (X1)?), the point being that these do not depend on the choice
of z.

Claim 2.4. The image of m1(X)%® — W(X1)? is an almost pro-p group.

Proof. Let us first assume that X; is a curve so that, since it is normal, it is a
smooth curve. By class field theory, see remark 2.7, it is enough to show that

X
IJX'HAﬁ is an almost pro-p-group. Notice that it admits a surjection onto
v 1 v

FXHAiOOX’ which is a finite group (in bijection with the group of k;-points of
Alyexy G

the Jacobian of X7). The kernel of the surjection admits itself a surjection from
[l,ex_x, O Thus we are reduced to showing that the latter is an almost
pro-p-group, and thus that some O, is an almost pro-p-group. But O admits

a surjection onto the finite group k(v)*, and the kernel is a pro-p-group.

The general case we will not prove in detail. Notice that if we find 7 : Y7 —
X such that 71(Y)® — m(X)% is surjective, then the claim for Y; implies
that for X;. Hence, by passing to an open dense subscheme, we can assume
that X7 is quasi-projective. Then one passes to a generic-enough linear section
of X1 of dimension 1. Et cetera.

O



Theorem 2.5. Let F1 be a smooth Weil sheaf of rank 1 on Xi. Then F has
finite order, i.e. there exists m € Z>y such that F¥™ = Q.

Proof. This follows from claim 2.4 and remark 2.3. O

Corollary 2.6. Let F1 be a smooth Weil sheaf of rank 1 on X1. Then Fi is
punctually T-pure.

Proof. By a remark in subsection 1.5, it is enough to check that F™ is punc-
tually 7-pure, for some m. Thus, by the theorem, we can assume that F = Q.
Then, F; is the pullback of a smooth Weil sheaf of rank 1 on Spec(k1). Hence,
by a remark in subsection 1.5, it is enough to check that a smooth Weil sheaf
of rank 1 on Spec(ky) is punctually 7-pure, which is clear. O

Let us recall the class field theory we have used in claim 2.4:

Remark 2.7. Let us recall some class field theory. Assume that X; is a curve,
and denote by F' and A the field of rational functions on X; and the adeles of
the compactification of X;. The main claim of class field theory is that one has
a unique continuous morphism

e A = (X))
with the following two properties:
1. rlpx = 1.
2. for v € X1, one has r(f) = Fro™Y) where f € Fx.

Moreover, the morphism r has dense image.
Then one can formally deduce the following. One has a commutative dia-
gram:

AX *T> 7T1(X1)ab

"

Z —— Gal(k:)
1—Fr

and one obtains an induced continuous surjective morphism AX — W (X)?®,
which upon restricting to ideles of degree 0 gives a continuous surjective mor-
phism



3 Determinant weights

Definition 3.1 (Determinant weights). Let F; be a smooth Weil sheaf on X;.
We define a finite subset dw,(F;) C R of determinant T-weights of F; as
follows.

1. If 71 hasrank 1, recall that F; is punctually 7-pure, and define dw, (F7) :=
{wT (]:1 ) } .

2. If Fy is irreducible, denoting by d the rank of F;, we denote dw,(F;) :=
dw, (ANYFy)/d.

3. In the general case, we set dw,(F;) to be the union of the singletons
dw,(Gy) where G; runs over irreducible constituents of Fj.

Remark 3.2. Let us verbalize the advantage of determinant T-weights. Given
a smooth Weil sheaf F; on X7, to understand 7-weights of F7, we need to vary
the closed point x € X, but to understand determinant 7-weights, we can do
with any fixed . Suppose for simplicity that Fi is irreducible and consider,
for © € X, the corresponding W (X7, z)-representation V' = (F1)|,. The 7-
weights of V' are wi= (\) as A runs over eigenvalues of F'r,, while the determinant
T-weight is w? (det(Fry))/dimV. The 7-weights recover the determinant 7-
weight (the latter is the arithmetic average of the former), but they might
change when we change x, while the determinant 7-weight does not.

Remark 3.3. For a short exact sequence of smooth Weil sheaves on Xj:
0—=>F =G —Hi—0

one has
d’w-,—(gl) = d’w-,—(]‘—l) @] d’w-,—(Hl)

The main result we want to establish is the following one:
Claim 3.4.
1. Let Fi, F; be smooth Weil sheaves on X,. Then

dw, (F1 @ Fy) = dw,(F1) + dw, (F7).

2. Let Fy be a smooth Weil sheaf on X1. Denote by wy, ..., w,, the elements
of dw,(F1), and denote by d; the sum of ranks of irreducible consistuents
Gy of F1 for which dw.(G1) = {w;}. Then

dwT(/\}"l) = H {rw; + ...+ rpwy}

0<r; <d;

T1d e T =T

3. Let Fy be a smooth Weil sheaf on X1, and let m : Y7 — X1 be a dominant
morphism. Then
dw, (7*(F1)) = dw,(Fy).

Proof. We will proof this in section 5 below. O



4 Catching determinant weights using central
elements

Let G; be an affine algebraic group over Q, and let p : W(X;,z) — Gy be
a morphism with dense image. We denote by G C G the Zariski closure of
p(mi(X,x)). Let us say that p is good with data (z,m) € Z(G1) x Zyg if G° is
semisimple and z =g p(Fr,)™.

Lemma 4.1. Let 6 : Gy — G be a surjective algebraic morphism. If p :
W(X1,2) — Gy is good with data (z,m), then 8o p: W(Xy,z) — GY is good
with data (0(z), m).

Proof. Clear. O

Let V be a finite-dimensional representation of W (Xj,z) over Q, - write
p: W(Xy,x2) = GL(V). We denote by G; C GL(V) the Zariski closure of
p(W(X1,z)) (and call it the monodromy group). We denote by G C G; the
Zariski closure of p(71 (X, z)) (and call it the geometric monodromy group).
We say that V is good with data (z, m), if the corresponding p : W (X1, 2) — Gy
is so.

Claim 4.2. Suppose that V' is good, with data (z,m). Then the set dw, (V) is
equal to the set of numbers wi=(X)/m as A runs over the eigenvalues of z on V.

Proof. By the previous lemma, we can assume that V' is an irreducible W (X7, z)-
representation. Then dw, (V) consists simply of wi= (det(Fr;))/dim V. Notice
that the image of det on G consists of roots of unity, because G° is semisimple.
Hence w? (det(z)) = w¥ (det(Frl*)det(G)) = wi (det(Fry)) - m. Since V is
irreducible, by Schur’s lemma, z is a multiple of the identity by some scalar .
Hence w? (det(z)) = wi=(A\) - dim V. Thus, we get wi(\) = dw,(V)/m. O

We will see in the next section:

Theorem 4.3 (Grothendieck). Suppose that V is a W (X1, x)-representation
which is semisimple as a w1 (X, x)-representation. Then V is good.

5 Proof of claim 3.4

5.1 Proof of part 1

Claim 5.1. Let V, V' be two representations. Suppose that V& V' is good with
data (Z,m); we can write Z = (2,2') € G1 C Gy X G (here Gy stands for the
monodromy group of V& V'), Then V,V'V @ V' are all good, with respective
data (z,m), (z',m), (z ® 2/, m).

Proof. We have the representations V@ V', V., V',V ® V'. The p’s for the three
last ones factor via the p for the first one in an obvious way, from which in view
of lemma 4.1 we obtain the desired outcome. O



We can then deduce the following claim, which translates to the desired
claim 3.4 from the previous section:

Claim 5.2. Suppose that V,V' are W (X1, x)-representations. Then
dw, (V@ V') = dw, (V) + dw,(V").

Proof. We can reduce immediately to V, V' being irreducible, so that in partic-
ular we can assume that V @ V' is semisimple. Then from claim 5.1 and claim
4.2 we obtain the result. O

5.2 Proof of part 2

Proof. Step 1: Suppose first that F7 is irreducible. If the rank of /7 is smaller
than r, then the claim is clear, so we assume that it is not. By theorem we have
that F; is good, with some data (z,m). Then by lemma 4.1, we see that \" F;
is good, with data (A"z,m). Thus the determinant 7-weight of Fj is wi=(\)/m,
while the determinant weight of A" 7 is w¥ (A")/m, so the latter is r-times the
former, so that the claim follows.

Step 2: Let us denote by G}, ..., G the irreducible consistuents of F;. One
has a filtration of /\T F1, whose subquotients are:

S1 Sp
0<s <rk(G}), s14+...+s,=7: /\Qll®...®/\g]f7

so that by step 1 and also part 1 of the claim, we obtain

do,(NF) = J[ {s1dw:(G})+... + smdw,(G])},

0<s; <rk(g})
S1+...+Sm=r

which upon grouping irreducible consistuents of the same detereminant 7-weight
gives the desired claim. O

5.3 Proof of part 3

Proof. We choose a point y € Y over z € X, and denote by H;, H the corre-
sponding monodromy groups for 7*F;. Let us note that the image of 71 (Y, y) —
71(X, z) has finite index in 71 (X, z) by claim 7.4.

Step 1: We can assume that the image of m (Y, y) — 71 (X, z) is normal in
™1 (X, (L’) .

Consder the biggest normal subgroup IV C (X, 2) which is contained in
the image of m(Y,y) — m1(X,x). It is a closed subgroup of finite index in
m1(X, ), and it is also normal in W (X1, z) (fixing an element o € W(Y1,y)
of degree 1 and its image 8 in W (X1, x), we see that 8 normalizes the image
of m1(Y,y) = m (X, z) and since « normalizes 71 (Y, y) and hence S normalizes
I'"). Now denote by I' the preimage of I in m(Y,y). Then T is a closed



subgroup of finite index in 71 (Y, y), and it is normal in W (Y7, y) (again because
it is normalized by «). Then, using lemma 7.3, we consider a geometrically
connected finite etale cover (Yi,7) — (Yi,y) such that 7, (Y,3) = I'. Then if
know the claim in the normal case, we see that the determinant 7-weights of JF;
are the same as of the pullback to Y7, and the determinant 7-weights of 7*(F7)
are the same as of the pullback to }71, so that we obtain that the determinants
T-weights of F; and 7*(F7) are the same.

Step 2: We can assume that F; is irreducible.

Step 3: We now prove the claim. Since V. = (Fy)|, is irreducible as
a W (X, x)-representation, it is semisimple as a m (X, x)-representation, and
hence also semisimple as a 71 (Y, y)-representation by remark 7.1. Then by the-
orem 5.2 both G° and H° are semisimple. Moreover, we can find (z,m) €
Z(Hy) x Zyzo such that z =g p(Fry)™. Notice now that conjugation by z
preserves GG, and is trivial on a normal subgroup of finite index H. Thus it is
trivial on G°, and hence by part 2 of lemma 7.2 we see that some power of z
centralizes G. We can thus assume, by replacing z with this power, that z itself
centralizes G. Since z centralizes also H1, so centralizes some element of degree
1in Hy, and hence in G, we see that z centralizes the whole Gy, i.e. z € Z(Gy).
We have z =g p(Fry)™ and also z =¢ p(Frw)m[kl(y):kl(x)]. Hence dw, (m*Fi)
consists of w7’ (\)/m where A runs over eigenvalues of z, while dw, (F;) consists
of wi(A)/(m - [k1(y) : k1(x)]) where A runs over eignevalues of z, which are the

same, because g, = gl @ka ()]

O

6 Proof of theorem 5.2

Our goal in this section is to prove theorem 5.2. We fix a W (X1, z)-representation
V' (denote also p : W(X1,z) = GL(V)). Recall that G; (resp. G) denotes the
Zariski closure of p(W(Xy,x)) (resp. p(m1(X,z))) inside GL(V).

Claim 6.1. Suppose that V is semisimple as a w1 (X, x)-representation. Then
G° is semisimple.

Proof.

Step 1: We first reduce to the case when G = G°.

For this, we consider the subgroup I' C 71 (X, ) consisting of elements 3 for
which p(8) € G°. Then I is a closed subgroup of finite index in m (X, =), which
is normal in W(Xy,z). Then by lemma 7.3 we can find 7 : (Y1,y) = (X1,2)
such that m(Y,y) = I'. Then, denoting by F; the smooth Weil sheaf on X
corresponding to the representation of W (X, ) on V, we have that 7*F is a
smooth Weil sheaf for which the corresponding representation of T' = 7 (Y, y)
(where y € Y is a suitable point) is simply the representation of I' on V, so
that the corresponding geometric monodromy group is G° (notice also that the
representation of I on V' is semisimple by remark 7.1).



Step 2: The group G is reductive.

Indeed, suppose by contradiction that the unipotent radical U C G is not
trivial. Then the eigenspace VU'! is not zero, and it is also not V because V
is faithful as a G-representation. Moreover, VY1 has no U-complement in V.
Now, since U is normal in G, we see that VY1 is preserved by G. Since VU1
has no U-complement in V, it also has no G-complement in V', contradicting
the assumption that V' is semisimple as a G-representation.

Step 3: Let us consider an element a € W (X7, x) for which deg(a) = 1. We
reduce to the case when there exists g € G such that p(a)hp(a)™ = ghg™! for
all h € G.

Consider the automorphism ¢, of G given by conjugation by p(a). Note
that Z(G) acts diagnolizably on V' (as it is a diagonalizable group), and p(«)
permutes the different eigenspaces of the Z(G)-action on V, so for some m €
Z>1, the operator p(a™) preserves these eigenspaces, and thus p(a™)zp(a™™)
acts on V' the same as z does for every z € Z(G), hence since V' is a faithful G-
module, we get that p(a™) centralizes Z(G). In other words, 1" acts trivially
on Z(G). By claim 7.4, we get that for some n € Z>1, the automorphism

mn _

L = Lgmn is inner. Pulling back F; to X,,, allows us to assume that ¢, is

itself inner, as desired.

Step 4: We can now finally show that G is semisimple.

Consider the morphism W (X1, z) — G, which on m (X, z) is equal to p, and
on « is equal to g (where g € G is an element whose existence is asserted in step
3). This morphism is continuous. If G would not be semisimple, we would have a
non-trivial algebraic morphism G — Q. Composing with our W (Xy,z) — G,
we obtain a character W (X1, z) — Q, whose restriction to 71 (X, z) has Zariski
dense image. Since then this restriction to m (X, x) is clearly not of finite order,
we obtain a contradiction, in view of theorem 2.5.

O

Theorem 6.2. Suppose that V is semisimple as a m(X,x)-representation.
Then there exists z € Z(G1) and m € Zxq such that z =g p(F'ry)™.

Proof.

Step 1: Let us fix some element oo € W(Xy,z) of degree 1. We will show
first that there exists z € G1 and m € Z such that z centralizes G° and p(«),
and z =g p(Fry)™.

Consider the automorphism of G° given by conjugation by p(a). By claim
7.4, any automorphism of G° can be written as the product of an inner auto-
morphism and an automorphism of finite order, and so we can find g € G° and
m € Z>1 such that (gp(c))™ centralizes G°. Set z := gp(a). Then z =¢ p(a)
and 2™ centralizes G° and p(«) (the latter since p(a) € G°z). Clearly taking
a yet bigger power of z will make it comparable to a non-zero integer power of
p(Fr;) modulo G (since p(F'r;) is comparable to some non-zero integer power
of p(a) modulo G). Substituting the big enough power of z for z, we obtain the
desired.



Step 2: We will now show that there exists n € Zo such that 2" centralizes
G (where z is as in step 1). Then clearly we will be done (substituting z" for z
and mn for m).

Indeed, this follows from part 2 of lemma 7.2.

7 Inventory of auxiliary claims

Remark 7.1. Let us remark that if IV is a normal subgroup in I', and V is
a semisimple finite-dimensional T'-representation, then it is semisimple as a I"-
representation. Indeed, notice that the maximal semisimple I'V-subrepresentation
V' C V is invariant under T', hence admits a I'-invariant complement, which
hence must be zero (otherwise this complement would contain an irreducible
I-subrepresentation, contradicting the definition of V).

Lemma 7.2.

1. Let G be a group and G° C G a normal subgroup. Assume also that Z(G°)
is finite. Let 0 be an automorphism of G which is trivial on G° and on
G/G°. Then, denoting r := |Z(G°)|, one has 6" = id.

2. In addition to the previous assumptions, assume that G° has finite index
in G. Let 0 be an automorphism of G which is trivial on G°. Then 6 has
finite order.

Proof.
1. Fix g € G and consider the map ¢, : Z — G given by
bg(n) == 0"(g)g™ "
We want to show that ¢4(r) = 1. Notice the formula
Pg(n +m) = 0" (dg(n))dg(m).
Since we can also notice Im(¢4) C G°, the formula reduces to
Gg(n+m) = gg(n)dg(m),
i.e. ¢4 is a group homomorphism. Next, notice that we have the formulas
Phg(n) = hog(n)h™",  dgn(n) = ¢g(n) (g€ G, heG)

which together imply that Im(¢,) C Z(G°). Hence, clearly now ¢4(r) =
(bg(l)r =1.

2. Some power of § will be trivial on the quotient G/G°, since it is finite.
Then we reduce to the previous item.

O
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Lemma 7.3. Let T' C m (X, z) be a closed subgroup of finite index, which is
normal in W (X1, x). Then there exists a finite etale cover w: (Y1,y) — (X1, x)
with 1 (Y,y) =T (and Y1 is in our class, so geomterically connected).

Proof. Fix an element o € (X1, z) of degree 1, and consider the subgroup
'y € m(X1,z) given by Iy := T'-a%. Then T'; is a closed subgroup of finite
index in 7 (X7, ), whose projection onto Gal(k/k1)°P is surjective, and whose
intersection with 71 (X, z) is I'. Let now 7 : Y1 — X; be the connected finite
etale cover corresponding to I'y C 71(X7,2). Then Y7 is still geometrically
connected because m1 (X, x) - T'y = 71 (X7, x). O

Claim 7.4. Let G be a redcutive algebraic group. Choose a Torel T C B C G
and choose for every simple root o an element 1 # u, € U,. Consider the
subgroup A C Aut(Q) consisting of automorphisms which preserves the subsets
T, B and {us} (but don’t necessarily have to fiz elementwise these subsets).
Then Aut(G) = Inn(G) x A. Moreover, there is natural isomorphism of A with
the group of automorphisms of the corresponding based root data. In particular,
the subgroup of A consisting of elements fixing elementwise Z(G) is finite and
so if G is semisimple then A is finite.

Claim 7.5. Let w : Yy — X be dominant. Then the image of m1(Y,y) —
m1(X, ) has finite index in 71 (X, x).

Proof. (I didn’t figure out completely a proof - problem in step 4 and also didn’t
consider carefully the difference of X and X;)

Step 0: Since open dense embeddings are surjective on 7y, it is enough to
check this locally somewhere.

Step 1: This holds for a finite etale cover, by the basic theory of the etale
fundamental group.

Step 2: This holds for an etale map, because an etale map is quasi-finite and
hence locally somewhere finite, reducing to the previous case.

Step &8: This holds for a smooth map, because a smooth map can be locally
decomposed into an etale map and a smooth projection onto a factor - the first
dealt with in the previous step, and the second admiiting a right inverse and
hence is surjective on 7.

Step 4: This holds for a dominant map, because it is locally smooth. (This
is true only in characteristic 0! So need some other ingredient still) O
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