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1 Conventions, reminders, etc.

1.1

We will follow [1, section I.3].

Imprecisions: We consider morphisms into G(Q̄`), say they are contin-
uous and so on, when we really mean that the morphism factors through and
is continuous into some G(E), where E/Q` is a finite extension. We even write
Z̄×` at some point, when we again mean O×E , etc.

1.2

Throughout, we fix the following. k1 will denote a finite field, and k/k1 an
algebraic closure. We write q := |k1|. We fix a prime ` relatively prime to q,
and an algebraic closure Q̄`/Q`. We also fix an identification τ : Q̄`

∼−→ C.
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By X1, Y1 etc. we mean normal geometrically connected algebraic schemes
over k1, and denote X := k ⊗k1 X1. By k1 ⊂ kn ⊂ k we denote the unique
extension field of k1 inside k of degree n. We denote Xn := kn ⊗k1 X1.

Given a closed point x ∈ X, we might think of it as a morphism Spec(k)→
X1 over Spec(k1). Its image is a closed point v ∈ X1, we denote by k1(x) the
corresponding residue field, and qx := |k1(x)|.

1.3

Let x ∈ X be a closed point. One has a short exact sequence

1→ π1(X,x)→ π1(X1, x)→ Gal(k/k1)op → 1

of profinite groups. One also has, corresponding to Spec(k1(x)) → X1, a mor-
phism Gal(k/k1(x))op → π1(X1, x). We denote by Frx ∈ π1(X1, x) the image
under this morphism of the geometric Frobenius. Notice that under the thru-
morphism Gal(k/k1(x))op → π1(X1, x)→ Gal(k/k1)op the geometric Frobenius
in Gal(k/k1(x))op goes to the [k1(x) : k1]-th power of the geometric Frobenius
in Gal(k/k1)op.

One denotes by W (k/k1) ⊂ Gal(k/k1)op the subgroup generated by the
geometric Frobenius, and by W (X1, x) ⊂ π1(X1, x) the corresponding subgroup,
i.e. one now has

1→ π1(X,x)→W (X1, x)→W (k/k1)→ 1.

Then, as noted above, Frx ∈W (X1, x). Note, however, that the topology that
we take on W (k/k1) is the discrete one, and not the one induced on it as a
subgroup of Gal(k/k1)op! Accordingly we define the topology of W (X1, x).

Identifying W (k/k1) with Z by sending the geometric Frobenius to 1, the
resulting map W (X1, x)→ Z we call the degree map, and denote deg.

1.4

All sheaves are assumed to be constructible Q̄`-sheaves (in fact, we will only
deal with smooth sheaves in this lecture). Given a Weil sheaf F1 on X1, we
will denote by F the corresponding sheaf on X. Given a closed point x ∈ X,
we have an equivalence of categories between smooth Weil sheaves on X1 and
continuous finite-dimensional representations of W (X1, x) over Q̄`, which we
will utilize a lot; It is given by sending F1 to the geometric fiber (F1)|x.

1.5

For λ ∈ Q̄×` , let us denote wqτ (λ) = logq1/2 |τ(λ)|.

Recall that for a real number β ∈ R, a Weil sheaf F1 on X1 is said to be
punctually τ-pure of weight β if for every x ∈ X, all the eigenvalues λ of
Frx ∈W (X1, x) on (F1)|x satisfy wqxτ (λ) = β.
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A Weil sheaf F1 on X1 is said to be punctually τ-pure if it is punctually
τ -pure of weight β for some β. Such a β is then uniquely determined (unless
F1 = 0) and we set w(F1) := β.

Note that given a morphism π : Y1 → X1 and a Weil sheaf F1 on X1 which
is punctually τ -pure of weight β, the Weil sheaf π∗F1 on Y1 is punctually τ -pure
of weight β as well.

Note that, for m ∈ Z≥1, if F⊗m1 is punctually τ -pure of weight β then F1 is
punctually τ -pure of weight β/m.

2 Purity of smooth Weil sheaves of rank 1

Definition 2.1. We will say that an abelian topological group Γ is almost
pro-p if it is an extension of a finite group by a pro-p-group.

Remark 2.2. The extension of a finite group by an almost pro-p group is again
an almost pro-p group. Also, almost pro-p-groups are stable under quotients and
finite products.

Remark 2.3. Let Γ be an almost pro-p group. Then any character χ : Γ→ Q̄×`
is of finite order (i.e. there exists m ∈ Z≥1 such that χm = 1). Indeed, since
an almost pro-p group is compact, the image of χ lands in Z̄×` , which is an
almost pro-` group, and thus the claim easily follows noticing that there are no
non-trivial morphisms from a pro-p-group to a pro-`-group.

We denote by π1(X)ab the abelianization of π1(X,x) (and similarly for
π1(X1)ab,W (X1)ab), the point being that these do not depend on the choice
of x.

Claim 2.4. The image of π1(X)ab →W (X1)ab is an almost pro-p group.

Proof. Let us first assume that X1 is a curve so that, since it is normal, it is a
smooth curve. By class field theory, see remark 2.7, it is enough to show that

A×0
F×·

∏
v∈X1

O×v
is an almost pro-p-group. Notice that it admits a surjection onto

A×0
F×·

∏
v∈X1

O×v
, which is a finite group (in bijection with the group of k1-points of

the Jacobian of X1). The kernel of the surjection admits itself a surjection from∏
v∈X1−X1

O×v . Thus we are reduced to showing that the latter is an almost

pro-p-group, and thus that some O×v is an almost pro-p-group. But O×v admits
a surjection onto the finite group k(v)×, and the kernel is a pro-p-group.

The general case we will not prove in detail. Notice that if we find π : Y1 →
X1 such that π1(Y )ab → π1(X)ab is surjective, then the claim for Y1 implies
that for X1. Hence, by passing to an open dense subscheme, we can assume
that X1 is quasi-projective. Then one passes to a generic-enough linear section
of X1 of dimension 1. Et cetera.
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Theorem 2.5. Let F1 be a smooth Weil sheaf of rank 1 on X1. Then F has
finite order, i.e. there exists m ∈ Z≥1 such that F⊗m ∼= Q̄`.

Proof. This follows from claim 2.4 and remark 2.3.

Corollary 2.6. Let F1 be a smooth Weil sheaf of rank 1 on X1. Then F1 is
punctually τ -pure.

Proof. By a remark in subsection 1.5, it is enough to check that F⊗m1 is punc-
tually τ -pure, for some m. Thus, by the theorem, we can assume that F ∼= Q̄`.
Then, F1 is the pullback of a smooth Weil sheaf of rank 1 on Spec(k1). Hence,
by a remark in subsection 1.5, it is enough to check that a smooth Weil sheaf
of rank 1 on Spec(k1) is punctually τ -pure, which is clear.

Let us recall the class field theory we have used in claim 2.4:

Remark 2.7. Let us recall some class field theory. Assume that X1 is a curve,
and denote by F and A the field of rational functions on X1 and the adeles of
the compactification of X1. The main claim of class field theory is that one has
a unique continuous morphism

r : A× → π1(X1)ab

with the following two properties:

1. r|F× = 1.

2. for v ∈ X1, one has r(f) = Fr
ordv(f)
v where f ∈ F×v .

Moreover, the morphism r has dense image.
Then one can formally deduce the following. One has a commutative dia-

gram:

A×

ord

��

r // π1(X1)ab

��

Z
17→Fr
// Gal(k1)

and one obtains an induced continuous surjective morphism A× → W (X1)ab,
which upon restricting to ideles of degree 0 gives a continuous surjective mor-
phism

r :
A×0

F× ·
∏
v∈X1

O×v
→ Im

(
π1(X)ab →W (X1)ab

)
.
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3 Determinant weights

Definition 3.1 (Determinant weights). Let F1 be a smooth Weil sheaf on X1.
We define a finite subset dwτ (F1) ⊂ R of determinant τ-weights of F1 as
follows.

1. If F1 has rank 1, recall that F1 is punctually τ -pure, and define dwτ (F1) :=
{wτ (F1)}.

2. If F1 is irreducible, denoting by d the rank of F1, we denote dwτ (F1) :=
dwτ (∧dF1)/d.

3. In the general case, we set dwτ (F1) to be the union of the singletons
dwτ (G1) where G1 runs over irreducible constituents of F1.

Remark 3.2. Let us verbalize the advantage of determinant τ -weights. Given
a smooth Weil sheaf F1 on X1, to understand τ -weights of F1, we need to vary
the closed point x ∈ X, but to understand determinant τ -weights, we can do
with any fixed x. Suppose for simplicity that F1 is irreducible and consider,
for x ∈ X, the corresponding W (X1, x)-representation V = (F1)|x. The τ -
weights of V are wqxτ (λ) as λ runs over eigenvalues of Frx, while the determinant
τ -weight is wqxτ (det(Frx))/ dimV . The τ -weights recover the determinant τ -
weight (the latter is the arithmetic average of the former), but they might
change when we change x, while the determinant τ -weight does not.

Remark 3.3. For a short exact sequence of smooth Weil sheaves on X1:

0→ F1 → G1 → H1 → 0

one has
dwτ (G1) = dwτ (F1) ∪ dwτ (H1).

The main result we want to establish is the following one:

Claim 3.4.

1. Let F1,F ′1 be smooth Weil sheaves on X1. Then

dwτ (F1 ⊗F ′1) = dwτ (F1) + dwτ (F ′1).

2. Let F1 be a smooth Weil sheaf on X1. Denote by w1, . . . , wm the elements
of dwτ (F1), and denote by di the sum of ranks of irreducible consistuents
G1 of F1 for which dwτ (G1) = {wi}. Then

dwτ (

r∧
F1) =

∐
0≤ri≤di

r1+...+rm=r

{r1w1 + . . .+ rmwm}

3. Let F1 be a smooth Weil sheaf on X1, and let π : Y1 → X1 be a dominant
morphism. Then

dwτ (π∗(F1)) = dwτ (F1).

Proof. We will proof this in section 5 below.
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4 Catching determinant weights using central
elements

Let G1 be an affine algebraic group over Q̄` and let ρ : W (X1, x) → G1 be
a morphism with dense image. We denote by G ⊂ G1 the Zariski closure of
ρ(π1(X,x)). Let us say that ρ is good with data (z,m) ∈ Z(G1)×Z6=0 if G◦ is
semisimple and z ≡G ρ(Frx)m.

Lemma 4.1. Let θ : G1 → G′1 be a surjective algebraic morphism. If ρ :
W (X1, x) → G1 is good with data (z,m), then θ ◦ ρ : W (X1, x) → G′1 is good
with data (θ(z),m).

Proof. Clear.

Let V be a finite-dimensional representation of W (X1, x) over Q̄` - write
ρ : W (X1, x) → GL(V ). We denote by G1 ⊂ GL(V ) the Zariski closure of
ρ(W (X1, x)) (and call it the monodromy group). We denote by G ⊂ G1 the
Zariski closure of ρ(π1(X,x)) (and call it the geometric monodromy group).
We say that V is good with data (z,m), if the corresponding ρ : W (X1, x)→ G1

is so.

Claim 4.2. Suppose that V is good, with data (z,m). Then the set dwτ (V ) is
equal to the set of numbers wqxτ (λ)/m as λ runs over the eigenvalues of z on V .

Proof. By the previous lemma, we can assume that V is an irreducibleW (X1, x)-
representation. Then dwτ (V ) consists simply of wqxτ (det(Frx))/dimV . Notice
that the image of det on G consists of roots of unity, because G◦ is semisimple.
Hence wqxτ (det(z)) = wqxτ (det(Frmx )det(G)) = wqxτ (det(Frx)) · m. Since V is
irreducible, by Schur’s lemma, z is a multiple of the identity by some scalar λ.
Hence wqxτ (det(z)) = wqxτ (λ) · dimV . Thus, we get wqxτ (λ) = dwτ (V )/m.

We will see in the next section:

Theorem 4.3 (Grothendieck). Suppose that V is a W (X1, x)-representation
which is semisimple as a π1(X,x)-representation. Then V is good.

5 Proof of claim 3.4

5.1 Proof of part 1

Claim 5.1. Let V, V ′ be two representations. Suppose that V ⊕ V ′ is good with
data (z̃,m); we can write z̃ = (z, z′) ∈ G̃1 ⊂ G1 × G′1 (here G̃1 stands for the
monodromy group of V ⊕ V ′). Then V, V ′, V ⊗ V ′ are all good, with respective
data (z,m), (z′,m), (z ⊗ z′,m).

Proof. We have the representations V ⊕ V ′, V, V ′, V ⊗ V ′. The ρ’s for the three
last ones factor via the ρ for the first one in an obvious way, from which in view
of lemma 4.1 we obtain the desired outcome.
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We can then deduce the following claim, which translates to the desired
claim 3.4 from the previous section:

Claim 5.2. Suppose that V, V ′ are W (X1, x)-representations. Then

dwτ (V ⊗ V ′) = dwτ (V ) + dwτ (V ′).

Proof. We can reduce immediately to V, V ′ being irreducible, so that in partic-
ular we can assume that V ⊕ V ′ is semisimple. Then from claim 5.1 and claim
4.2 we obtain the result.

5.2 Proof of part 2

Proof. Step 1: Suppose first that F1 is irreducible. If the rank of F1 is smaller
than r, then the claim is clear, so we assume that it is not. By theorem we have
that F1 is good, with some data (z,m). Then by lemma 4.1, we see that

∧r F1

is good, with data (∧rz,m). Thus the determinant τ -weight of F1 is wqxτ (λ)/m,
while the determinant weight of

∧r F1 is wqxτ (λr)/m, so the latter is r-times the
former, so that the claim follows.

Step 2: Let us denote by G11 , . . . ,G
p
1 the irreducible consistuents of F1. One

has a filtration of
∧r F1, whose subquotients are:

0 ≤ si ≤ rk(Gi1), s1 + . . .+ sp = r :

s1∧
G11 ⊗ . . .⊗

sp∧
Gp1 ,

so that by step 1 and also part 1 of the claim, we obtain

dwτ (

r∧
F1) =

∐
0≤si≤rk(Gi1)

s1+...+sm=r

{s1dwτ (G11) + . . .+ smdwτ (Gp1 )},

which upon grouping irreducible consistuents of the same detereminant τ -weight
gives the desired claim.

5.3 Proof of part 3

Proof. We choose a point y ∈ Y over x ∈ X, and denote by H1, H the corre-
sponding monodromy groups for π∗F1. Let us note that the image of π1(Y, y)→
π1(X,x) has finite index in π1(X,x) by claim 7.4.

Step 1: We can assume that the image of π1(Y, y) → π1(X,x) is normal in
π1(X,x).

Consder the biggest normal subgroup Γ′ ⊂ π1(X,x) which is contained in
the image of π1(Y, y) → π1(X,x). It is a closed subgroup of finite index in
π1(X,x), and it is also normal in W (X1, x) (fixing an element α ∈ W (Y1, y)
of degree 1 and its image β in W (X1, x), we see that β normalizes the image
of π1(Y, y)→ π1(X,x) and since α normalizes π1(Y, y) and hence β normalizes
Γ′). Now denote by Γ the preimage of Γ′ in π1(Y, y). Then Γ is a closed
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subgroup of finite index in π1(Y, y), and it is normal in W (Y1, y) (again because
it is normalized by α). Then, using lemma 7.3, we consider a geometrically

connected finite etale cover (Ỹ1, ỹ) → (Y1, y) such that π1(Ỹ , ỹ) = Γ. Then if
know the claim in the normal case, we see that the determinant τ -weights of F1

are the same as of the pullback to Ỹ1, and the determinant τ -weights of π∗(F1)

are the same as of the pullback to Ỹ1, so that we obtain that the determinants
τ -weights of F1 and π∗(F1) are the same.

Step 2: We can assume that F1 is irreducible.

Step 3: We now prove the claim. Since V = (F1)|x is irreducible as
a W (X1, x)-representation, it is semisimple as a π1(X,x)-representation, and
hence also semisimple as a π1(Y, y)-representation by remark 7.1. Then by the-
orem 5.2 both G◦ and H◦ are semisimple. Moreover, we can find (z,m) ∈
Z(H1) × Z6=0 such that z ≡H ρ(Fry)m. Notice now that conjugation by z
preserves G, and is trivial on a normal subgroup of finite index H. Thus it is
trivial on G◦, and hence by part 2 of lemma 7.2 we see that some power of z
centralizes G. We can thus assume, by replacing z with this power, that z itself
centralizes G. Since z centralizes also H1, so centralizes some element of degree
1 in H1, and hence in G1, we see that z centralizes the whole G1, i.e. z ∈ Z(G1).
We have z ≡H ρ(Fry)m and also z ≡G ρ(Frx)m[k1(y):k1(x)]. Hence dwτ (π∗F1)
consists of w

qy
τ (λ)/m where λ runs over eigenvalues of z, while dwτ (F1) consists

of wqxτ (λ)/(m · [k1(y) : k1(x)]) where λ runs over eignevalues of z, which are the

same, because qy = q
[k1(y):k1(x)]
x .

6 Proof of theorem 5.2

Our goal in this section is to prove theorem 5.2. We fix aW (X1, x)-representation
V (denote also ρ : W (X1, x) → GL(V )). Recall that G1 (resp. G) denotes the
Zariski closure of ρ(W (X1, x)) (resp. ρ(π1(X,x))) inside GL(V ).

Claim 6.1. Suppose that V is semisimple as a π1(X,x)-representation. Then
G◦ is semisimple.

Proof.
Step 1: We first reduce to the case when G = G◦.
For this, we consider the subgroup Γ ⊂ π1(X,x) consisting of elements β for

which ρ(β) ∈ G◦. Then Γ is a closed subgroup of finite index in π1(X,x), which
is normal in W (X1, x). Then by lemma 7.3 we can find π : (Y1, y) → (X1, x)
such that π1(Y, y) = Γ. Then, denoting by F1 the smooth Weil sheaf on X0

corresponding to the representation of W (X1, x) on V , we have that π∗F1 is a
smooth Weil sheaf for which the corresponding representation of Γ = π1(Y, y)
(where y ∈ Y is a suitable point) is simply the representation of Γ on V , so
that the corresponding geometric monodromy group is G◦ (notice also that the
representation of Γ on V is semisimple by remark 7.1).
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Step 2: The group G is reductive.
Indeed, suppose by contradiction that the unipotent radical U ⊂ G is not

trivial. Then the eigenspace V U,1 is not zero, and it is also not V because V
is faithful as a G-representation. Moreover, V U,1 has no U -complement in V .
Now, since U is normal in G, we see that V U,1 is preserved by G. Since V U,1

has no U -complement in V , it also has no G-complement in V , contradicting
the assumption that V is semisimple as a G-representation.

Step 3: Let us consider an element α ∈W (X1, x) for which deg(α) = 1. We
reduce to the case when there exists g ∈ G such that ρ(α)hρ(α)−1 = ghg−1 for
all h ∈ G.

Consider the automorphism ια of G given by conjugation by ρ(α). Note
that Z(G) acts diagnolizably on V (as it is a diagonalizable group), and ρ(α)
permutes the different eigenspaces of the Z(G)-action on V , so for some m ∈
Z≥1, the operator ρ(αm) preserves these eigenspaces, and thus ρ(αm)zρ(α−m)
acts on V the same as z does for every z ∈ Z(G), hence since V is a faithful G-
module, we get that ρ(αm) centralizes Z(G). In other words, ιmα acts trivially
on Z(G). By claim 7.4, we get that for some n ∈ Z≥1, the automorphism
ιmnα = ιαmn is inner. Pulling back F1 to Xmn allows us to assume that ια is
itself inner, as desired.

Step 4: We can now finally show that G is semisimple.
Consider the morphism W (X1, x)→ G, which on π1(X,x) is equal to ρ, and

on α is equal to g (where g ∈ G is an element whose existence is asserted in step
3). This morphism is continuous. If G would not be semisimple, we would have a
non-trivial algebraic morphism G→ Q̄×` . Composing with our W (X1, x)→ G,
we obtain a character W (X1, x)→ Q̄×` whose restriction to π1(X,x) has Zariski
dense image. Since then this restriction to π1(X,x) is clearly not of finite order,
we obtain a contradiction, in view of theorem 2.5.

Theorem 6.2. Suppose that V is semisimple as a π1(X,x)-representation.
Then there exists z ∈ Z(G1) and m ∈ Z6=0 such that z ≡G ρ(Frx)m.

Proof.
Step 1: Let us fix some element α ∈ W (X1, x) of degree 1. We will show

first that there exists z ∈ G1 and m ∈ Z6=0 such that z centralizes G◦ and ρ(α),
and z ≡G ρ(Frx)m.

Consider the automorphism of G◦ given by conjugation by ρ(α). By claim
7.4, any automorphism of G◦ can be written as the product of an inner auto-
morphism and an automorphism of finite order, and so we can find g ∈ G◦ and
m ∈ Z≥1 such that (gρ(α))m centralizes G◦. Set z := gρ(α). Then z ≡G ρ(α)
and zm centralizes G◦ and ρ(α) (the latter since ρ(α) ∈ G◦z). Clearly taking
a yet bigger power of z will make it comparable to a non-zero integer power of
ρ(Frx) modulo G (since ρ(Frx) is comparable to some non-zero integer power
of ρ(α) modulo G). Substituting the big enough power of z for z, we obtain the
desired.
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Step 2: We will now show that there exists n ∈ Z6=0 such that zn centralizes
G (where z is as in step 1). Then clearly we will be done (substituting zn for z
and mn for m).

Indeed, this follows from part 2 of lemma 7.2.

7 Inventory of auxiliary claims

Remark 7.1. Let us remark that if Γ′ is a normal subgroup in Γ, and V is
a semisimple finite-dimensional Γ-representation, then it is semisimple as a Γ′-
representation. Indeed, notice that the maximal semisimple Γ′-subrepresentation
V ′ ⊂ V is invariant under Γ, hence admits a Γ-invariant complement, which
hence must be zero (otherwise this complement would contain an irreducible
Γ′-subrepresentation, contradicting the definition of V ′).

Lemma 7.2.

1. Let G be a group and G◦ ⊂ G a normal subgroup. Assume also that Z(G◦)
is finite. Let θ be an automorphism of G which is trivial on G◦ and on
G/G◦. Then, denoting r := |Z(G◦)|, one has θr = id.

2. In addition to the previous assumptions, assume that G◦ has finite index
in G. Let θ be an automorphism of G which is trivial on G◦. Then θ has
finite order.

Proof.

1. Fix g ∈ G and consider the map φg : Z→ G given by

φg(n) := θn(g)g−1.

We want to show that φg(r) = 1. Notice the formula

φg(n+m) = θm(φg(n))φg(m).

Since we can also notice Im(φg) ⊂ G◦, the formula reduces to

φg(n+m) = φg(n)φg(m),

i.e. φg is a group homomorphism. Next, notice that we have the formulas

φhg(n) = hφg(n)h−1, φgh(n) = φg(n) (g ∈ G, h ∈ G◦)

which together imply that Im(φg) ⊂ Z(G◦). Hence, clearly now φg(r) =
φg(1)r = 1.

2. Some power of θ will be trivial on the quotient G/G◦, since it is finite.
Then we reduce to the previous item.
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Lemma 7.3. Let Γ ⊂ π1(X,x) be a closed subgroup of finite index, which is
normal in W (X1, x). Then there exists a finite etale cover π : (Y1, y)→ (X1, x)
with π1(Y, y) = Γ (and Y1 is in our class, so geomterically connected).

Proof. Fix an element α ∈ π1(X1, x) of degree 1, and consider the subgroup

Γ1 ⊂ π1(X1, x) given by Γ1 := Γ · αZ. Then Γ1 is a closed subgroup of finite
index in π1(X1, x), whose projection onto Gal(k/k1)op is surjective, and whose
intersection with π1(X,x) is Γ. Let now π : Y1 → X1 be the connected finite
etale cover corresponding to Γ1 ⊂ π1(X1, x). Then Y1 is still geometrically
connected because π1(X,x) · Γ1 = π1(X1, x).

Claim 7.4. Let G be a redcutive algebraic group. Choose a Torel T ⊂ B ⊂ G
and choose for every simple root α an element 1 6= uα ∈ Uα. Consider the
subgroup A ⊂ Aut(G) consisting of automorphisms which preserves the subsets
T , B and {uα} (but don’t necessarily have to fix elementwise these subsets).
Then Aut(G) = Inn(G)oA. Moreover, there is natural isomorphism of A with
the group of automorphisms of the corresponding based root data. In particular,
the subgroup of A consisting of elements fixing elementwise Z(G) is finite and
so if G is semisimple then A is finite.

Claim 7.5. Let π : Y0 → X0 be dominant. Then the image of π1(Y, y) →
π1(X,x) has finite index in π1(X,x).

Proof. (I didn’t figure out completely a proof - problem in step 4 and also didn’t
consider carefully the difference of X and X1)

Step 0: Since open dense embeddings are surjective on π1, it is enough to
check this locally somewhere.

Step 1: This holds for a finite etale cover, by the basic theory of the etale
fundamental group.

Step 2: This holds for an etale map, because an etale map is quasi-finite and
hence locally somewhere finite, reducing to the previous case.

Step 3: This holds for a smooth map, because a smooth map can be locally
decomposed into an etale map and a smooth projection onto a factor - the first
dealt with in the previous step, and the second admiiting a right inverse and
hence is surjective on π1.

Step 4: This holds for a dominant map, because it is locally smooth. (This
is true only in characteristic 0! So need some other ingredient still)
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