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2 Some recollections on categories

Definition 2.1.

e categories, functors...

e functor categories, morphism between functors...

e products, coproduts, final objects, initial objects, limits, colimits...

e additive/k-linear categories, additive/k-linear functors...

e abelian categories, k-linear abelian categories...

Definition 2.2. An adjunction between two categories (C,D) is a pair of
functors

F:C—D, C+D:QaG,

together with one of the following equivalent pieces of data:

1.

2.

Morphisms u : Id¢ — G o F and n : F o G — Idp satisfying
FEYS FoGoF ™5 F s equal to Idp,
G GoFoG G is equal to Idg.

An isomorphism of the functors

Hom(F-,-),Hom(-,G-) : C? x D — Sets.

Definition 2.3. An equivalence between two categories (C, D) is one of the
following (if one is careful, one should understand how they are exactly related):

1.

5.

. A pair of functors F : C - D C + D : G and isomorphisms lds =

An adjunction (F,G,u,n) between C,D such that v and n are isomor-
phisms.

GoF, FoG=TIdp.

A pair of functors F : C — D C « D : G such that G o F' is isomorphic
to Ide and F o GG is isomorphic to Idp.

. A functor F' : C — D for which there exists C < D : G such that G o F' is

isomorphic to Ide and F o GG is isomorphic to Idp.

A functor F' : C — D which is fully faithful and essentially surjective.

Remark 2.4. When dealing with additive categories, we will assume that all
functors are additive, even if we don’t mention this. Incidentally, let us remark
that functors which are part of an adjunction between additive categories are
automatically additive (in particular, equivalences of additive categories are
automatically additive). When dealing with k-linear categories, we will assume
that all functors are k-linear, even if we don’t mention this.



3 Some properties in an abelian category

In this section, A is an abelian category. We will be interested in properties of
objects in A. We will say that a property of object in A is Serre, if 0 has this
property, subobjects and quotient objects of objects having this property have
this property, and if a subobject as well as the quotient by it have this property,
then the object itself has this property.

3.1 Finiteness properties
3.1.1 Finite length

Definition 3.1. An object M € A is said to be simple, or irreducible, if
M # 0 and M contains no subobjects except 0 and M. We denote by Irr(A)
the "set”! of isomorphism classes of simple objects in A.

Claim 3.2 (Schur’s lemma).

1. Let M € A be simple. Then End(M) is a division ring.

2. Let M,N € A be simple and non-isomorphic. Then Hom(M,N) = 0.
Proof.

1. Let T € End(M), and suppose that T" # 0. Then Ker(T) # M, and
hence, by simplicity, we obtain Ker(T) = 0 (i.e. T is injective). Also,
Im(T) # 0, and hence, by simplicity, we obtain Im(T) = M (ie. T is
surjective). Thus, T is bijective, and so admits an inverse in End(M).

2. Let T € Hom(M,N). If Im(T) = N and Ker(T) = 0 then T is an
isomorphism, contradicting the assumption. Hence either Im(T) # N
(in which case Im(T) = 0so T = 0) or Ker(T) # 0 (in which case
Ker(T)=M so T =0).

O

Definition 3.3. A composition series for an object M € A is a sequence of

submodules
O0=MycM,C...CM,=M

such that M;,,/M; is simple for every 0 < i <mn — 1. An object M € A is said
to have finite length if it admits a composition series.

Lemma 3.4. The property of being of finite length is Serre.

T am not very versed in foundations - for me it is a set in the sense that two elements in it
are either equal or not; it is not a set in the sense that I don’t a priory care about the ability
to ask about its cardinality.



Definition-Claim 3.5 (Jordan-Holder theorem). Let M € A be of finite length,
and let
O=MyCcMyC...CM,=M

be a composition series for M. For every m € Irr(A), let us denote by [M :
7] € Z>o the number of 0 < i < n — 1 such that M;+1/M; has isomorphism
class w. Then [M : 7] does not depend on the choice of composition series. In
particular, {(M) := n does not depend on the choice of composition series. We
call ([M : 7|)rerrr(a) the Jordan-Holder contents of M, {m € Irr(A): [M :
7] # 0} the Jordan-Holder support of M, and ¢(M) the length of M.

3.1.2 Noetherian and Aritnian properties

Definition 3.6.

1. An object M € A is said to be Noetherian, if for every increasing se-
quence of subobjects My C M; C ... of M, there exists K € Z>o such
that My = Mg for all k > K.

2. An object M € A is said to be Artinian, if for every decreasing sequence
of subobjects My D M; D ... of M, there exists K € Zx( such that
M = My for all k > K.

Lemma 3.7. The properties of being Noetherian/Artinian are Serre.

Lemma 3.8. An object M € A is of finite length if and only if it is both
Noetherian and Artinian.

3.2 Semisimplicity

Definition 3.9. An object M € A is said to be semisimple, if for every
subobject N C M, there exists a subobject L C M such that M = N & L. The
category A is said to be semisimple, if every object in it is semisimple.

Lemma 3.10. Let us abbreviate ”ss” for "semisimple”.
1. 0 s ss.
2. Simple objects are ss.
8. If an object is ss, then all of its subobjects and quotient objects are ss.
4. If two objects are ss, then their direct sum is ss.

Example 3.11. Let us consider A = Mod(C[z]). One has a full subcategory
Mod(C[z])7? € Mod(C[z]) consisting of modules which are finite-dimensional
as C-vector spaces. The study of Mod(C[z])f? is, basically, linear algebra. We
can use square matrices (up to similarity) to represent isomorphism classes

of objects in Mod(C[z])f®. Then, one can check that ( 8 8 ) represents a



1 - .
0 0 represents a non-semisimple object. More
generally, a matriz will represent a semisimple object if and only if it is diag-
nolizable.

semisimple object, while < 0

Example 3.12. The Z-modules Z/pZ, where p is prime, are simple, hence
semisimple. The Z-module M := 7./p*7Z, where p is prime, is not semisimple.
Indeed, consider pM C M. Since M/pM = Z/pZ, would pM have a comple-
ment in M, we would have an element in M of order p, which is not in pM,
which we don’t have.

Remark 3.13. Let us recall that a short exact sequence
0— M 5 My B My — 0
is said to be splittable, if one of the following equivalent conditions is satisfied:
1. There exists s : M3 — M such that po s = id.
2. There exists ¢ : My — M such taht coi = id.

In that case, My is isomorphic to the direct sum of M; and Ms (described
naturally once s or ¢ are fixed).

Remark 3.14. Let N C M. Then N admits a complement in M if and only if
the short exact sequence

0-NSM-—M/N—=0

is splittable.

Remark 3.15. Let ‘

0— M 5 My % My — 0
be a short exact sequence. If M; is injective, or M3 is projective, then this short
exact sequence is splittable.

Remark 3.16. Let us recall that an additive functor F' : A — B (where B
is another abelian category) transforms splittable short exact sequences into
splittable short exact sequences.

Claim 3.17. The following properties are equivalent:

1. The category A is semisimple.

2. Bvery short exact sequence in A is splittable.

8. Ewvery object in A is projective.

4. Every object in A is injective.
Proof. (1) <= (2): Follows from remark 3.14.

(2) = (3),(4): The properties of being projective/injective are defined by
some additive functors sending short exact sequences into short exact sequences.
Since every short exact sequence in A is splittable, the properties follow from

remark 3.16.
(3) = (2),(4) = (2): Follows from remark 3.15. O



4 Semisimplicity

Throughout the seciton, let R be a ring. We denote by Mod(R) the abelian
category of R-modules, and Irr(R) := Irr(Mod(R)).

4.1 Semisimple modules

Lemma 4.1. Let M be a non-zero R-module. Then M admits a simple sub-
quotient.

Proof. Replacing M by a non-zero finitely-generated submodule, we may assume
that M is finitely-generated. We will show that in this case M admits a simple
quotient. This follows from the fact that submodules of M, not equal to M,
satisfy the conditions of Zorn’s lemma (this follows by choosing a finite set of
generators of M, and noticing that a submodule of M is equal to M if and only
if it contains all these generators). 0

Claim 4.2. Let M be an R-module. The following are equivalent:

1. M is semisimple.
2. M can be written as a direct sum of simple submodules.

8. M can be written as a sum of simple submodules.

Proof.

(1) = (2): By Zorn’s lemma, we can find a maximal family of simple
submodules I C Sub(M) such that the sum of submodules in I is direct. We
claim that the sum of submodules in [ is M. Indeed, let N C M be a submodule
complimentary to said sum. From the maximality of I, we deduce that N
doesn’t contain simple submodules. By semisimplicity, N can’t contain then
any simple subquotients. It then follows from lemma 4.1 that N = 0.

(2) = (3): Clear.

(3) = (1): Suppose that M =3, _,
By Zorn’s lemma, we can find maximal J C I such that (3>,.; M;) NN = 0.
We want to show that (Ziej Mz) + N = M. If that is not the case, then there
exists j € I such that M; ¢ (ZiGJ Mz) + N. Since M; is simple, this implies
M; 0 ((Siey Mi) + N) = 0. Then (e 05y Mi) NN =0, contradicting the
maximality of J (notice that j ¢ .J).

M;, and let N C M be a submodule.

O
Claim 4.3.

1. Let (M;)icr be a family of semisimple R-modules. Then ®;c; M; is semisim-
ple.

2. Let M be an R-module, and (M;);cr a family of semisimple submodules
of M. Then ), ; M; is semisimple.



Proof.
1. This clearly follows from the characterization of the previous claim.

2. Notice that Ziel M; is a quotient of @®;c;M;, and hence the claim fol-
lows from the previous point and semisimplicity being a Serre property
(alternatively, again directly from the previous claim).

O

4.2 Isotypic components

Definition 4.4. Let M be an R-module and « € Irr(R). We denote by M,
the sum of all submodules of M which are simple of isomorphism class 7 (it is
called the isotypic component of M corresponding to 7).

Lemma 4.5. Let M be an R-module. One has (My)r = M,. The family
(Mz)rerrr(r) 1 linearly independent, and M = ©rerr(ryMxr if and only if M
s semisimple.

Proof. The only slightly non-trivial thing is to check that the family (Mx)rerrr(r)
is linearly independent. For that, it is enough to show that if E C My, + ...+
M, is a simple submodule, then the isomorphism class of F is in {m,...,7,}.
Indeed, since E is finitely generated we have E C E; + ...+ E,, where each E;
is a simple submodule whose isomorphism class is in {m1,...,m,}. It is easy to
see that the Jordan Holder support of Ey + ...+ E,, is contained in the set of
isomorphism classes of E1,..., E,,. Since it also contains the isomorphism class
of F, by the Jordan Holder theorem we obtain that the isomorphism class of F
is equal to the isomorphism class of one of E1,..., E,,. O

Lemma 4.6. Let M, N be R-modules and ¢ : M — N a morphism. Then for
every m € Irr(R) we have ¢(Mz) C Ny.

Proof. Clear. O

Definition 4.7. Let S C Irr(R). For an R-module M, we define Mg :=
ZWGS M.

Remark 4.8. Let S C Irr(R). For an R-module M, one has (Mg)s = Mg. If
M is semisimple, then M = Mg @ M,(s), where we denote c(S5) := Irr(R) — S.

4.3 Semisimple rings

Definition 4.9. The ring R is called semisimple, if the category Mod(R) is
semisimple (i.e. every R-module is semisimple).

Example 4.10. A field is semisimple. More generally, a division ring is
semisimple. Indeed, given a submodule N C M, we can choose a basis of N,
and then completing it to a basis of M. The span of the complementing elements
will be a submodule complementary to N .



Claim 4.11. The following are equivalent:

1. The ring R is semisimple.

2. The R-module R is semisimple.

Proof.
(1) = (2): Clear.
(2) = (1): Every module is a quotient of a direct sum of copies of R. [

Recall, that R is called left Noetherian/left Artinian, if R as an (left) R-
module is so.

Claim 4.12. Suppose that R is semisimple. Then R is left Noetherian and left
Artinian.

Proof. The claim will follow if we show that R can be expressed as a finite
direct sum of simple left ideals (because then R (as an R-module) will be of
finite length, and hence Noetherian and Artinian). By semisimplicity, one can
write R = G,exnl, where I, C R are simple left ideals. Decomposing 1 along
this, we obtain 1 =} __, f, where ¥’ C ¥ is a finite subset. But then for
f el forTeX —Y one obtains

f=f1=> ffoe> L.

oes’ oex’
This forces f = 0, and thus one must have ¥ = ¥/, i.e. X is finite. O
Corollary 4.13. Suppose that R is semisimple. Then Irr(R) is finite.

Proof. Notice first that for every m# € Irr(R) one has R; # 0. Indeed, a
simple R-module of isomorphism class 7 can be realized as a quotient R/I. By
semisimplicity, this quotient module of R can be realized as a submodule of R.

Now, one has R = @rerrr(r)Rr- Since R is left Noetherian, this must be a
finite sum. O

4.4 'Two-sided ideals and splittings
Throughout this subsection, we assume that R is semisimple.

Lemma 4.14. Let E, F C R be two isomorphic simple submodules. Then there
exists 1 € R such that F' = Er.

Proof. By semisimplicity, we can find a projection R — E which is left inverse
to the inclusion £ C R, compose it with an isomorphism of F with F', and then
compose it with the embedding F' C R thus obtaining an R-module morphism
R — R whose image when restricted to E is F. Such a morphism must be
given by a multiplication on the right by an element »r € R. We thus obtain
F=FEr. O



Lemma 4.15.
1. Let S C Irr(R). The left ideal Rs C R is a two-sided ideal.
2. Let S,T C Irr(R), and suppose that SNT = (. Then RsRy = 0.

3. Let I C R be a two-sided ideal. Then there exists a unique S C Irr(R)
such that I = Rg.

Proof.

1. Let r € R. Since z — xr is a left R-module homomorphism, it preserves
Rg.

2. Follows from Rg, Ry being two-sided ideals, and Rg N Ry = 0.

3. It is enough to show that if £, F' C R are two isomorphic simple sub-
modules, and if £ C I, then FF C I. This follows at once from lemma
4.14.

O

Let S C Irr(R). Recall that we denote ¢(S) := Irr(R) — S. Decomposing
1 € R along R = Rs @ R.(s), we obtain an expression 1 = es + e.(5). We have
esr =reg =1 for r € Rg and egr = reg = 0 for r € R.(sy. We notice that Rg
is itself a ring, with unit es. One has R = Rg X R.(s), a direct product of rings.

Let us denote by Mod(R)s the full subcategory of Mod(R) consisting of
R-modules M for which Mg = M.

Lemma 4.16. Mod(R)s C Mod(R) is a Serre subcategory, closed under infi-
nite (small) direct sums. One has a canonical bijection Irr(Mod(R)g) = S.

Lemma 4.17. Let E be a simple R-module. Then eg acts as identity (resp.
zero) on E if the isomorphism class of E is in S (resp. ¢(5)).

Proof. Recall that R contains a submodule isomorphic to F. Such a submodule
is contained in Rg or R.(g), according to the isomorphism class of E being in
S or ¢(S). Since esr = r for r € Rg and e.gyr = 0 for 7 € R.(g), the claim
follows.

Lemma 4.18. Let M € Mod(R). The following are equivalent:
1. M € Mod(R)s.
2. ecsym =0 for every m € M.
3. esm =m for every m € M.

Proof. Follows from the previous lemma. O

10



Claim 4.19 (Localization). One has an equivalence of categories
Mod(R)s = Mod(Rg).
The ring Rg is semisimple and one has a canonical bijection Irr(Rg) = S.

Proof. Let us describe what are the functors (leaving the verifcations as an
exercise). Both functors act as identity on the underlying abelian groups. The
functor from left to right is given by restricting along Rg — R. The functor
from right to left is given by letting Rs C R act as it acts, and letting R.(5) C R
act by zero.

That Rg is semisimple follows from Mod(Rg) ~ Mod(R)s, and noting that
Mod(R)g is semisimple as a Serre subcategory of Mod(R).

Finally, notice that the equivalence yields Irr(Rg) = Irr(Mod(R)s) = S.
O

Definition 4.20. A ring R is called simple, if it is semisimple and Irr(R)
contains exactly one element.

Corollary 4.21 (From semisimple to simple). Let R be a semisimple ring. Then
one has a canonical factorization R = Hﬂem(R) R, where R, are simple rings.

Remark 4.22. By claim 4.15, if R is a simple ring then the only two-sided
ideals in R are 0 and R. A ring with such a property is called sometimes
quasi-simple (or, non-compatibly with our terminology, simple). A quasi-simple
ring might not be left Artinian, hence not semisimple (we will see later that a
quasi-simple left Artinian ring is simple). As an example, one can check that
R =C{z,0.}/(0,z — 20, — 1) (the Weyl algebra, i.e. the algebra of differential
operators with polynomial coefficients on the line) is quasi-simple and not left
Artinian.

4.5 Jacobson’s density theorem

Theorem 4.23. Let M be a semisimple R-module. Let S := Endr(M). Let
t € Ends(M) and vq,...,v, € M. Then there exists v € R such that tv; = rv;
for1<i<n.

Proof. We first deal with the case n = 1. Since M is semisimple, we can write
M = Rvi & M’ for some R-submodule M’ C M. One has the projection on
Ruvy along M’, which is an element s € S. Notice now that stv, = tsvy = tvs,
and thus tv; € Rvy. This means that there exists » € R such that tv; = rv;.
For general n, let us consider the R-module M™, and the vector (v1,...,v,) €
M™. Abusing notation, we denote by t € End(M"™) the diagonal operator
(t,t,...,t). We now notice that ¢ commutes with elements in Endg(M™) (by
writing each element in Endgr(M™) in matrix form). Using now the n = 1 case
in this setting, gives us the desired claim. O

11



Corollary 4.24. Let M be a semisimple R-module. Let S := Endr(M).
Suppose that M is finitely generated as an S-module. Then the morphism
R — Endgs(M) is surjective.

Remark 4.25. On Endg(M) we can define the ”weak” topology, for which a
subbasis of neighbourhoods of 0 consists of sets U, := {t € Endg(M) | tv =0}
for v € M. The one can state Jacobson’s density theorem as follows: The image
of the morphism R — Endg(M) is dense w.r.t. the weak topology.

4.6 Simple rings - the Artin-Wedderburn theorem

Proposition 4.26. Assume that R is simple, and let E be a simple R-module.
Denote D := Endg(E) (recall that it is a division ring). Then E is finite-
dimensional over D, and the natural morphism R — Endp(E) is an isomor-
phism.

Proof. Notice that the morphism R — Endp(E) is injective; Indeed, if » maps
to zero, then r acts by zero on every simple module, hence on every module
(since every module is a sum of simple modules), and hence in particular on R,
giving r = 0. Alternatively, injectivity is clear since R is quasi-simple.

If we will show that FE is finite-dimensional over D, then the morphism
R — Endp(F) will be surjective, by Jacobson’s density theorem.

We have, for some n € Z>q, R = E". Let us notice that

E = Homg(R,FE) = Homgr(E", E) 2 Homg(E, E)",

where the D-module structure on each Hom-space is by postcomposing. Since
Hompg(E, E) is a free D-module of rank 1, we see that F is of dimension n over
D. O

Corollary 4.27. Assume that R is semisimple. Then R is isomorphic to a
finite direct product of rings of the form Endp(FE) where D is a division ring
and E is a finite-dimensional vector space over D.

4.7 Morita equivalence

Of course, in order for the previous subsection to be complete, we need also to
check for ourselves that rings of the form M, (D), where D is a division ring,
are simple. We will take the opportunity for a more general discussion.

Definition 4.28. Let R, S be rings. We say that A and B are Morita equiv-
alent, if the categories Mod(R) and Mod(S) are equivalent.

Proposition 4.29. Let A be an abelian category, admitting infinite direct
sums?. Let P € A be an object. Consider the functor

G:A— Mod(End(P)?): M+~ Hom(P,M).

2In perhaps more modern terminology, ”infinite direct sums” = ”small coproducts”.

12



Then G is an equivalence of categories if and only if P is a compact projective
generator of A, where:

e P is projective means Hom(P,-) : A — Ab is exact.

e P is compact means Hom(P,-) : A — Ab commutes with infinite direct
3

sums.”.
e P is a generator means that for every M € A, Hom(P, M) = 0 implies
M=01"

Proof. Let us abbreviate R := End(P)°P.

If G is an equivalence of categories, then to check the properties for P € A is
the same as to check the properties for R € Mod(R). This is left as an exercise.

Suppose now that P is a compact projective generator. We would like to
verify that G is fully faithful and essentially surjective.

First, let us check that G is fully faithful, i.e. that for a pair (N, M) € A2,
the map ey ar : Hom(N,M) — Hom(G(N),G(M)) is a bijection. Let us fix
M, and study for which /N the map cy s is a bijection. For NV = P, that cp s
is a bijection is more-or-less a tautology. Both sides send infinite direct sums to
infinite products (here we use P being compact). Also, both sides send cokernel
diagrams to kernel diagrams (here we use P being projective). Hence, if an
object N can be obtained from P by performing iteratively infinite direct sums
and cokernels, cy s will be a bijection. And indeed, we claim that every object
N € A is a cokernel of a morphism of the type P! — P”. For this, it is enough
to show that every object N € A admits a surjection from some P’. We have
the universal try ¢ : PHo™(P:N) _ N Every moprhism P — Coker(¢) can be
lifted to a morphism P — N since P is projective, and hence is zero. Since P
is a generator, we obtain that Coker(¢) = 0, i.e. ¢ is surjective.

Now, let us check that G is essentially surjective. We notice that G preserves
infinite direct sums and cokernel diagrams. Hence, since we already know that
G is fully faithful, the essential image of G is closed under infinite direct sums
and cokernel diagrams. Since R = G(P) is in the essential image and every
R-module can be presetned as the cokernel of a morphism of type R! — R”,
we see that every R-module is in the essential image of G.

O

Example 4.30. Let R be a ring. The object R* € Mod(R) is a compact
projective generator. Notice that End(R™)°P = M, (R). Hence, the previous
proposition gives us an equivalence of categories

Mod(R) =~ Mod(M,(R)).

Thus, M, (R) is Morita equivalent to R.

3the way we define compact is good only when P is projective, and we will use it only then.
4the way we define generator is good only when P is projective, and we will use it only
then.
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Example 4.31. Notice that the properties of being semisimple/simple is stable
under Morita equivalence. In particular, we obtain that for a division ring D,
the ring M, (D) is simple.

Claim 4.32. Let R, S be simple rings. Then the following are equivalent:
1. R and S are Morita equivalent.

2. Given a simple R-module E and a simple S-module F, the division rings
End(E) and End(F) are isomorphic.

3. There exists a division ring D and integers n,m € Z>1 such that R =
M, (D) and S = M,,(D).

Proof.

(1) = (2): This holds because the endomorphism ring of the (unique, up
to isomoprhism) simple object is described category-theoretically.

(2) = (3): By Artin-Wedderburn, R is isomoprhic to M, (D) for some
n € Z>1, where D is the opposite of the endomorphism ring of a simple R-
module.

(3) = (1): We saw that M, (D) is Morita equivalent to D. O

The following claim we will need later, when discussing central simple alge-
bras.

Claim 4.33. Let R, S, T be rings, and assume that R and S are Morita equiv-
alent. Then R®T and S ®@T are Morita equivalent.

Proof. Given an abelian category A, we can consider the category AT of objects
M € A equipped with a morphism 7' — End(M). One easily shows that there
is a natural equivalence of categories Mod(R®T) ~ Mod(R)T. Hence, if R and
S are Morita equivalent, we obtain

Mod(R®T) ~ Mod(R)" ~ Mod(S)" ~ Mod(S ®T).

Also, a nice feature is:

Exercise 4.34. Let R be a ring. Then Z(R) is isomorphic naturally to the
endomorphism ring of the identity functor Idyjoq(r)-

Corollary 4.35. Let R,S be rings. If R and S are Morita equivalent, then
Z(R) and Z(S) are isomorphic.

Corollary 4.36. Let R, S be commutative rings. If R and S are Morita equiv-
alent, then R and S are isomorphic.

Remark 4.37. All the above have variants, if we work with k-algebras instead
of with rings. Then all morphisms/abelian categories/functors should be k-
linear, all tensor products should be over k, etc.
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4.8 The Jacobson radical

Definition 4.38. The Jacobson radical J(R) C R is defined as the subset of
all elements r € R such that rE = 0 for any simple R-module E.

Remark 4.39. Thus, in picturesque terms, the Jacosbon radical consists of
operators which are immaterial on the irreducible spectrum.

Lemma 4.40.
1. J(R) C R is a two-sided ideal.
2. J(R) is equal to the intersection of all mazimal left ideals.

3. Let r € R. Thenr € J(R) if and only if 1 — sr is left-invertible for all
s € R.

Proof.
1. Clear.

2. Notice that we can think of maximal left ideals as annihilators of non-zero
elements in simple modules. From this, the claim is straightforward.

3. Suppose that r € J(R). Let s € R. Then 1 — sr is not contained in any
maximal left ideal. Hence, R(1 — sr) = R. Hence, 1 — sr is left-invertible.
Conversely, suppose that r ¢ J(R). Then there exists a maximal left ideal
I C R such that r ¢ I. Then Rr + I = R. Hence, there exist s € R,i € T
such that sr +7 = 1. Then, 1 — sr € I and so 1 — sr is not left-invertible.

O

Lemma 4.41 (Nakayama’s lemma). Let M be a finitely-generated R-module.
If J(IRYM = M, then M = 0.

Proof. Let vq,...,v, C M be a set of generators of M. We can find elements
T1,...,7n € J(R) such that v;1 = rqv; + ...+ rpv,. Then (1 —r1)v; € Rusy +
...+ Rv,. Since 1 — ry is left-invertible, we get v1 € Rvy + ...+ Rv,. Thus,

va, ..., U, is also a set of generators of M. Continuing like this, we deduce that
M =0. O
Lemma 4.42.

1. every nilpotent left ideal in R is contained in J(R).
2. If R is left Artinian, J(R) is nilpotent.
Proof.

1. Let I C R be a nilpotent left ideal, say I™ = 0, and let E be a simple
R-module. Then if IE # 0, we have [E = F and so, iterating, we obtain
0= I*E = F - a contradiction. Hence IE = 0.
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2. The decreasing sequence J(R)™ must stabilize - denote the common value
J(R)>°. Then J(R)*J(R)>* = J(R)*>°. Consider the family of left ideals
I C J(R)* which are finitely generated and for which J(R)>I # 0.
If J(R)>* # 0, this family is non-empty, and hence contains a minimal
element I (by the left Artinian property).

Then J(R)>*Iy # 0, and since J(R)>*J(R)*Iy = J(R)*>Iy, we can find
v € J(R)*®Iy such that J(R)>v # 0. Then Rv lies in our family, and
hence by the minimality of Iy we have Iy = Rv. In particular, since Rv C
J(R)*>®Iy C Iy, we obtain Iy = J(R)*Iy, and thus clearly also J(R)Iy =
Iy. Then, by Nakayama’s lemma, we have Iy = 0 - a contradiction. Hence
J(R)* = 0 or, in other words, J(R) is nilpotent.

O

Claim 4.43. Suppose that R is left Artinian. Then R is semisimple if and only
if J(R) =0.

Proof. Suppose that R is semisimple. Then R is the sum of its simple submod-
ules. Then, given 0 # r € R, since r doesn’t act on R by zero, it must act not
by zero on some simple submodule of R.

Conversely, suppose that J(R) = 0. Since J(R) is the intersection of all
maximal left ideals, and by the left Artinian property, we deduce that in fact we
can find finitely many maximal left ideals I, ..., I, whose intersection is J(R),
i.e 0 by our assumption. This means that the natural R-module morphism

R—R/I;&---& R/,

is injective. This in turn shows that R is a semisimple R-module, since it can
be embedded into a semisimple R-module. O

Example 4.44. Consider the ring Z. Then J(Z) = 0, but Z is not semisimple.

Claim 4.45. Suppose that R is left Artinian, and let M be an R-module. Then
M is semisimple if and only if J(R)M = 0.

Proof. If M is semisimple, it is a direct sum of simple modules, and J(R)
annihilates every simple module, so the claim is clear in one direction.
Conversely, suppose that J(R)M = 0. Then we can consider M as an
R/J(R)-module. Since J(R/J(R)) = 0 and R/J(R) is left Artinian, we have
that R/J(R) is semisimple. Hence M is a semisimple R/J(R)-module, and thus
clearly a semisimple R-module. O

Exercise 4.46. Show that for a general R, the class of semisimple modules is
not necessarily closed under infinite products. However, show that if R is left
Artinian, the class of semisimple modules is closed under infinite products.

For the next claim, let us recall that if R is a finite-dimensional algebra over
a field k, then we have a functional trg : R — k given by sending y € R to the
trace of the linear endomorphism of R given by x — yux.

16



Claim 4.47. Let k be a field, and suppose that R is a finite-dimensional k-
algebra. Then J(R) is contained in the radical of the symmetric bilinear form
(z,y) — trr(zy). In particular, if (x,y) — trr(zy) is non-degenerate, then R
s semisimple.

Proof. Let r € J(R) and s € R. Since J(R) is nilpotent, rs is nilpotent. Thus,
the linear transformation x +— rsz is nilpotent, and so tr(rs) = 0. O

Example 4.48. The converse of the claim is not true, due to inseparable field
extensions, basically. Namely, if k is a field of characteristic p and a € k has no
p-th root in k, then we consider R := k(¥/a), which is a k-algebra of dimension
p. Then it is easy to calculate that the trace functional is zero for the k-algebra
R.

5 Central simple algebras

Throughout this section, we fix a field k. By an algebra, we mean a k-algebra,
by an abelian category/functor we mean a k-linear abelian category/functor,
etc.

For a k-algebra A and a field extension K/k, we will denote Ax := K ®; A
(it is a K-algebra).

5.1 Central simple algebras

Definition 5.1. A k-algebra A is called central, if Z(A) = k. We abbreviate
"CSA” for ”"central f.d. simple algebra” and "CDA” for ”central f.d. division
algebra”.

Recall that we say that a ring R is quasi-simple, if it has no two-sided
ideals except 0 and R. Also, recall that we saw that a quasi-simple ring which
is left Noetherian is simple.

Lemma 5.2. Let A, B be quasi-simple k-algebras, and assume that A central.
Then A ®y, B is quasi-simple.

Proof. Let I C A ®; B be a non-zero two-sided ideal. We can choose a non-
zero element ¢ = >, ., a;b; € I, and also assume without loss of generality
that by,...,b, are linearly independent. We can also assume without loss of
generality that a; = 1. Indeed, by reordering we can assume that a; # 0 and
then, since A is quasi-simple, we can find a}, a? € B such that Zj a}ala? =1.
Then we replace ¢ by . (a} ® 1)c(a§ ® 1), to obtain an element as desired.

Now we can prove by induction on n that I = A®; B (i.e. 1®1 € I). If
n =1, then we have ¢ = 1 ® by € I, and since b; # 0 by an argument like above
(using the quasi-simplicity of B) we see that 1 ® 1 € I. Next, if a; € k for all
i, then ¢ = 1 ® (3, a;b;) so we reduce to the case n = 1. Otherwise, we take
j such that a; ¢ k. Since A is central, there exists a € A such that aa; # a;a.
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Then (a®1)c—cla®1) is equal to 1@ b1 + >, ;4;(aa; — a;a) @ by, so we can
proceed by induction. O

Definition 5.3. A k-algebra A is called a matrix algebra, if A is isomorphic
to M, (k) for some n € Z>;.

Exercise 5.4. A matriz algebra is a CSA (can do this concretely, or notice
that a matriz algebra is Morita equivalent to k, and being central and simple are
stable under Morita equivalence).

Lemma 5.5. Let A, B be k-algebras. Then Z(A ®y, B) = Z(A) &k Z(B).

Proof. Let ¢ € Z(A ®;, B). We can write ¢ = ), a; ® b; with the a;’s linearly
independent. Then (1 ® b)e = ¢(1 ® b) for all b € B implies that b, € Z(B)
for all . Now we can present ¢ =}, a’; ® b; with the b;’s linearly independent
and every b;- is equal to one of the b;’s. Then analogously to before we see that
aj € Z(A) for all j. Therefore c € Z(A) @ Z(B). O

Lemma 5.6. Let A be a k-algebra and K/k a field extension.
1. A is central if and only if Ak is central.
2. If Ax is quasi-simple then A is quasi-simple.
8. If A is a CSA then Ak is a quasi-simple.
4. Ais a CSA if and only if Ak is a CSA.
Proof.
1. One has Z(Ax) = K ®;, Z(A). From this, the claim is clear.

2. If I C A is a non-trivial two-sided ideal, then K ® I C Ak is a non-trivial
two-sided ideal.

3. This follows from lemma 5.2.

4. This follows from the previous items.

Claim 5.7. The following are equivalent:
1. A is a central simple algebra.
2. For an algebraic closure K/k, Ak is a matriz algebra.

3. There exists a finite field extension K/k such that Ay is a matriz algebra.

Proof. (1) = (2): By lemma 5.6, Ax is a CSA. By Artin-Wedderburn, Ag
is isomorphic to M, (D) where n € Z>1 and D is a division algebra over K. But
K is the only such division algebra, hence A is a matrix algebra.

(2) = (3): This is standard, from finite-dimensionality.

(3) = (1): A matrix algebra is a CSA, hence A is a CSA, and hence,
by lemma 5.6, A is a CSA. O
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Lemma 5.8.

1. Let A, B be CSA’s. Then AQy B is a CSA.

2. Let A be a CSA. Then A°P is a CSA.

3. Let A be a CSA. Then A°P Qi A is a matriz algebra.
Proof.

1. By passing to a suitable finite algebraic extension, we reduce to A, B being
matrix algebras. Then the claim follows from M, (k) @k M, (k) = Mpm (k)
(alternatively, this follows from lemmas above).

2. By passing to a suitable finite algebraic extension, we reduce to A being
a matrix algebra. Then the claim follows from M, (k)P = M, (k).

3. One has a morphism of k-algebras ¢ : A°? ®p A — Endy(A), given by
a®b— (¢ bea).

Since A°P ® A is simple by the already established part (1), ¢ is injective.
By comparing dimensions, we deduce that ¢ is an isomorphism.

O

Definition 5.9. The Brauer group of & is defined as the group of isomorphism
classes of CSA’s up to Morita equivalence, with the tensor product as the group
operation.

Remark 5.10. By claim 4.33 and lemma 5.8, the binary operation is well-
defined. Clearly k defines the unit for this operation, and by lemma 5.7 inverses
exist.

Remark 5.11. The elements of the Brauer group are in bijection with isomor-
phism classes of CDA’s (because every CSA is Morita equivalent to a unique
CDA, upt to isomorphism), but what should be the group operation is less clear
if we would define it like this (because the tensor product of two CDA’s might
not be a CDA, but it is a CSA).

Remark 5.12. From all what was said above, we see that the elements of the
Brauer group might be roughly considered as equivalence classes of k-linear cat-
egories A (maybe with some extra condition), such that for an algebraic closure
K/K, one has AX ~ Mod(K). In other words, the Brauer group classifies
forms of the category of vector spaces, where ”form” has the following sense:
Suppose that for a field L, one has a world of entities C;,. Suppose that for a
field extension M/L, one has a transformation C;, — Cps, with some expected
properties (the "base change”). Suppose we pick an entity F' € Cp;. Then a
standard question is to find all entities f € Cp which become equivalent to F'
under the transformation above. Such f’s are then called ” L-forms” of F.
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5.2 The centralizer theorem

Lemma 5.13. Let A be a simple ring and V' an A-module of finite length. Then
Enda(V) is also a simple ring.

Proof. Since A is semismiple, the module V' is projective. Since V is projective
and finitely generated over A, it is compact. Since A is simple, V is a generator
of Mod(A). Therefore, Enda(V)° is Morita equivalent to A, so is simple. The
opposite of a simple ring is simple. Therefore End (V) is simple.

Alternatively, write V = E™ where F is a simple A-module. Then denoting
D = End4(FE) (a division algebra) we have Enda (V) = M, (D) and hence it is
simple. O

Lemma 5.14. Let A be a simple ring and E a simple A-module. Denote D =
Enda(F). Then dimp E = [A : [E]]. In particular, if A is a k-algebra, we have

Proof. Writing A =2 E™ (so n = [A : [E]]) we have (we already done this
computation once before)

E>=Homu(A E)= Homa(E",E) = Homs(E, E)" = D"

and this is a D-module isomorphism. So dimp E = n, as desired. In the case
that A is a k-algebra, we have

dimgy A =[A: [E]] -dimy E = [A: [E]] - dimp E - dimy D =n - n - dimg D.
O

Theorem 5.15 (Centralizer theorem). Let A be a CSA, and B C A a simple
subalgebra. Then:

1. Ca(B) C A is simple.
3. C4(Ca(B)) = B.
Proof.

1. Let us consider A as an (A°P ®, B)-module, via (a, b) *x = bxa. We notice
that
Ca(B) @2 Endgorg,B(4), c+— (x+— cx).

Since A°? ® B is simple, End gorg, 5(A) is also simple.

2. Denote by £ the length of A as a (A°P ®j B)-module, by n the dimension of
a simple (A°?®y, B)-module over the division algebra of its endomorphisms,
and by m the dimension over k of the division algebra of the endomorphism
of a simple (A° ®j B)-module.

Then dimy, A = £-n-m, dimy, (A°? @ B) = n?-m and dimg C4(B) = 2 -m.

dimy (A°?®y B)

Hence, dimy B = din A

= n/¢ and the desired relation is evident.
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3. Since B C C4(C4(B)), the assertion follows by comparing dimensions,
using the previous two assertions.

O

5.3 Maximal subfields

Claim 5.16. Let D be a CDA, and K C D a mazximal subfield. Then dimy D =
(dlmk K)Q.

Proof. Notice that Cp(K) = K. Hence, the assertion follows from the claim
5.15. O

Claim 5.17. Let D be a CDA, and K C D a mazximal subfield. Then Dy is a
matriz algebra.

Proof. We consider D as a K-vector space, by right multiplication. Then we
obtain a k-algebra homomorphism D — Endg (D), given by left multiplication.
Extending scalars, we obtain a K-algebra homomorphism ¢ : D — Endg (D).
Since both are K-algebras of dimension dimy D and Dy is simple, ¢ is an
isomorphism. O

Lemma 5.18 (Noether, Jacobson). Let D be a CDA. If D # k, then there
exists d € D — k such that k(d)/k is separable.

Proof. Omitted for now. O

Claim 5.19. Let D be a CDA. Then there exists a mazximal subfield K C D
such that K/k is separable.

Proof. Let K C D be maximal among subfields which are separable over k.
We want to show that K is a maximal subfield in D. Consider Cp(K). By
the centralizer theorem, Cp(K) is a CDA over K. If Cp(K) = K then K has
the correct dimension that by the centralizer theorem forces it to be a maximal
subfield. Suppose by contradiction that Cp(K) # K. Then by lemma 4.1 there
exists d € Cp(K)— K such that K(d)/K is separable - which clearly contradicts
the maximality of K. O

Corollary 5.20 (of claims 5.19 and 5.17). Let A be a CSA. Then there exists
a separable finite extension K/k such that Ax is a matriz algebra.

Remark 5.21. The last corollary says that CSA’s always become matrix al-
gebras over the separable closure (so it is not necessary to pass to the possibly
bigger algebraic closure). This is important for the cohomological interpretation
of the Brauer group.
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5.4 The Noether-Skolem theorem
Lemma 5.22. Let A, B be two k-algebras. Then Cyg, 5(A®rEk) = Z(A) @ B.
Proof. Easy. O

Lemma 5.23. Let A be a f.d. simple k-algebra, and M, N two f.d. A-modules.
Then M = N if and only if dimy M = dimy N.

Proof. Clear, since every f.d. A-module is simply a direct sum of copies of the
unique (up to isomorphism) simple A-module. O

Lemma 5.24. Let A be a f.d. simple k-algebra, M a f.d. k-vector space,
and 01,02 : A — Endi(M) two k-algebra morphisms. Then there exists U €
GLi(M) such that 05(a) = UO1(a)U~? for all a € A.

Proof. The morphisms 67,60> impose on M two A-module structures. By the
previous lemma, the two resulting modules are isomorphic. An isomorphism
between them is exactly U as wanted. O

Theorem 5.25 (Noether-Skolem). Let A be a CSA, B a simple algebra, and
1,92 : B — A algebra morphisms. Then there exists u € A* such that ¢o(b) =
ugy(b)u="t for all b € B.

Proof. Consider two (A°P ®j B)-module structures on A given by ¢; : A ®y,
B — Endi(A) where (;(a ® b)(z) = ¢;(b)xa (where i = 1,2). Recalling that
A°P @y, B is simple, we see by the previous lemma that there exists an invertible
U € End(A) such that U o t1(a ®b) o U™t = 13(a ® b). Also, recall that
t: A% @, A — Endi(A) given by (a1 ® a2)(x) = asza; is an isomorphism of
algebras. Hence, setting u; := ¢~ (U), we have

ui(a ® ¢1 (b))ul_1 =a® ¢a2(b).

Setting b = 1, we see that u; € Cporg, 4 (AP @ k) = Z(AP) @ A = k Qi A.
Hence we can write u; = 1 ® u for u € A (notice that u € A*), and we get,
substituting ¢ = 1 this time,

ugy (b)u~' = ¢o(b) be B.
O

Corollary 5.26. Let A be a CSA, and B,C C A two simple subalgebras. Sup-
pose given an isomorphism of algebras 0 : B — C. Then there exists u € A
such that ubu=! = 0(b) for all b € B.

Corollary 5.27. Let A be a CSA, and 0 : A — A an automorphism of algebras.
Then there exists u € A* such that 0(a) = uau™! for all a € A.
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5.5 Examples
5.5.1 Symbol algebras

Can we produce concrete examples of CSA’s?

Let n € Z>o, assume that n # 0 in k, and assume that £ contains all n-th
roots of unity. Fix ¢ € k, a primitive n-th root of unity.

Given a,b € k*, define

Cop = C’;Lbc(k) = k{z,y)/(z" = a,y" = b,zy = Cyz).

Notice that it is not hard to understand that C, 4 is an n2-dimensional k-algebra,
with basis (2'y?)o<i j<n—1-

Here are some other properties which are not hard to establish:
Lemma 5.28.

1. Coenp = Cupen = Cqp fora,b,c,€ k.

2. Cop =2 Cy-1 4 fora,be k.

3. Cop = Cyh fora,be k>
Lemma 5.29. C, is a matriz algebra.

Proof. Notice that an n2-dimensional k-algebra A is a matrix algebra if and
only if there exists a simple n-dimensional A-module E for which Enda(F) =k
(indeed, given such a module, the map A — Endy(FE) is surjective by Jacobson’s
density theorem and therefore an isomorphism by comparing dimensions).

Therefore, let us try to construct an n-dimensional A-module E. Since z™ =
1, by diagnolization of the operator-to-be that x defines, it seems reasonable to
fix a basis (€;)icz/nz of E and set xe; = C'e;. Furthermore, zy = (yx shows
that we must have ye; = ¢;e;41 for some ¢; € k. Then choosing arbitrarily (¢;)’s
such that [ ¢; = b gives as an Cy p,-module E. It is easy to see that E is simple
(Since z is diagnolizable, every submodule is a direct sum of k- ¢;’s; Since y acts
by translation, this must be the sum of all of them...). Then one can see that
Endc, ,(E) = k either by easy direct computation, or by noticing that, fixing an
algebraic closure K'/k, one has dim Endc, ,(E) = dim Endc, ,), (Ex), so that
(since (Cyp(k))x = Cop(K), and E is again a module of the same nature, so in
particular simple by what we have already shown) it is easy to see that one can
reduce to the case when k is algebraically closed, and then, since Endc, ,(E) is
a division algebra, it must be k. O

Corollary 5.30. Suppose that a admits an n-th root in k. Then Cq is a matriz
algebra.

Proof. If a admits an n-th root in k, say a"™ = a, then Cpp = Con p = Cp 5O
by the above it is a matrix algebra. O
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Claim 5.31. C,; is a CSA.

Proof. We set K = k({/a), and then C,;(K) is a matrix algebra, so, since
Cop(k)g = Cop(K), we see that C, (k) is a CSA. O

Claim 5.32. We have [Cqpc] = [Cap] - [Cac] (equality in the Brauer group).

Proof (from Milnor’s book on K-theory). Denote by x,y (resp. X,Y) the gen-
erators of Cyp, (resp. Cy,c) as above and consider the algebra

C= C{L,b Rk Ca,c~

Consider now the subalgebra B of C generated by z ® 1 and y ® Y, and the
subalgebra B’ of C' generated by 27! ® X and 1®Y. Then it is easy to see that
B = Cype and B’ = C .. Moreover, we see also that C' = B ®; B’. Therefore

Ca,b Rk Ca,c = a,bc ® Cv17bc~
Since C] p. is trivial in the Brauer group, we get the claimed. O

Proposition 5.33. [C, ] = 1 whenever a + b has an n-th root in k. In partic-
ular, we have the Steinberg relation [Cy1-o] = 1 when a # 1 and the relation
[a,—a] = 1.

Proof (from Milnor’s book on K -theory). We first compute that we have (z +
y)™ = 2™ +y", in general. Indeed, it is easy to see that the coefficient of y’x" ¢
in the unfolding of the LHS is the coefficient of 7% in (1+7¢°)-...- (1+T¢"1).
This polynomial is (—7")" — 1 up to a constant.

Thus, if a + b is an n-th root in k (write a + b = ¢™) we see that z :=z +y
is an element in A := C,,; which satisfies the polynomial equation 7" — ¢ = 0
and no equation of lower degree. Therefore, since the polynomial T" — ™
splits completely over k, we see that k[z] is isomorphic to the product of n
copies of k. We can thus consider the corresponding orthogonal idempotents
€1,...,€n € k[z]. One then sees that A = Ae; @ Aes @ ... D Ae,. Therefore,
A is an n?-dimensional CSA admitting a simple module of k-dimension < n.
It is easy to see from the Artin-Wedderburn theorem that A is then a matrix
algebra. O

Remark 5.34. Thus, by the properties that we have seen, we obtain that
(a,b) — [Cqp] defines a Z-bilinear anti-symmetric map

(= =)t K7/ (BF)" x k™ /(™)™ — Br(k)
which furthermore satisfies the Steinberg identity (a,1 — a), = 1 when a # 1.

Proposition 5.35. The algebra Cyp is a matric algebra (i.e. (a,b), = 1) if
and only if b is in the image of the norm map from k({/a) to k or equivalently
from K[T]/(T™ — a) to k.

Proof (from Milnor’s book on K -theory). The two criteria are equivalent be-
cause k[T]/(T™ — a) is the product of several fields isomorphic to k(/a). The
rest of the proof is omitted for now (we will establish below the special case
when n = 2). O
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5.5.2 Quaternion algebras

Definition 5.36. A quaternion algebra is a CSA of dimension 4.

Notice that by dimension reasoning, a quaternion algebra is either a matrix
algebra or a division algebra, and two Morita equivalent quaternion algebras are
in fact isomorphic. The most famous quaternion algebra is CEL_l in the case
of k := R - the Hamilton quaternions. We will check below that it is a division
algebra.

Claim 5.37. Assume that char(k) # 2. Then every quaternion algebra is
isomorphic to C’g,b for some a,b € k*.

Proof. Let D be a quaternion algebra. If D is a matrix algebra, thne D =2 012,1
so that we are OK. Assume thus that D is a division algebra. A maximal
subfield K C D is of dimension 2, hence we can find an element 0 # = € K such
that a := 2% € k. By the Noether-Skolem theorem, we can find 0 # y € D such
that conjugation by y induces the non-trivial automorphism of K, i.e. yry ! =
—z (or xy = —yzx). By dimension considerations, D has basis 1,z,y,zy, in
particular x,y generate D. Notice that y?zy~2 = z, so y? centralizes both z
and y, thus lies in the center of D, hence b := y* € k. Now clearly D = C?,. [

Corollary 5.38. For a quaternion algebra A, one has that A ®y A is a matriz
algebra. In other words, elements in the Brauer group represented by quaternion
algebras are 2-torsion.

Proof. Writing A = C’ib, we have
[Aer Al =[CF, @ Cy] = [Cae] = [Ca ]
and the latter is trivial. O

Construction 5.39. Let A be a CSA. Fix a field extension K /k such that Ag is
a matriz algebra. Considering a simple Ax-module V', we define RNm : A — K
by setting RNm(a) to be the determinant of the endomorphism that a induces
on the K-vector space V. Then, in fact the image of RNm lies in k, and the
map RNm does not depend on the choice of K/k. One can see this easily if
one knows that there always exist a separable splitting field, using Galois theory.
The resulting map RNm : A — k is a multiplicative monoid morphism, and
reflects invertibility (i.e. a € A is invertible if RNm(a) # 0).

Claim 5.40. Assume that char(k) # 2. Let a,b € k*. Then CZ, is a matriz
algebra (equivalently, not a division algebra) if and only if b lies in the image of

Nm : k(ya)* — k*.

Proof. If a has a square root in k>, then it is clearly a norm and also we already
saw that Cg,b is a matrix algebra, so everything is OK. Hence, we may assume
that @ has no square root in k*. Notice that Cg’b is a matrix algebra if and
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only if there exists a non-zero element in Cib which is non-invertible, and such
an element is automatically a left and right zero-divisor.

Proof 1: One calculates
RNm(co + c12 4 coy + c32y) = ¢ — act — bea + abcs.

Thus, Cib is a matrix algebra if and only if there exists z € Cib such that z # 0

and RNm(z) = 0, or in other words if there exists 0 # (co, c1, co,c3) € k* such
that

2 2

p— G0 —aci
T 2 02
c3 — acsg

which is to say
b= Nt VD@V
co + \/663

This explains the claim.

Proof 2: Denote K = k[z] C C7,. One has C7, = K ® K - y. Denote
by 6 : K — K the non-trivial k-automorphism (i.e. 6(z) = —z). Notice that
ry = yO(r) for r € K. The existence of a zero-divisor is equivalent to the
existence of r,s € K such that (y +7)(y + s) = 0 (because we will have some
(r1y + 72)(ys1 + s2) = 0 but then we can multiply by 77! on the left and by
57! on the right). This equation unfolds to y((r) + s) + (rs + b) = 0, i.e. to
s = —0(r) and b = —rs. Therefore the existence of a zero-divisor is equivalent
to the existence of r € K such that b = rf(r) = Nmf (r). O

We also have a reinterpretation of the condition we found:

Lemma 5.41. Assume that char(k) # 2. Let a,b € k*. Then b lies in the
image of Nm : k(y/a)* — k> if and only if the equation z*> = ax® + by? has a
non-zero solution (z,y,z) € k3.

Proof. If a is a square in k then the equation has a non-zero solution (1,0, v/a)
and b lies in the image of the norm, so we are good. Suppose that a is not a
square in k. Then b lies in the image of the norm if and only if there exists
(c,d) € k? such that b = ¢ — ad?. In other words, if and only if the equation
2?2 = az? + b has a solution. Since a is not a square in k, this equation has a

solution if and only if the equation 22 = ax? + by? has a non-zero solution. [J

5.5.3 Algebraically closed fields

Let D be a f.d. division algebra over k, and let d € D — k. Then k[d] C D is a
f.d. integral commutative k-algebra, hence a field. From this, we conclude:

Claim 5.42. If k is algebraically closed, then Br(k) = 1.

Proof. Indeed, there are no non-trivial f.d. division algebras over k. O
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5.5.4 Finite fields
Claim 5.43. If k is a finite field, then Br(k) = 1.

Proof. Let D be a f.d. central division k-algebra; We want to show that D = k.
For a maximal subfield K C D, we saw that dim K = v/dim D. Hence, all maxi-
mal subfields are isomorphic in our case where k is finite. By the Noether-Skolem
theorem, we get that every two maximal subfields are conjugate. Thus, fixing
a maximal subfield K C D, we see in particular that DX = U,epxuK*u"1. A
simple lemma about finite groups (see below) gives us D* = K* and so D = K.
Since D is central, we get D = k. O

We used the following lemma in the proof above:

Lemma 5.44. Let G be a finite group, and H C G a subgroup. If UjeggHg ' =

G, then H = G.

5.5.5 The field R

Claim 5.45. The only non-trivial CDA over R is the Hamilton quaternion
algebra C%, .

Proof. Let D be a CDA over R. Since the only finite field extensions of R are
R and C, by the results above on maximal subfields, if D # R then D must be
four-dimensional. Hence, from what we saw above, D &2 C’g}b for some a,b € R*.
Since we can change a and b by squares, we can assume a,b € {1, —1}. Since if
either a or b are 1 then C’g,b is a matrix algebra, we are only left with C?; _,
which is indeed a division algebra (for example, because —1 is not a norm from
C to R). O

Corollary 5.46. Br(R) > 7Z/2Z.

We denote by invy, : Br(R) — Q/Z the unique embedding (i.e. the non-
trivial element in Br(R) goes to 1/2 + Z).
5.5.6 The fields Q,

We will not discuss too much, but just note the following theorem:

Theorem 5.47 (Part of local class field theory). One has a canonical isomor-
phism
Br(Q,) = Q/Z.

In particular, there is, up to isomorphism, only one quaternion algebra over
Q, which is not a matrix algebra.
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5.5.7 Local-to-Global stuff

Theorem 5.48 (Albert-Brauer-Hasse-Noether). Let D be a CSA over Q. Then
D is a matriz algebra if and only if for every v € pl(Q), Dg, is a matriz algebra.

Lemma 5.49. Let D be a CSA over Q. Then, for almost all v € pl(Q), the
CSA Dg, is a matriz algebra.

Thus, we can rephrase the theorem by saying that
Br(Q) — @ Br(Q,)
vepl(Q)
is injective.
Recall that we have a canonical homomorphism inv, : Br(Q,) — Q/Z which
is an isomorphism when v is non-archimedean.

Theorem 5.50 (Part of global class field theory). The sequence

0-Br(@— @ Br(Q)=""Q/z 0.
vepl(Q)

s exact.

Corollary 5.51. Let A be a quaternion algebra over Q. Then the number of
v € pl(Q) for which Ag, is not a matriz algebra is even.

Example 5.52. In particular, consider the CSA Cp 4(Q) where p and q are odd
primes. By the corollary, the number of v € pl(Q) for which 2% = px?® + qy? has
no solution in Q, is even. For v = oo there clearly is a solution. Using Hensel’s
lemma etc., it is quite easy to see the following. For v =p (resp. v = q) there
is a solution if and only if q (resp. p) is a square modulo p (resp. q). For an
odd prime £ & {p,q}, there is always a solution. For v = 2, there is a solution
if and only if at least one of the number p, q is equal to 1 modulo 4, i.e. if and

only if pT_l - 221 s even. Therefore we see that

B -1

5.6 The Brauer group as a cohomology group

To be added later, perhaps

6 Representations and characters

In this section, we fix a field k, and all vector spaces, algebras etc. are over k.
By G we denote a finite group and by A we denote a f.d. algebra.
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6.1 Group algebras and group representations

Definition 6.1. A representation of G is a pair (V, p) consisting of a vector
space V and group morphism p : G — GL(V). A morphism of representations
(V, p), (W, 0) is a linear transformation 7' : V' — W such that T o p(g) = 6(g) o
T for all g € G. The category of representations we denote Repy(G). The
morphism spaces in this category we denote Homg(+,-). The category Repy(G)
is an abelian category. We also denote Irri(G) := Irr(Repi(G)) (the set of
isomorphism classes of irreducible representations).

Remark 6.2. Sometimes, given a group representation (V, p), we simply write
gv instead of p(g)(v). We might also simply say that V is a representation of
G, omitting p all together (in the same way as when referring to an A-module
M, one does not keep the structurual A — End(M) or A x M — M in the
notation).

Remark 6.3. We said that Repy(G) is an abelian category. The reader should
decipher for himself, what are subrepresentations, quotient representations, di-
rect sums of representations, etc. Also, decipher what does it mean concretely
for Repy(G) to be semisimple.

Example 6.4. The trivial representation k € Repy(G) is the one-dimensional
vector space k, together with the trivial G-action, that is the corresponding

p: G = GL(k) is given by p(g) = idy for all g € G. More generally, given

a group homomorphism 0 : G — k>, one can consider the one-dimensional rep-

resentation kg € Repi(G), which is the vector space k with the p : G — GL(k)

given by p(g) = 0(g) - idi. Note that one-dimensional representations are al-

ways irreducible. Check that this construction yields an bijection between the

set of group homomorphisms Hom(G, k™) and the set of isomorphism classes

of one-dimensional representations in Repy(G).

Definition 6.5. The group algebra of G, denoted k[G], is the algebra with
basis G and the product extending the one of G by bilinearity. Thus, concretely,
elements of the group algebra are formal expressions > 9eG 499 and the product

’ D agg- > byg=> (Z agh_lbh> g.

geG geG geG \heaG

Remark 6.6. Given an algebra A, the set of algebra morphisms k[G] — A
is in bijection with the set of group morphisms G — A*. In particular, given
a vector space V, the structure of a module over k[G] on V, i.e. an algebra
morphism k[G] — End(V), is the same as the structure of a representation of
G on V, ie. a group morphism G — GL(V). We obtain in this way a natural
equivalence of categories between Repy(G) and Mod(k[G]) which we will use
extensively.
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6.2 Maschke’s theorem and examples of non-semisimplicity

Claim 6.7. Suppose that char(k) does not divide |G|. Then k[G] is semisimple
(in other words, Repy(G) is a semisimple category).

Proof. Proof 1: Let us notice that for ¢g1,92 € G C k[G], one has tr(gi192) =
|G| - Og,,971- Thus, the symmetric bilinear form (z,y) — tr(zy) on k[G] is
nondegenerate. Thus, as we saw, J(k[G]) = 0 and so k[G] is semisimple.

Proof 2: Let M € Mod(k[G]) and N C M a submodule. Let p : M — M
be a projection operator with image N. Define p; := ﬁ ZgEGgpgfl. Then
one checks that p; is again a projection operator with image N, and that p; is

a k[G]-module morphism. Hence, Ker(py) is a k[G]-submodule complimentary
to N. O

Claim 6.8. Suppose that char(k) = p > 0 and that p divides |G|. Then k|G| is
not semisimple.

Proof. Consider r := deGg € k[G]. Notice that gr = r for ¢ € G and
72 = 0. Hence, the left ideal generated by r is nilpotent. Thus r € J(k[G]), so
J(k[G]) # 0 and so k[G] is not semisimple. O

Let us illustrate an extreme:

Claim 6.9. Suppose that char(k) = p > 0 and that G is a p-group. Then the
trivial representation defines the only element in Irr(G).

Proof. Let E be an irreducible G-representaiton, and let us write p : G —
GL(E) for the corresponding morphism. Notice that for every g € G, one has
g?" =1 for some r € Z>, and thus (recall that in char. p one has (T + S)P" =
TP 4+ SP") (p(g) — idg)?" = 0 and thus in particular p(g) — idg is nilpotent,
and hence not invertible. Now, suppose in addition that g € Z(G). Then
p(g) —idg € Endg(E). Recall that since E is irreducible, by Schur’s lemma
Endg(F) is a division algebra. Hence p(g) — id, being non-invertible, must be
zero. Thus we obtain p(g) = idg for all g € Z(G). This allows to think about E
as a representation of G/Z(G), which again is irreducible. Recall now that for a
non-trivial p-group, the center is non-trivial. This allows to assume inductively
that we already know the claim for G/Z(G). We obtain that E is the trivial
representation of G/Z(G), and hence obviously the trivial representation of G.

O

6.3 Character theory - 1

Throughout this subsection, we assume that k is algebraically closed. We fix a
f.d. algebra A, and denote by F1, ..., E, representatives of isomorphism classes
of simple A-modules (recall that Irr(A) is finite).

Remark 6.10. Let us recall that by the material we saw (Schur’s lemma, Jacob-
son density theorem, Artin-Wedderburn theorem, etc.), we have End(FE;) = k
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(because k is algebraically closed and Ends(E;) is a division k-algebra), the
natural algebra morphism

A = Endy(Ey) ... x Endi(Ey)

is surjective, and it is injective if and only if A is semisimple (the kernel of this
morphism is the Jacobson radical J(A)). In case A is indeed semisimple, the
two-sided ideal A[g,) C A corresponds under the above isomorphism to End(E;).

Definition 6.11. The cocenter of A is the vector space
cc(A) == Af{ab—ba: a,be A).
We also call cc(A)* the space of trace functionals on A.

Example 6.12. Suppose A = k[G]. Then Z(k[G]) is the subspace of elements
deG agg such that apg,-1 = ag for all h,g € G. The space k[G]* can be iden-
tified with the space of functions from G to k, and the space cc(k[G])* consists
of the functions a : G — k for which a(hgh™') = a(g) for all h,g € G. Let us
denote by Fun®(G,k) C Fun(G,k) the subspace of such functions; it is called
the space of class functions on G.

Definition 6.13. Let E be a f.d. A-module. Define the character of F,
XE € cc(A)", by
xe(a) :=tr(a; E).

Remark 6.14. Given a short exact sequence of f.d. A-modules

0— Fy — FEy — E3—0,

one has xXg, = XE, + XEs-

Theorem 6.15. The characters xg,,...,XE, € cc(A)* are linearly indepen-
dent. If A is semisimple, these are moreover a basis of cc(A)*.

Proof. By remark 6.10, for 1 < i < n, we can find an element a; € A such that
a; acts on F; by zero if j # ¢ and by a linear transformation with trace 1 if
j =14. Then x;(a;) = &, so that the first claim follows. Let us assume now
that A is semisimple. Then to show that dimcc(A) = n, by remark 6.10 it is
enough to show that dim cc(M,,(k)) =1 for m € Z>,. This we will do below.
O

Definition 6.16. The algebra A, equipped with a trace functional § € cc(A4)*,
is called a symmetric Frobenius algebra, if the symmetric bilinear form on
A given by (aj,as) := d(ajaz) is non-degenerate. We refer to § as a non-
degenerate trace functional. We denote by J, € A* the functional given by
dq(b) := d(ab). We also denote by (-,-) the induced non-degenerate symmetric
bilinear form on A*, i.e. (dq,d) := (a,b).
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Example 6.17. The usual trace functional tr : M, (k) — k is a non-degenerate
trace functional, so that (M, (k),tr) is a symmetric Frobenius algebra. We then
see that if A is semisimple then it admits a structure of a symmetric Frobenius
algebra, by using the decomposition in remark 6.10.

Example 6.18. Let G be a finite group, and assume that char(k) does not divide
|G|. Then the functional § := xy[g) is more concretely given by 6(3_ e ag9) =
|G| - a1, and is easily seen to be non-degenerate, so that (k[G],9) is a symmetric
Frobenius algebra. The from (-,-) on k[G]* is given concretely by

) = g 2, ot
geG
Indeed, (g,h) = |G| - 6y 4-1. Therefore 64 = |G| - 1,-1. Therefore

1 1 1
1,,15) = (— 6,1, — 61
<g7 }> <‘G| g |G| h

from which the formula follows easily by bilinearity.

1
R R AL
> - |G|2 <g ) > ‘G|6h g

Claim 6.19. Let (A,9) be a symmetric Frobenius algebra. Then there are nat-
ural isomorphisms
A

Z(A) —— cc(A

BN

C—> >

Proof. The map A — A* given by a — §, is an isomorphism because ¢ is a
non-degenerate trace functional. We check now that d, sits in cc(A)* if and
only if @ € Z(A). Indeed, d,(bc) = §,(cb) means J(abc) = d(ach) or equivalently
d(abc) = d(bac) or yet equivalently 6((ab — ba)c) = 0 and by non-degeneracy
this holds for all b, c € A if and only if a € Z(A). O

Corollary 6.20. One has dim cc(M,,(k)) = 1.

Proof. Since (M, (k),tr) is a symmetric Frobenius algebra, and is also central,
one has dim ce(M,, (k) = dim Z(M,,(k)) = dimk = 1. O

Let us now provide the two most basic numerical relations.

Claim 6.21. Suppose that A is semisimple (we do not assume that it is a
symmetric Frobenius algebra here).

1. One has
dimA = )" (dimE;)*.
1<i<n
In particular, for A = k[G], we obtain

Gl = ) (dimE;)*.

1<i<n
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2. One has
dim Z(A) = dimce(A) = n(= |Irr(A)]).

In particular, for A = k[G], we get that the number of irreducible repre-
sentations of G is equal to the number of conjugacy classes in G.

Proof.
1. Clear from remark 6.10.

2. From theorem 6.15 we have that n = dimecc(A). We also notice that
dim Z(A) = n, as is clear from the decomposition of remark 6.10.

O

Remark 6.22. Suppose that A is semisimple. Then A 2 @)<;<, ES™F as A-
modules (although not canonically so). For example, notice that in terms of the
decomposition of remark 6.10, one has Endy(E;) = Ag, (the corresponding
isotypic component), so Endy(E;) is a direct sum of copies of F;, and from
observing the dimensions it is clear how many.

Remark 6.23. For a finite group G in the semisimple setting, define the “zeta
function”
als)= Y dim(E)™"
[Elelrri(G)

Then we saw that ((0) is equal to the number of conjgacy classes in G, while
Cc(—2) is equal to the number of elements in G. There is a formula of Frobenius
generalizing this:

1 -1
Ca(=2+2n) = Gt c, (1)
for n € Z>o, where ¢, : G*" — G is given by

Cn(xl;ylw"vxnayn) = [3317?/1] Teet [-Tr“yn]

Example 6.24. Consider G = S3 and k = C. The character table is the
following:

(¢)(e)(e) ("i(°) (e0e)

1 1
1 -1 1
2 0 -1

Example 6.25. Suppose that G is abelian. Then every irreducible representa-
tion is one-dimensional (This is because the center Z(G) must act by scalars
on an irreducible representation by Schur’s lemma), and one gets Irr(G) =
Hom(G,k*). Then Xg,,---,XE, = X1,---,Xn are simply the elements of
Hom(G, k). One obtains now two natural bases of Fun(G,k) - the basis of
delta functions (14)geq and the basis X1, ..., Xn. The first basis diagnolizes the
operators My of pointwise multiplication by a function f € Fun(G, k), while the

second basis diagnolizes the operators Sy of shift by g € G.
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6.4 Character theory - 2

We continue with the notations of the previous subsection, but furthermore
assume that A is semisimple, and § € cc(A)* is a non-degenerate trace functional
(so that (A4,9) is a symmetric Frobenius algebra). Thus, when we concentrate
on the case A = k[G], we assume that char(k) does not divide |G|, and we take

0 = Xk[a]-

Recalling remark 6.10, we denote by e; € Z(A) the unique element that acts
on E; by 0; ;. Then ey,...,e, is a basis of Z(A) and we have the relations
eie;=¢€;,ee;=0wheni# jande +...+e, =1.

Claim 6.26. The following are equivalent:
1. §(e;) #0 for all1 <i<n.
2. dmFE; #0 in k, for all1 <i<mn.
3. The restriction of (-,-) to Z(A) is non-degenerate.
If these conditions are satisfied, then one has

— O(es)

Proof. Recall the isomorphism Z(A) = cc(A)*, and let us denote by z; € Z(A)
the element corresponding to xg, (in other words, §,, = xg,). Thus, we have
to bases for Z(A) , the basis ey, ..., e, and the basis z1,..., z,. Notice that we
have:

XE; 581' .

(ei5) = d(eie;) = 0(ei) - b
and
(i, 25) = XB,(€;) = dim Ej - 6 ;.
From this, the claim is clear. O
Exercise 6.27. Show that the conditions of the previous claim are also equiv-

alent to the following one: The composition Z(A) — A — cc(A) of the natural
inclusion followed by th enatural projection, is an isomorphism.

Corollary 6.28. [Orthogonality relations] Suppose that the conditions of claim
6.26 are satisfied for A. Then

<XE1 y XE; > =

Proof. We have

XEi,?XEj - (5(61) (2] 6(€J) 2/ (5(61)

i

34



Example 6.29. Suppose that char(k) =p > 0. Then (M, (k),tr) fails to satisfy
the conditions in claim 6.26.

Claim 6.30. In the case A = k[G], the conditions of claim 6.26 are satisfied.

Proof. We would like to check that the restriction of (-,-) to Z(k[G]) is non-
degenerate.

Let us consider the linear operator av : k[G] — k[G] given by av(D) :=
ﬁ dec g-D-g~'. Then it is easy to check that av is a projection operator,

with image Z(k[G]). Furthermore, it is easy to check the adjunction formula
(D1,av(D3)) = {av(D1),D3), Dy, Dy € k|G]
and therefore in particular
(D1,av(D2)y = (D1, Ds), D; € Z(k[G]), D2 € K[G].

Thus, if for Dy € Z(k[G]) one has (D, D3) = 0 for all Dy € Z(k[G]) then one
also has (Dy, Dy) = 0 for all Dy € k[G] so that D; = 0. O

Remark 6.31. Thus, our non-degenerate symmetric bilinear form (-,-) on
Fun(G, k) restricts to a non-degenerate form on Fun® (G, k).

Claim 6.32. In the case A = k[G], one has §(e;) = (dim E;)?.
Proof. Let us notice that
§(ei) = xale:) = Y dimE; - xp,(e;) = (dim E;)*.
1<j<n
O

Corollary 6.33. [Orthogonality relations for groups] In the case A = k|G|, one
has:

<XE'm XE]> = 5i7j'
More concretely:

1 _
€ > xm(9)xs,(g7") = 60

geG

Proof. We just plug the result of claim 6.32 in the relation of 6.28. O

Corollary 6.34. In the case A = k[G], one has:

lelEz _

geG
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Proof. First, let D € k[G]. Write D=3 5 cy-g. Then

1 1

@<D7971> = @%(971)

cg =
In other words, we have

1 _
D:@ZCSD(Q 1)'9~

geG

We saw that

Therefore

dlmEl _

geG
U

Remark 6.35. Let us describe a second approach to orthogonality relations in
the case of a group.

For a f.d. representaiton M € Repp(G), we can construct the contragradi-
ent, or dual, representation M*, which is the dual vector space, with G-action
(ga)(m) = a(g~'m). For two f.d. representations M, N € Repy(G), we can
construct the tensor product representation M ®j; N, which is the tensor prod-
uct of vector spaces, with G-action g(m ® n) = gm ® gn. Given a f.d. rep-
resentaiton M € Repp(G), we can construct a vector space MY, given by:

M%={meM : gm=mVgeG}.

Alongside, for a function f € Fun(G, k) let us define f*(g) := f(g~'). For
functions f1, fo € Fun(G, k), let us define (fi - f2)(g) := f1(g)f2(g). Let us also
define a linear functional [ : Fun(G,k) = kby [ f:= ﬁ > gec f(9)-

One can check now that xa+« = X3/, XMeN = xm - xn and dim MY =
f xn- Finally, one can check that one has a natural isomorphism of vector space
(M* @ N)¢ = Homg(M, M) and also that one has an equality [(f - f2) =
(f1, f2). Aggregating all this, one obtains:

dim Homg(M,N) = (xum, XN)-

Now, if M and N are irreducible, by Schur’s lemma the number dim Homg (M, N)
is equal to 0 if M and N are non-isomorphic, and to 1 otherwise. Hence we
obtain the orthogonality relations.

The next claim describes how the symmetric bilinear form (-, -) on Fun® (G, k)
is a ”decategorification” of the Hom-spaces in Repi'd'(G).

Claim 6.36. Let My, My € Repi(G) be f.d. representations. Then

dimHomG(M1, MQ) = <XM1aXM2>'
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Proof.

Option 1: Both sides are biadditive in short exact sequences, and hence we
reduce to the case when My, My are irreducible. Then the left-hand side is 0
if My, Ms are not isomorphic and 1 otherwise, by Schur’s lemma. The right-
hand side is 0 if M7, Ms are not isomorphic and 1 otherwise, by orthogonality
relations. Hence, both sides are equal.

Option 2: As in remark 6.35 above. O

Example 6.37. Consider G = S3 and k = C. The inner product is:

(X1, x2) = é (xa((e)(e)(®))x2((®)(®)(2)) + 3 - x1((e0)(e))x2((e0)(e)) +2- x1((0 @ ®))x2((e 0 0))).

One can check the orthogonality relations in the the table in example 6.2/.

Remark 6.38. Let E be a f.d. representation of G. Then one has a non-
canonical isomorphism F =2 @195”E§B"“ for some uniquely defined vector

(ma,...,my) € Z%. Then, using the orthogonality relations, one calculates:
(XE,XE) = Z m;.
1<i<n

In particular, we see that F is irreducible if and only if the ”length squared” of
its character, (xg, Xg), is equal to 1.

Remark 6.39. Let us sum up. Let k& be an algebraically closed field, and
G a finite group. Assume that the characteristic of & does not divide the
order of G. Then the category Repid(G) of representations of G on finite-
dimensional vector spaces over k is a semisimple abelian category, with finitely
many irreducible objects up to isomorphism, which for convenience of nota-
tion we list Fy,...,E,. In the space of functions Fun(G,k) one has a sub-
space Fun (G, k) of class functions, which are those functions f which sat-
isfy f(ghg™') = f(h) for all g,h € G. One has a symmetric bilinear form
(-,+) on Fun(G,k), given by (f1, fo) = ﬁzgec f1(9)f2(g~1). This form is
non-degenerate, and moreover its restriction to the subspace of class functions
Fun®(G, k) is again non-degenerate. To each E € Repid(G) one assigns a
class function ygp € Fun (G, k) (its character). For a short exact sequence
0—>E —E— E"” —0one has xg = xXg + Xg~. One has that xg,,...,xE,
are a basis of the space of class functions Fun® (G, k), which moreover satisfy
the orthogonality relations (xg,, Xr,) = d;;. The number of irreducible repre-
sentation, n = |Irrg(G)], is equal to the number of conjugacy classes in G. The
sum Y, .., dim E? is equal to |G/.

7 Induction
In this section, we fix a field k, and all vector spaces, algebras etc. are over k.

By G we denote a finite group. We assume that k is algebraically closed, and
that char(k) does not divide |G| (i.e. k[G] is semisimple).
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7.1 Restriction and induction

Let ¢ : B — A be a morphism of algebras. We have a functor resq : Mod(A) —
Mod(B) simply given by restriction of the action along ¢. It has a left adjoint
indf : Mod(B) — Mod(A) and a right adjoint Ind% : Mod(B) — Mod(A).
They are described as follows:

ind3 (M) := A®p M,

Ind5 (M) := Homp(A, M)

(in the last expression, the space Homp(A, M) is a left A-module via (a¢)(a’) =
¢(aa’)).

Exercise 7.1. Recall what are adjoint functors, write explicitly what the ad-
junction means in the above two cases, and verify the above adjunctions.

7.2 0-th Hochchild homology and cohomology

Definition 7.2. Let A be a k-algebra and M an A-bimodule. We define the
vector spaces:

HH°(A; M) :={m & M | am = ma Va € A}

and
HHO(A; M) = M/Span{am - ma}aEA,meM-

Example 7.3. Let M be A itself as an A-bimodule in the standard way. Then
HHY(A; A) = Z(A) and HHy(A; A) = cc(A).

Notice that we have an obvious linear map
HH°(A; M) — HHo(A; M)
(by the inclusion into M followed by the projection).

Claim 7.4. Let A = k[G], where G is a finite group and char(k) f|G|. Then
HHY(A; M) — HHo(A; M) is an isomorphism for any A-bimodule M.

Proof. We define av : M toM by

1
m ITell ngg_l.
Gl =2

On element of the form gm — mg this map vanishes, and so it induces a map
HHo(A; M) — HH°(A; M). One now easily checks that it is inverse to our
map HHY(A; M) — HHy(A; M). O

Remark 7.5. I could not figure out whether the last Claim still holds when
A is a symmetric Frobenius algebra with the extra condition we had above
(equivalent to Z(A) — cc(A) being an isomorphism).
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7.3 The coincidence of the left and right adjoints
Let A, B be finite-dimensional algebras, and let ¢ : B — A.

We have
indg(M)=A®p M= HHy(B; A®, M).
Here B acts on A ®, M on the left by b(a ® m) = a ® bm and on the right by
(a ® m)b = a¢p(b) ® m. These actions commute with the left action of A (by

a'(a ® m) = a’'a ® m) and therefore HHy(B; A ®; M) is a quotient A-module
of A®y, M, and the above stated isomorphism is an isomorphism of A-modules.

We have
IndA(M) = Homp(A, M) = HH(B; Homy (A, M)) =~ HH(B; A* @), M).

Here B acts on Homy(A, M) on the left by (b0)(a) = bf(a) and on the right
by (0b)(a) = 6(¢(b)a). These actions commute with the left action of A (by
(a'6)(a) = (aa’)) and therefore HH®(B; Homy(A, M)) is a sub A-module of
Homy (A, M), and the first above stated isomorphism is an isomorphism of A-
modules. The second stated isomorphism is given by the standard isomorphism
Homy (A, M) = A* @ M. In the second description, the left action of B is by
b({ @ m) = ¢ ® bm, the rigt action of B is by (¢ @ m)b = ¢b ® m and the left
action of A is by a(¢ ® m) = al @ m.

Remark 7.6. Let A be a finite-dimensional algebra. Then A is an A-bimodule
naturally. Also, A* is an A-bimodule naturally. Suppose that § is a non-
degenerate trace functional on A. It induces an isomorphism of vector spaces
A =2 A*. We then easily check that this is in fact an isomorphism of A-
bimodules.

If A is a symmetric Frobenius algebra, then by the Remark, we can identify
A* ®r M with A ®;, M, and this identification preserves the left A-module
structure and the left and right B-module structures. We thus identify

Indy(M) = HH(B; A* @, M) = HH°(B; A @, M).
Therefore, we obtain a morphism
indg(M) = HHy(B; A®, M) — HH°(B; A®), M) = Inda(M).

If B = k[H] (when char(k) f|H|), by the above we obtain that this morphism
is an isomorphism.

Therefore, we have obtained:

Corollary 7.7. Let H — G be a morphism of finite groups. Assume that
char(k) }|G|. Then one has a canonical isomorphism

ind§; — Ind$.
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7.4 Concrete descriptions in the case of group algebras

Let us describe IndZ more concretely. One has:
Indg; (M) = Homy ) (K[G], M) 2 {f : G — M | f(hg) = hf(g) Vh € H,g € G}

with G-action

(9'f)(9) = flgg")

Let us also describe indZ (M) more concretely. Choosing representatives
Gis---,9r € G for the cosets G/H, One can describe IndZ (M) as "g1"M &
... ®7g." M (where ”g;” are formal placeholders, so that we are dealing with a
direct sum of several copies of M), and the G-action is g - 7¢;"m = "g¢,” (hm)
where we should write gg; = gjh for some (uniquely defined) 1 < j < r and
heH.

7.5 Characters and induction

Let again H C G be a subgroup. Let M € Repy(G) be a f.d. representation. We
would like to calculate Xz 0 € Fun®(G, k) in terms of xas € Fun(H, k).

Claim 7.8. One has

Xinat (1) (9) = Z xum(z” gz
2€G/H s.t. x—lgzeH

(here the meaning of the expression x~‘gx is that we first should replace x
with an actual representative of it in G, and the answer doesn’t depend on this
choice).

Proof. We will use the last description of induction above. We fix g € G, and
count what contributes to the trace of g acting on 7g1"M &...®”g,” M. First,
only 1 < i < r for which gg; € ¢;H, i.e. g;lggi € H, contribute. For such i,
writing gg; = g;h with h € H, one has a commutative diagram

g
ngin ”gi”M

[ ]

M—" M

where the vertical arrows are simply the isomorphisms of appending the place-
holder. Hence, the trace of g on ”¢g;” M is equal to the trace of h on M, i.e. to

xar () = xa(9; ' 990)- O

Next, let us see how the adjunction between induction and restriction reflects
in terms of characters.
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Claim 7.9 (Frobenius reciprocity). Let M € Repp(H) and N € Repi(G) be
f-d. representations. Then one has

<Xindng XN> = <XM5 X7’esgN>

(here the first inner product is of functions on G, and the second one of functions
on H).

Proof. One has:
(Xinast s Xov) = dim Home (indf M, N) = dim Homg (M, resGN) = (xat, Xresgiv)-
O

Remark 7.10. We can define indZ : Fun®(H,k) — Fun® (G, k) by the same
formula as above:

indg (f)(g) = > fla ™ ga).

z€G/H s.t. z—lgz€eH

Of course, we also have a natural operation resf : Fun (G, k) — Fun(H, k)
given by simply restricting the function. Then one has:

(f1,indg fo) = (res$i f1, f2)

for all f; € Fun(G, k), fo € Fun®(H, k). Either one checks that independently
(which is more natural, since we don’t want to know representation theory to
check such a simple claim), or one reduces to Frobenius reciprocity above thanks
to characters spanning the space of class functions.

As a simple application, let us show:

Theorem 7.11 (Artin). Let M € Repc(G) be a f.d. representation. xnr can
be written as a linear combination with rational coefficients of characters of the
form XindHCy where H C G is a cyclic subgroup, 0 € H — C* a homomorphism,
and Cy the corresponding one-dimensional representation of H.

Proof. Let us first notice that it is enough to show that the characters of the
peculiar form span the space of class functions on G. Indeed, this would mean
that xas can be written as a linear combination with complex coefficients of
such characters, and since all characters reside in the Z-lattice spanned by the
basis xg,,-- ., XE,, the claim then follows from linear algebra.

Next, in order to show that the characters of the peculiar form span the
space of class functions on G, it is enough to show that if a class function
f € Fun(G, k) is orthogonal to all such characters, then it is 0. But

<f7 Xindg([:9> = <7’€ng, XC9>7

so we obtain that res% f is orthogonal to all x¢,’s. Since the Cy’s are all the
irreducible representations, their characters span Fun® (H, k), and hence we get
res% f = 0. In other words, f is zero on every cyclic subgroup, and hence clearly
f is zero. U
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Remark 7.12. Artin used the above theorem to deduce some information about
Artin L-functions. Better information would be granted if one knows Brauer’s
theorem, which replaces the rational coefficients in Artin’s theorem with integer
coefficients.

7.6 A geometric interpretation of induction of class func-
tions
By a finite groupoid we mean a category G all the arrow in which are isomor-

phism, for which the set my(G) of isomorphism classes of objects is finite, and
for which every Isomg(x1,x2) is finite for all objects z1, 29 € G.

Every finite set we consider a finite groupoid with only identity isomor-
phisms.

The basic example of finite groupoids: Let G be a finite group acting on a
finite set X. Then we define a finite groupoid G\ X, whose objects are elements
of X, and

Isomen x (21, 22) == {g € G | g1 = x2}.
It is straight-forward to define composition.

Given functors between finite groupoids F; : H1 — G and F; : Ho — G,
the fiber product Hy x Hs is defined by the relevant universal property in the 2-
g

category of finite groupoids. Let us describe it concretely. An object of Hi x Ha
g

is a triple (z1, z2, ) consisting of an object x1 of H;, an object x2 of Ha, and an
isomorphism « : Fy (1) 2 F3(z3) in G. One defines isomorphisms in an evident
way (we skip the explication for now).

For a finite groupoid G, we denote
Fun(G, k) := Fun(mo(G), k).
We define an inner product on Fun(G, k) by

fi(@) - fa(x)
(fr.f2)g = > |Autg Autg ()]

[z]emo(9)

For example, allowing ourself the frivolity of an infinite finite groupoid, we will
find that (1, 1)y = e where N denotes the groupoid of finite sets and e is Euler’s
constant (base of natural logarithm).

Let F : H — G be a functor between finite groupoids. We want to define
linear maps
F*: Fun(G,k) & Fun(H,k) : F,
We define F* simply by F*(f)(z) := f(F(x)). We then define F, as adjoint to
F* (with respect to the inner products defined above). Concretely,

J(praly
(F. Z TAut(y)|

yce ><7-L
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where the map e — G is by .

Notice that for a finite group G we have mo(G\G) = Conj(G) where here
the action of G on G is by conjugation. Correspondingly, we have

Fun(G\G, k) = Fun® (G, k).

Now, consider an injective morphism of finite groups ¢ : H — G. It induces
a functor between finite groupoids Fy, : H\H — G\G. We then claim that

(Fg)s : Fun(H\H, k) = Fun(G\G, k)

is precisely
indZ : Fun®(H,k) — Fun®(G,k)

(under our identification of the space of class functions with the space of func-
tions on the corresponding finite groupoid). Indeed, first denote

Fiz(G,G/H) :={(9,gH) e GxG/H | g¢H =g H}
and define an action of G on Fiz(G,G/H) by
9(9,9'H) := (995", 99'H).
Then it is easy to construct an equivalence of finite groupoids
H\H ~ G\Fiz(G,G/H).
From this we obtain a fiber product diagram

{¢He€G/H|g¢H=9gH} — Fiz(G,G/H) —— H\H .

J | |

{9} G G\G

Therefore,

(F5)-(f)(9) = > F((g) " 99)-

g'HeEG/H s.t. g’ H=g'H
(requires a bit of work to explain things in a clearer way)

7.7 Mackey stuff

Let H, K C G be two subgroups. For g € G and (M, p) € Repy(H), let us denote
by (TyM,T,p) € Repy(g~*Hg) the representation which is M as a vector space,
and the action given by (T,p)(z)(m) = p(gzg~")(m).
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Claim 7.13. Letgy,...,g- € G be representatives for the double cosets H\G /K.
Then one has an isomorphism of functors Repy(H) — Repy(K):

—1 —1
G ~ Kng, "Hg; 9; Hgi
resy o Indd = @ Ind;; oresy i 1rg © Lo
1<i<r ‘

Proof. We can obviously decompose res$ (Ind4 (M)) into the direct sum of sub-
space V; (M), where V;(M) consists of functions f : G — M which are zero out-
side of Hg; K. Notice that each V;(M) us a subrepresentation of res$ (Ind2 (M)).
Let us write concretely:

ViiM)={f:Hg;K - M | f(hz) = hf(x) Vh € H,x € Hg; K.},

and the action of K on V;(M) is by (kf)(z) = f(zk).

Now, it is easy to see that there is an isomorphism of vector spaces between
the above

{f:H$;K - M | f(hx) =hf(z) YVh € H,x € Hg; K.}
and

{f: K — M| f(rx) = (girgi_l)f(x) Vre KNg 'Hg,x € K}
given by sending f in the former to f(x) := f(giz) in the latter. This isomor-
phism respects the action of K on both vector spaces by appending on the right.
For the former, this results in the K-representation res%(IndZ(M)). For the

latter, this results in the K-representation

Kng; 'Hg; g; 'Hg;
Indy; (resngingi (T, (M)))
O

Corollary 7.14 (Irreducibility criterion). Suppose that H is normal in G. Let
g1 =1,..., g, be representatives for the cosets G/H. Let E,F € Repy(H) be two
irreducible representations. Then dimg Homg(lndgE,IndgF) is equal to the
number of 1 <4 <7 for which Ty, I is isomorphic to F. In particular, IndgE
is irreducible if and only if Ty, E is not isomorphic to E for all 2 <14 <.

Proof. One has

Home(Ind2E, Ind2F) = Homy (res$Ind2 E, F) =

Hng 'Hg; g7 "Hg;
= @ Hompy (Indy resngv,ng_TgiE,F)%
;' Hgi

1<ilr
=~ P Homu(T,E,F)
1<i<r
and from this the claim is clear. O

44



Remark 7.15. Let H C G be a subgroup. Notice that every irreducible rep-
resentation of G is isomorphic to a subrepresentation of the induction from H
to G of an irreducible representation. Indeed, for irreducible E € Repi(G),
one has res%E # 0, and hence one can find an irreducible quotient represen-
tation reng — L. But then by adjunction one obtains a non-zero morphism
E -1 ndg L, which is therefore an injection since FE is irreducible. Hence, by
decomposing into irreducibles the inductions to G of irreducible representations
of H, we will find all irreducible representations of G, up to isomorphism.

8 Example: The dihedral group

Let
G =Dy =(r,s: 1" = 1,52 = 1,57'571 = r71>

be the dihedral group. We would like to compute the character table of G.

G has a normal subgroup of index 2, namely H = (r). We will follow the
strategy of Remark 7.15.

Denote by p, C k™ the group of n-th roots of unity (it is a cyclic group with
n elements, since char(k) f|G| = 2n). Then we have an isomorphism of groups
pn = Hom(H,k*), given by sending ¢ to the homomorphism y¢ : r* — (%
Thus, the irreducible representations of H are given, up to isomorphism, by
kx., for ¢ € pn.

Notice that the non-trivial element in G/H, represented by s, sends (by
the action Ty as above) k, to k,-1. Therefore, by the criterion above, the
dimension of Homa(Ind& ky,, IndZ ky, ) is equal to the number of elements in
{¢, ¢} which are equal to 1. Thus, fixing for simplicity of notation a primitive
root of unity (; € u, and writing x; := X(i, we see that an exhaustive and
non-repetitive list of irreducible representations of G is given by:

o E;:=Indlk,, for 0 <i<n/2.

e Two irreducible constituents of Ind4k,, .

e If n is even, two irreducible constituents of IndZk, /2*

Notice that IndZk,, is two-dimensional, and hence when it is reducible, its
irreducible constituents are simply one-dimensional representations of G whose
restriction to H maps non-trivially into k,, (again by adjunction), so they simply
correspond to 8 € Hom(G, k*) such that 8|y = x;. It is simple to observe that
such exist exactly whenever x;(r) = %1, and then there are exactly two such
(differentiated by 6(s) = 1 and 6(s) = —1). This, incidentally, recovers the
above without need for the irreducibility criterion.

Using the formula for the character of induction, one easily now writes the
character table of G (the first row is a general expression for the character of
IndZy;, but we consider it for 0 < i < n/2; The second and third rows are the
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two irreducible constituents of IndZ k,,, and the fourth and fifth rows are the
two irreducible constituents of Ind4 k (exist only if n is even):

Xn/2
7”j S?”j
indfiky, ((=C0<i<n/2) [FT+C7] 0
Ef 1 1
Ef 1 —1
B (=17 | (=1
B,y Y [~

9 Example: SLy(F,)

Let is consider the group G = SLy(F,), where Fy is a finite field with ¢ el-
ements. Let us consider the Borel subgroup B C G, which consists of the
upper-triangular matrices. It is convenient also to denote by U the subgroup
of unipotent upper-triangular matrices, by B~ the subgroup of lower-triangular
matrices, and by 7" the subgroup of diagonal matrices.

For x € Hom(T,C*), let us denote by X € Hom(B,C*) the composition
B — T — C* where B — T sends a matrix to its diagonal part. The principal
series of representations of G are given by

P, := IndgCx.

To analyze the reducibility of the principal series, we first notice G = B][ BwB

where w = < 0 -1

1 0 > We now have as in the irreducibility criterion:

Homg(Py, Py) = HomB(resgIndg(C;,(C;,) &

= Homp(Cg,Cy) & HomB(Indgresngw(C%(Cg) =
= Homp(Cg,Cy) @ Homp(Ind5Cu,y, Co)=
= Homp(Cs,Cy) ® Homp(Cuy, Cy) =
= Homyp(Cy,Cyv) @ Homp(Cu,y, Cy).
Here wx(( é t91 )) = X(( t; (t) )) Let us say that x is regular, if y #
Y, and singular otherwise. Then we see that P, is irreducible if and only if

X is regular, and has length two (with two different irreducible constituents)
otherwise.

0 1 )) = a(t) where a € Hom(F,;,C*). We

notice that there are exactly two singular x’s - the trivial xy and that lgndr
corresponding to a being the Legendre symbol. The representation P; consists

Let us parametrize X(( £ 0
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of functions on G/B, has the trivial representation as a subrepresentation, and
the complementary representation is an irreducible representation called the
Steinberg representation - denote it by St.

Let us calculate characters of the irreducible representations entering the
principal series. First, we will simply calculate the characters of the principal
series themselves. We have:

xp, (9) = > x(z ™ ga).

z€G/B s.t. gzB=xB

But what is x(z~'gx)? First, let us interpret G/B as the set P(F2) of one-
dimensional subspaces of F2, by sending gB to gL where Lo := Span{(1,0)"}.
For g fixing Lo, i.e. sitting in B, we notice that x(g) is equal to a(g|r,) where
we abuse notation and denote by g|r, the scalar in F7 by which g acts on Lo.
Then, for g which fixes 2 Lo, we see that x(z~1gz) = a((x71g2)|r,) = a(glsr,)-

Therefore, we can rewrite

xp,(9) = > a(glL)-

LeP(F2) s.t. gL=L

In other words, to compute the character of P, on an element g, we need to sum
the eigenvalues of g, running over all possible eigen-lines. We therefore calculate
(the last column is for matrices which have no eigenvalues over Fy):

(é g)(te{il}) <8 t91>(t¢{i1}) (é j)(te{ﬂ},aemj)

(5 9 )0z0
0
1

P, (g+1)-at) at) +a(t™) a(t)
C 1 1 1
St q 1 -1

It is left to calcaulte the characters of the two irreducible representations
appearing in Pygnqr. For this, we consider G C G’ C G” where G” = GL2(F,)
and G’ is the subgroup of matrices with the determinant being a square in .
We define principal series representations for G” and G’ exactly in the same
way as for G (and all the T, B, etc.). We see easily (using Mackey theory or
directly) that, since G'B” = G”, one has

resg:/(P;C’,,) = resgl(P)’(,) = Py

/
”lT”

Let us now set a : F* — C* to be the Legendre character, and let us

8 2 ) ) = «(t). Then using Mackey theory as above, we see that

P;C/// is irreducible, but P>l<’ is reducible, decomposing into two non-isomorphic
irreducible representations

consider x”'( (

P, =E@F.

47



Denoting by h € G” some element with non-square determinant, we notice that
hE is a subrepresentation of P, which is not £ (since P, is irreducible), so
has no intersection with F, and therefore we must in fact have hE = F'. Thus,
the characters of E and F simply differ by conjugation by h. We can now try
to complete our table (where we now restrict £ and F further to G):

(é ?)(te{il}) <é .

)(tgé{ﬂ}) (8 ?)(te{il},aelﬁ‘;)

o Q

o
S

S|

(b #

1)-alt) at) +a(t™1) a(t)
?

})lgndr (q +
E q;r—l ~alt) a(t)
F q;r—l ~alt) a(t)

olo|oh

Here, the problem is that for ¢ € {£1} the matrices conjugate to those of

the form
t a
0 t

fall into two conjugacy classes in SLs(F,) - depending on whether a is a square
or a non-square, and conjugation by h swaps them - let g; , denote an element in
one of those four conjugacy classes. We want to compute X (gt,qo) and x7(9t.q)-
We know that

XE(91,0) + XF(91,0) = 1.
Also, we know that
XE(9-1,0) = XE(~1-91,—a) = a(~=1) - XE(91,~a)

and similarly for F. Then we use the relation (xg, xg) = 1 to compute (com-
plete this sometime - can copy from my finite group representation notes).

10 Groups and group actions

10.1 G-sets
We fix a group G.

Definition 10.1. A (left) G-set is a pair (X, a) consisting of a set X and a
map a: G X X — X such that a(g1,a(g2,x)) = a(g1g2, x) for all ¢1,92 € G and
z € X, and such that a(1,z) = z for all z € X. A morphism between two G-sets
(X,a) and (Y,b) is a map f: X — Y which satisfies f(a(g,z)) = b(g, f(z)) for
all g € G and x € X. We denote by Set(G) the category of G-sets.

Remark 10.2. We usually omit a from the notation, and write gz, or g * z,
for a(g, ).

Example 10.3. Let H C G be a subgroup. Then we can consider the G-set
G/H, where the G-action is g+ (¢'H) := gg'H. The resulting G-set when H =1
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we can call the reqular G-set - let us denote it by G (meaning that if not said
otherwise, this is the G-set structure on G that we consider).

Notice that one has a unique G-set morphism G — G/H which sends 1 to
1H.

Example 10.4. The set G has also two other G-set structures, except the one

from the previous example. One is gxg' := ¢'g~ ' and another is gxg' := gg’g™'.

Definition 10.5. Let X be a G-set.

1. We define an equivalence relation on X, by declaring x1,z2 € X to be
equivalent if there exists g € G such that gr; = x5. We call the equivalence
classes G-orbits. We denote the equivalence class passing x by Og(x).

2. X is called transitive (one also says that the G-action on X is transitive)
if the number of G-orbits on X is 1.

3. Given ¢z € X, we define the stabilizer of z in G to be the subgroup
Sta(z) C G given by {g € G | gz = z}.

Lemma 10.6. Let X be a G-set, and let x € X. Then there exists a unique
isomorphism of G-sets G/Stg(x) — O(x) mapping 1 - Stg(x) to .

10.2 p-stuff
Fix a prime number p.
Definition 10.7. A p-group is a finite group whose order is a power of p.

Lemma 10.8. Let P be a p-group and let X be a P-set. Denote by Fixp(X) C
X the subset {x € X | px =z | Vp € P}. Then |Fizxp(X)| is congruent to | X|
modulo p. In particular, if |X| is prime to p, then |Fixp(X)| # 0 (i.e. there
exists a fized point).

Proof. Notice that | X]| is equal to |Fizp(X)| plus a sum of sizes of G-orbits in
X which are not singletons. Each such G-orbit is isomorphic to G/H for some
subgroup H # G. Thus the size of each such G-orbit is a positive power of p.
From this the claim is clear. O

Claim 10.9. Let P be a p-group. If P # 1, then Z(P) # 1.

Proof. Consider the action of P on itself by conjugation. Then the set of fixed
points is equal to Z(P). By lemma 10.8, we get that |Z(P)| is congruent to |P|
modulo p, so p divides |Z(P)|. Since |Z(P)| > 1 (since 1 € Z(P)), we obtain
|Z(P)| > p, and so Z(P) # 1. O

Another claim, which we will use to show that Sylow subgroups exist, is as
follows:

Claim 10.10. Let G be a finite group, and P C G a p-subgroup. Suppose that
[G : P] is divisible by p. Then Ng(P) # P.
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Proof. Consider the P-action on G/P. The set of fixed points is Ng(P)/P.
By lemma 10.8, we see that [Ng(P) : P] is congruent to [G : P] modulo p, so
[Ng(P) : P] is divisible by p, so [Ng(P) : P] # 1 and thus Ng(P) # P. O

Claim 10.11 (Cauchy’s theorem). Let G be a finite group, whose order |G| is
divisible by p. Then there exists g € G of orderp (i.e. g#1 and g =1).

Proof. Consider the subset X C Fun(Z/pZ,G) consisting of functions f for
which [];c7/,7 f(i) = 1. The subset X is stable under the Z/pZ-action on
Fun(Z/pZ,G) given by (i* f)(j) = f(i — j). The fixed points of this action on
X are in correspondence with element g € G for which g = 1. The number of
fixed points, by lemma 10.8, is congruent to |G|P~! modulo p, i.e. is divisible
by p. Hence, since it is > 1, it is > p. O

10.3 Sylow subgroups

In this subsection, G denotes a finite group.

Definition 10.12. Let p be a prime number. Denote by k£ € Z>( the largest
integer for which p* | |G|. A p-Sylow subgroup of G is a subgroup of order p*.

Theorem 10.13 (Sylow). Let p be a prime number.
1. There exists a p-Sylow subgroup in of G.

2. Let P C G be a p-Sylow subgroup and @Q C G a p-subgroup. Then there
erists g € G such that gQg~' C P.

3. Let P C G be a a p-subgroup. Then P is contained in some p-Sylow
subgroup of G.

4. Let P,QQ C G be two p-Sylow subgroups. Then P,Q are conjugate, i.e.
there exists g € G such that gPg~! = Q.

5. Denote by n,(G) The number of p-Sylow subgroups of G. Then n,(G) is
congruent to 1 modulo p, and n,(G) divides |G|/p*, where k € Z>q is the
largest integer for which p* | |G|.

Proof.

1. Let us denote by k € Z>; the largest integer for which p* | |G|. Tt is
enough to show that if G contains a subgroup H of order p?, for some
0 < i < k, then G contains a subgroup of order p**!. Indeed, by claim
10.10, Ng(H) # H, and by Cauchy’s theorem we can find an element
xH € Ng(H)/H of order p. Then (H,x) is a subgroup of G of order pi*1.

2. Let P C G be a p-Sylow subgroup and Q C G a p-subgroup. Consider
the action of @ on G/P. From lemma 10.8 we deduce that this action
admits a fixed point zP. We then have qrP = zP for all ¢ € @, which
gives z7'Qx C P.
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3. Clear from item (2).
4. Clear from item (2).

5. Denote by Syl,(G) the set of p-Sylow subgroups of G. We have a natural

action of G on Syl,(G), by conjugation. By the above, this action is
transitive and hence, fixing some P € Syl,(G), we have |G|/|Sta(P)| =
|Syl,(G)|. Notice that P C Stg(P), and hence |G|/|Sta(P)| | |G|/p",
showing that |Syl,(G)| divides |G|/p*.
Also, consider the restriction of this action of G on Syl,(G) to P. We
have then that |Sylp(G)| is congruent to |Fixp(Syl,(G))| modulo p, so
it is enough to show that P is the only fixed point of the P-action on
Syl,(G). In other words, we want to show that if for a p-Sylow subgroup
Q C G one has pQp~! = Q for all p € P, then Q = P. Let us consider
Ne(Q) ={9 € G| gQg ! = Q}. We see that P,Q C Ng(Q). Since P
and @ are clearly p-Sylow subgroups of Ng(Q), we obtain that P and @
are conjugate in Ng(Q). But @ is normal in Ng(Q), so that only it is
conjugate to itself. We obtain Q = P.

O

11 Integrality and Burnside’s theorem

We assume that k is algebraically closed of characteristic 0 throughout.

11.1 Integral elements
Let A be a k-algebra.

Definition 11.1. An element a € A is called integral, if there exists a monic
polynomial p € Z[X] such that p(a) = 0.

Lemma 11.2. An element of Q is integral if and only if it is an integer.
Proof. An exercise. O

Claim 11.3. Let a € A. Then a is integral if and only if Z[a] is finitely
generated as a Z-module.

n—

Proof. Suppose that a is integral. Then clearly powers 1,a,...,a" ! span Z[a],
so it is finitely generated as a Z-module.

Conversely, suppose that Z[a] is finitely generated as a Z-module. Then
considering the sub Z-module P, spanned by 1,a,...,a" !, by Noetherity one
has P, = P41 for some n. Then clearly a satisfies a monic polynomial of degree

n. O

Corollary 11.4. Suppose that A is finitely generated as a Z-module. Then all
elements of A are integral.
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Claim 11.5. Suppose that A is commutative. Then the subset of integral ele-
ments in A is a subring.

Proof. Clearly 1,0 are integral. For two integral elements a,b, clearly Z[a,b]
generated by finitely many elements of the form a™b™ (here we use the com-
mutativity of A), and hence is finitely generated as a Z-module. Hence, by the
above, all its elements, and in particular a + b, ab, are integral. O

11.2 Integrality in the group algebra
Claim 11.6. Let G be a finite group and consider the group algebra k[G].

1. The elements 1, € k[G] are integral.

2. For a conjugacy class C C G, the elements 1c := Y -1, € k[G] are
integral.

3. If for an element D =
18 integral.

gec dg - 1g € Z(K[G]) all dg are integral, then D

4. Let'V € Repﬁd(G). Then xv has integral values.
Proof.

1. This is clear since IL_‘qG‘ =1.

2. The Z-span of the elements 1 is a commutative subalgebra , and it is
finitely generated as a Z-module. Hence all its elements are integral.

3. This is clear, because we can write D = ZCGCOM(G) dg. - 1c where go €
C, and thus D is the sum of products of integral elements in a commutative
algebra, hence integral.

4. Since each g acts on V by a transformation whose some integer power is
1, and so which is integral, this follows from Lemma 11.7 that follows.

O

Lemma 11.7. Let V' be a finite-dimensional vector space over k, and let T :
Endy (V) be integral. Then tr(T;V) € k is integral.

Proof. We can base change to an algebraic closure, in which case the trace is a
sum of eigenvalues. Since the transformation is integral, it is clear that all its
eigenvalues are integral as well, and thus also their sum. O

Claim 11.8. Let V € Repl*(G) and D € k[G].
1. If D is integral then xv (D) is integral.

2. If D is integral and central, and V is irreducible, then )fi‘l/n(ll‘)/) is integral.

Proof. Denote by 7 : k[G] — Endy, (V') the action.
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1. Since D is integral, so is (D). Hence tr(m(D);V) = xv (D) is integral,
by Lemma 11.7.

2. Since V is irreducible, (D) is a scalar multiple (D) = ¢ - Idy. Thus,

since ¢ is integral since it is the eigenvalue of the integral 7(D). Finally,

xv (D)

notice that ¢ = Tl

O
Claim 11.9. Let E € Repid(G) be irreducible. Then dim E divides |G]|.

Proof. Consider e € k[G] - the central idempotent corresponding to E (i.e. act-
ing as identity on E and as zero on all irreducible representations not isomorphic
to E). By Corollary 6.34, we have

dim F _
=S )

geG

Notice therefore that di|ri‘E - e is integral element of Z(k[G]), by parts 3 and 4

of Claim 11.6. Therefore, by the previous Claim, we have that

xe(goze) |G dimE |G
dmE ~ dimE dimE dimE

is integral. Therefore, dim E divides |G]|. O
In fact a more refined statement is true:

Claim 11.10. Let E € Repﬁd(G) be irreducible, and Z C G the center. Then
dim(E) divides [G : Z].

Proof (Attributed by Serre to Tate). Let m > 1 and consider the representation
E®m of G™. It is irreducible. Let Z,, C Z™ be the subgroup consisting
of vectors (z1,...,2m) satisfying z1--- 2, = 1. Since Z acts on E via some
character, Z,, acts trivially on Z®™. Hence E®™ descends to an irreducible
representation of G™/Z,,, and thus by the previous claim we get that dim(E®™)
divides |G™/Z,,|. In other words, dim(E)™ divides |G|™/|Z|™~1. Thus, we get
for each prime p that m - vy(dim(E)) < m - v,(|G]) — (m — 1) - v,(|Z]), or
vp(dim(E)) < v,(|G|) — ™Lv,(]Z]). Taking the limit as m — oo we obtain
vp(dim(E)) < v, (|G]) —vp(|Z]) = vp([G : Z]). Thus dim(FE) divides [G : Z]. O

An even more refined statement is true, for which we will have a Lemma
first.

Lemma 11.11. Let H C G be a normal subgroup, and E € Repp(G) an
wrreducible representation. Then either resg(E) is isotypical, or there exists

H C K C G and irreducible F € Repy,(K) such that K # G and IndE(F) = E.
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Proof. Since H is normal in G, the group G permutes the H-isotypical com-
ponents in F, and since E is irreducible it does so transitively. Let Ey C E
be one such isotypical component. Set K = {g € G | gEy = Ep}. Clearly
H C K and Ej is a representation of K. It is easy to see that the natural map
ind%(EO) — F is an isomorphism. The case K = G corresponds to Fy = E,
meaning res$ (E) is isotypical. O
Proposition 11.12. Let F € Repid(G) be irreducible, and A C G be a normal
abelian subgroup. Then dim(E) divides [G : A].

Proof. We proceed by induction on |G/|. If res§ (E) is isotypical, then A acts on
E via a character; Denoting by p : G — GLi(E) the relevant morphism, we see
that p(A) sits in the center of p(G) (consisting of scalars), hence by Claim 11.10
we see that dim(E) divides [p(G) : p(A)] which devides [G : A]. Otherwise, by
the previous Lemma there exists A C H C G and an irreducible F' € Rep',ﬁd(H )
such that IndZ(F) = E and H # G. By induction, dim(F) divides [H : A]. So
dimE =[G : H| - dim(F') divides [G : H| - [H : A] =[G : A]. O

We will need the following Claim in the next subsection.

Claim 11.13. Let E € Repid(G) be irreducible, and g € G. Denote by Cy C G

the conjugacy class containing g. Then d‘&"g xe(g) is integral.

Proof. Since 1¢, is integral by part 2 of Claim 11.6, we obtain by Claim 11.8
that '
XE(]]'CQ) _ |Cq|
dmE  dimE
is integral. O

x£(9)

11.3 Burnside’s theorem

An integral complex number is said to be an algebraic integer.
Lemma 11.14. Let (1,...,(q € C* be roots of unity. Then:

1. The average % is of absolute value < 1, and 1 is attained if and
onlyif G =CG=...=(.

Gt
2. The average 514

0TC1=<2:...=Cd.

Proof. Point (1) is a simple exercise (say, imagine the orthogonal projection to
the line passing through 0 and the average...).

Let’s prove (2). Notice that the norm-squared of an algebraic integer is an
integer. Hence there are no algebraic integers ¢ with 0 < |¢| < 1. Thus, (2) is
clear by (1).

is an algebraic integer if and only either it equals O

O
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Claim 11.15. Let F € Repéd(G) be irreducible. Let g € G be an element for
which
gcd(|Cyl, dim E) = 1.

Then either xg(g) =0, or g acts on E by a scalar.

Proof. By Claim 11.13, the number dliifg Xe(g) is integral. Since ged(|Cy|,dim E) =
1 and xg(g) is integral, we obtain easily that ﬁXE(Q) is integral. Notice that
X£(g) is the sum of dim E roots of unity (the eigenvalues of g acting on F).
Hence by claim 11.14 either xg(g) = 0 or all the eigenvalues of g acting on E
are equal, meaning that g acts by a scalar on FE. O

Claim 11.16. Let G be a group, and C C G a conjugacy class such that |C| is
a positive power of a prime number. Then G is not simple.

Proof. Let us denote by p the prime whose power is |C|. It suffices to show that
there exists a non-trivial irreducible E € Rep{éd(G) on which elements in C' act
by scalar (then, taking two different g, h € C, the element gh~! acts as identity
on E, and hence F is not faithful, showing that G is not simple). For that, using
claim 11.15, it is enough to find a non-trivial irreducible E of dimension prime
to p, such that xg(C) # 0. Computing the trace of the action of an g € C' on
k[G], we obtain
Y dimE-xg(C)=0.
[Elelrr(G)

Let us partition the sum as follows:

1+ > dim E-x5(C)+ > dim E-xg(C) = 0.
[E]elrr(G), p|dim E [Elelrr(G), ptdim E, [E]#[Triv]

Since p divides all the summands in the first sum (in the sense of algebraic
integers), it must not divide all the elements in the second sum, so in particular
Xe(C) # 0 for some irreducible E € Rep(G) whose dimension is not divisible
by p. O

Corollary 11.17. Let G be a finite group such that |G| is divided by exactly
two different primes. Then G is not simple.

Proof. 1t is enough, by the previous Claim, to see that there exists a conjugacy
class C in G such that |C| is a positive prime power. If there is no such conjugacy
class, then every conjugacy class either has 1 element or its size is divisible by pg
(where p and ¢ are the two primes dividing |G|). Therefore, we would get that
|G|—|Z(G)| is divisible by pq. Since |G| is divisible by pg, this would imply that
|Z(G)| is divisible by pg. In particular, Z(G) # 1, and therefore G is not simple
(because then either Z(G) is a non-trivial normal subgroup, or Z(G) = G, and
the only abelian finite groups which are simple are the cyclic groups, so their
order has only one prime divisor). O

Theorem 11.18 (Burnside). Let G be a finite group whose order is divisible
by at most two primes. Then G is solvable.

99



Proof. Tt is known that groups of prime power order are solvable. Hence we can
deduce the claim from the previous Corollary, by induction (our group is not
simple, so has a proper normal subgroup, and both the normal subgroup and
the quotient by it are solvable by induction, so the group itself is solvable). O

12 Equivariant sheaves and induction

12.1 G-equivariant sheaves

Definition 12.1. Let X € Sets. A sheaf V on X is the data of a k-vector
space V, for every x € X. Sheaves on X form naturally a k-linear category

Sh(X).

If : X — Y is a map, we have functors 7* : Sh(Y) — Sh(X) and =, :
Sh(X) — Sh(Y') described as follows. We have 7*(V), = Vr(s) and (W), =
[L:(2)=y Wa (we omit the standard details). The functor 7* is naturally left
adjoint to m,.. In particular, for 7 : X — x, we denote I' := 7, (global sections
functor).

Definition 12.2. Let X € Set(G). A G-equivariant sheaf (V,a) on X is
the datum of a sheaf V on X, and an isomorphism oy, : V, = Vg for all
g € G and x € X, with the conditions ayp go 0 g x = ang and oy, = id.
G-equivariant sheaves on X form a k-linear category Sh(X)%.

Example 12.3. We have an equivalence of categories Sh(x)® ~ Rep(G).

For a G-equivariant map 7 : X — Y, the functors 7*, 7, naturally extend
to functors 7* : Sh(Y)¥ — Sh(X)¢ 7, : Sh(X)¥ — Sh(Y)%. In particular, we
have I' : Sh(X)% — Sh(x)¢ =~ Rep(G).

Definition 12.4. A groupoid is a category in which every morphism is an
isomorphism.

Example 12.5. Given a G-set X, we construct the action groupoid G\\X,
whose objects are elements of X and Hom(x,y) ={g € G | gz = y}.

Claim 12.6. Given a G-set X, one has an equivalence of categories Sh(X)% ~
Funct(G\\X, Vect).

Claim 12.7. Let X be a transitive G-set, x € X, and H := Stabg(x). Then
we have a natural equivalence of categories Sh(X)¥ ~ Rep(H).

Proof. We have an equivalence of groupoids H\\x — G\\X given by sending =
to z. Therefore we have

Sh(X) ~ Funct(G\\X, Vect) ~ Funct(H\\x, Vect) ~ Sh(x)" ~ Rep(H).

O
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Remark 12.8. Let us illustrate. Let V be a finite-dimensinoal vector space
over R, and denote by Xy the space of inner products on V. Fix B € Xy .
Then G := GL(V) acts transitively on Xy, and the stabilizer of B is Op, the
corresponding orthogonal group. Thus, Rep(Oy) ~ Sh(X)%.

We have a natural equivalence of categories Sh(X)® ~ Funct(G\\X, Vect).

Now, in our case, let us also consider the groupoid Fuclid, whose objects
are R-vector spaces of dimension dim V' equipped with an inner product, and
morphisms are isomorphisms of vector spaces preserving the inner product. We
have an evident functor G\\X — Fuclid, which is an equivalence of categories.
Thus, we obtain

Rep(Oy) = Sh(X)® ~ Funct(G\\X, Vect) =~ Funct(Euclid, Vect).

The point is that Funct(FEuclid, Vect) is a very reasonable object of study
- it consists of "universal” prescriptions of vector spaces to Euclidean vector
spaces. One might argue that the motivation for Rep(Oy ) is less clear, but the
statement above says that those are equivalent.

The relation of equivariant sheaves to induction is as follows:

Claim 12.9. Let X be a transitive G-set, x € X, and H := Stabg(x). Then

the functor

Rep(H) ~ Sh(X)9 5 Sh(x)¢ ~ Rep(G)

18 1somorphic to Indg.
The character formula for induction reads using this language as follows:

Claim 12.10. Let G act on a finite X, and let F € Sh(X)%. Consider I'(F)
as a G-representation via Sh(e)® ~ Rep(G). Then

xen(e) = Y, Tr(gF).
zeX s.t. gr=x
12.2 Mackey’s theorem revisited

Let us see how Mackey theorem’s proof is interpreted in terms of equivariant
sheaves.

Thus, let G be a finite group and H, K C G two subgroups. We want first
to interpret the functor

res$Inds : Rep(H) — Rep(K)

in terms of equivariant sheaves. We interpret IndZ (M) as I'(F) where F €
Sh(G/H)® is the corresponding G-equivariant sheaf. Then res% (Ind2(M)) =
res%(I(F)) can be rewritten as I'(res$(F)). Now, G/H as a K-set breaks
down into the disjoint union of transitive K-sets Xi,..., X, passing through
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points g1 H , ..., g-H (where g1,...,g, are representatives for double cosets
K\G/H). Therefore
X1> .

Now, F can be described as the G-equivariant sheaf on G/H correspond-
ing to the Stabg(g;H) = g;Hg; '-representation T,-+M. Therefore, clearly

[(res$ (F)) = @ F(res%(}')

1<i<lr

(res%F)|x, can be described as the K-equivariant sheaf corresponding to the

gitlg; (T, -1 M). Therefore T'((res%F)

-1 . i
(9iHg; * N K)-representation res, gt Ly

Xi)
can be described as

Hg 'nK iHg
i ( esgg;,;ijlmK(Tg-’lM))'

i

gi
Indy;

i

12.3 Case of G =V x H, where V is commutative

Let V be a commutative group, and H a group acting on V (by group au-
tomorphisms). We form the semidirect product G := V x H. Notice that
H acts on Irr(V). Given E € Rep(G), restricting it to V we obtain a de-
composition £ = ®yerrr(v)Ew. Notice that hE, = Ep.,. We can thus con-
struct Fg € Sh(Irr(V))H, for which (Fg), := E,... We obtain a functor
Rep(G) — Sh(Irr(V))H.

Claim 12.11. The above functor Rep(G) — Sh(Irr(V))H is an equivalence.

Proof. The inverse functor is constructed by sending F € Sh(Irr(V))¥ to E :=
Buwerrr(v)Fw, letting V' act on the piece F,, via the character associated to w,
and letting H act naturally, since F is H-equivariant.

Put differently, given F, by letting V' act on F,, by the character associated
to w, we upgrade the H-equivariant structure on F to a G-equivariant structure.
We obtain an equivalence of categories between Sh(Irr(V))H and Sh(Irr(V))¢
- the full subcategory of Sh(Irr(V))¢ consisting of sheaves for which V acts on
the fiber over w by the character associated to w. Then we have an equivalence
Sh(Irr(V))$ — Rep(G), by taking global sections. O

Corollary 12.12. Let (w;) be representatives of the H-orbits on Irr(V). Let
H; := Stabg (w;). Then Rep(G) ~ @®; Rep(H;).

Concretely, the embedding Rep(H;) — Rep(G) is given by first considering
E € Rep(H;) as a (V x H;)-representation, by letting V' act via w;, and then
sending it to Ind, ; E.

Corollary 12.13. We have a bijection between Irr(G) and [, Irr(H;).

Example 12.14. Let V = (r : v = 1), H = (s : s> = 1) where the action
of s sends v to r~'. Thus, G =V x H is the dihedral group Ds, again. We
can identify Irr(V) with p,, where { € p, corresponds to we(r') = ¢*. The
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resulting action of H on pi, is by s * ( = (~1. The stabilizers are trivial for all
C € uy, except ¢ = 1 and, when n is even, ( = —1. Therefore, the irreducible
representations of G are Ind$}(Cy,) for ¢ ¢ {1,—1} and also two or four one-
dimensional representations, given by the multiplicative characters which are
equal to a quadratic character on'V and one of the two multiplicative characters
on H.

Example 12.15. Let V =F,, H =F;. Then G =V x H is the group of affine
transformations of the field F,. We can identify Irr(V') with F,, associating to
z € Fy the character ¥, (y) = Y(zy) = '™, The H-action on Irr(V) 2 F,
is again by homotheties. We have two orbits, with representatives 0,1. We
obtain Rep(G) ~ Rep(H) ® Vect. Concretely, given an H-representation E, we
construct the G-representation resi (E) (where we restrict along the projection
G — H). Given a vector space E, we treat it as a V-representation by letting
V' act via ¢, and then construct the G-representation indgE.

So, the irreducible representations of Fq x Fy are given by: Cy, where x is

Fy X
a character of ¥y and we pullback via Fg x Fyt — Fr. Also, inal]Fz>q 1 Cy.
Let us write the character table:

type (0,1) | (1,1) | (0,¢) (c#1)
Cy 1 1 x(c)
indg"1Cy || g—1] -1 0

13 Brief remarks on characteristic p

We fix a finite group G and an algebraically closed field k.

13.1 p-Regular and p-torsion elements

Definition 13.1. Let p be a prime number. An element x € G is called p-
regular (resp. p-torsion), if o(x) is prime to p (resp. a power of p).

Claim 13.2 (”Jordan decomposition”). Let p be a prime number, and x € G.
Then there exists a unique pair (y,z) € G? such that y is p-regular, z is p-
torsion, y and z commute, and x = yz.

Proof. Let us show uniqueness first. If z = yz = 32/, then P = ypN = (y’)pN
when N is large enough. Then (y) = (y?" ) = ((y')?" ) = (y). If r is the order
of that group, then r is prime to p, and hence we can write ar + bp"Y = 1. Then
y=" )= ()" ) =y.
Let us show existence now. Let p™k be the order of x, where k is prime to
p. Then we can write ap™ + bk =1 and set y = x“pN,z = 2% . Then the order
of 3y divides k and so is prime to p, while the order of z divides p'¥, so is a power
of p.
O
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Definition 13.3. In the notations of the above claim, we will write y = Zp reg
and z = Tp_tor-

Remark 13.4. Notice that G, C G, the subset of p-regular elements, is
stable under conjugation. It will play a role in the representation theory over a
field of characteristic p.

13.2 Characters

We can define characters of representations as we did in characteristic zero. The
following claim is still true:

Claim 13.5. The system (Xg)(gjcrrm(c) C Fun(G; k)< is linearly independent.
Proof. Recall that we have still an isomorphism of k[G]/J(k[G]) with

Endk(El) X ... X Endk(En)

(where Ey, ..., E, are representatives for isomorphism classes in Irr;(G)). There-
fore, we still can find D € k[G] such that xg, (D) = Tr(D; E;) = 1 for some
1 <i<nand xg, (D) =Tr(D; E;) =0 for j #i. O

We now notice that the characters will not generally span Fun(G, k)

Claim 13.6. Let V € Repﬁd(G), Then for every g € G, we have xv(g) =
XV(gp—reg)'

Proof. Since gp.-tor is acts unipotently and commutes with gp.reg, this is an easy
exercise. O

However, the following theorem is true:

Theorem 13.7 (Brauer). The system (Xg)(gleirr.(c) forms a basis of Fun(GP™*, k).
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