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1 Introduction, conventions, etc.

If not specified otherwise, all rings and algebras are with unit. If not specified
otherwise, by a module we mean a left module.
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2 Some recollections on categories

Definition 2.1.

• categories, functors...

• functor categories, morphism between functors...

• products, coproduts, final objects, initial objects, limits, colimits...

• additive/k-linear categories, additive/k-linear functors...

• abelian categories, k-linear abelian categories...

Definition 2.2. An adjunction between two categories (C,D) is a pair of
functors

F : C → D, C ←− D : G,

together with one of the following equivalent pieces of data:

1. Morphisms u : IdC → G ◦ F and n : F ◦G→ IdD satisfying

F
Fu−−→ F ◦G ◦ F nF−−→ F is equal to IdF ,

G
uG−−→ G ◦ F ◦G Gn−−→ G is equal to IdG.

2. An isomorphism of the functors

Hom(F ·, ·), Hom(·, G·) : Cop ×D → Sets.

Definition 2.3. An equivalence between two categories (C,D) is one of the
following (if one is careful, one should understand how they are exactly related):

1. An adjunction (F,G, u, n) between C,D such that u and n are isomor-
phisms.

2. A pair of functors F : C → D C ←− D : G and isomorphisms IdC ∼=
G ◦ F, F ◦G ∼= IdD.

3. A pair of functors F : C → D C ←− D : G such that G ◦ F is isomorphic
to IdC and F ◦G is isomorphic to IdD.

4. A functor F : C → D for which there exists C ←− D : G such that G ◦ F is
isomorphic to IdC and F ◦G is isomorphic to IdD.

5. A functor F : C → D which is fully faithful and essentially surjective.

Remark 2.4. When dealing with additive categories, we will assume that all
functors are additive, even if we don’t mention this. Incidentally, let us remark
that functors which are part of an adjunction between additive categories are
automatically additive (in particular, equivalences of additive categories are
automatically additive). When dealing with k-linear categories, we will assume
that all functors are k-linear, even if we don’t mention this.
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3 Some properties in an abelian category

In this section, A is an abelian category. We will be interested in properties of
objects in A. We will say that a property of object in A is Serre, if 0 has this
property, subobjects and quotient objects of objects having this property have
this property, and if a subobject as well as the quotient by it have this property,
then the object itself has this property.

3.1 Finiteness properties

3.1.1 Finite length

Definition 3.1. An object M ∈ A is said to be simple, or irreducible, if
M 6= 0 and M contains no subobjects except 0 and M . We denote by Irr(A)
the ”set”1 of isomorphism classes of simple objects in A.

Claim 3.2 (Schur’s lemma).

1. Let M ∈ A be simple. Then End(M) is a division ring.

2. Let M,N ∈ A be simple and non-isomorphic. Then Hom(M,N) = 0.

Proof.

1. Let T ∈ End(M), and suppose that T 6= 0. Then Ker(T ) 6= M , and
hence, by simplicity, we obtain Ker(T ) = 0 (i.e. T is injective). Also,
Im(T ) 6= 0, and hence, by simplicity, we obtain Im(T ) = M (i.e. T is
surjective). Thus, T is bijective, and so admits an inverse in End(M).

2. Let T ∈ Hom(M,N). If Im(T ) = N and Ker(T ) = 0 then T is an
isomorphism, contradicting the assumption. Hence either Im(T ) 6= N
(in which case Im(T ) = 0 so T = 0) or Ker(T ) 6= 0 (in which case
Ker(T ) = M so T = 0).

Definition 3.3. A composition series for an object M ∈ A is a sequence of
submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that Mi+1/Mi is simple for every 0 ≤ i ≤ n− 1. An object M ∈ A is said
to have finite length if it admits a composition series.

Lemma 3.4. The property of being of finite length is Serre.

1I am not very versed in foundations - for me it is a set in the sense that two elements in it
are either equal or not; it is not a set in the sense that I don’t a priory care about the ability
to ask about its cardinality.
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Definition-Claim 3.5 (Jordan-Holder theorem). Let M ∈ A be of finite length,
and let

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

be a composition series for M . For every π ∈ Irr(A), let us denote by [M :
π] ∈ Z≥0 the number of 0 ≤ i ≤ n − 1 such that Mi+1/Mi has isomorphism
class π. Then [M : π] does not depend on the choice of composition series. In
particular, `(M) := n does not depend on the choice of composition series. We
call ([M : π])π∈Irr(A) the Jordan-Holder contents of M , {π ∈ Irr(A) : [M :
π] 6= 0} the Jordan-Holder support of M , and `(M) the length of M .

3.1.2 Noetherian and Aritnian properties

Definition 3.6.

1. An object M ∈ A is said to be Noetherian, if for every increasing se-
quence of subobjects M0 ⊂ M1 ⊂ . . . of M , there exists K ∈ Z≥0 such
that Mk = MK for all k ≥ K.

2. An object M ∈ A is said to be Artinian, if for every decreasing sequence
of subobjects M0 ⊃ M1 ⊃ . . . of M , there exists K ∈ Z≥0 such that
Mk = MK for all k ≥ K.

Lemma 3.7. The properties of being Noetherian/Artinian are Serre.

Lemma 3.8. An object M ∈ A is of finite length if and only if it is both
Noetherian and Artinian.

3.2 Semisimplicity

Definition 3.9. An object M ∈ A is said to be semisimple, if for every
subobject N ⊂M , there exists a subobject L ⊂M such that M = N ⊕L. The
category A is said to be semisimple, if every object in it is semisimple.

Lemma 3.10. Let us abbreviate ”ss” for ”semisimple”.

1. 0 is ss.

2. Simple objects are ss.

3. If an object is ss, then all of its subobjects and quotient objects are ss.

4. If two objects are ss, then their direct sum is ss.

Example 3.11. Let us consider A = Mod(C[x]). One has a full subcategory
Mod(C[x])fd ⊂ Mod(C[x]) consisting of modules which are finite-dimensional
as C-vector spaces. The study of Mod(C[x])fd is, basically, linear algebra. We
can use square matrices (up to similarity) to represent isomorphism classes

of objects in Mod(C[x])fd. Then, one can check that

(
0 0
0 0

)
represents a
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semisimple object, while

(
0 1
0 0

)
represents a non-semisimple object. More

generally, a matrix will represent a semisimple object if and only if it is diag-
nolizable.

Example 3.12. The Z-modules Z/pZ, where p is prime, are simple, hence
semisimple. The Z-module M := Z/p2Z, where p is prime, is not semisimple.
Indeed, consider pM ⊂ M . Since M/pM ∼= Z/pZ, would pM have a comple-
ment in M , we would have an element in M of order p, which is not in pM ,
which we don’t have.

Remark 3.13. Let us recall that a short exact sequence

0→M1
i−→M2

p−→M3 → 0

is said to be splittable, if one of the following equivalent conditions is satisfied:

1. There exists s : M3 →M2 such that p ◦ s = id.

2. There exists c : M2 →M1 such taht c ◦ i = id.

In that case, M2 is isomorphic to the direct sum of M1 and M3 (described
naturally once s or c are fixed).

Remark 3.14. Let N ⊂M . Then N admits a complement in M if and only if
the short exact sequence

0→ N
⊂−→M →M/N → 0

is splittable.

Remark 3.15. Let
0→M1

i−→M2
p−→M3 → 0

be a short exact sequence. If M1 is injective, or M3 is projective, then this short
exact sequence is splittable.

Remark 3.16. Let us recall that an additive functor F : A → B (where B
is another abelian category) transforms splittable short exact sequences into
splittable short exact sequences.

Claim 3.17. The following properties are equivalent:

1. The category A is semisimple.

2. Every short exact sequence in A is splittable.

3. Every object in A is projective.

4. Every object in A is injective.

Proof. (1)⇐⇒ (2): Follows from remark 3.14.
(2) =⇒ (3), (4): The properties of being projective/injective are defined by

some additive functors sending short exact sequences into short exact sequences.
Since every short exact sequence in A is splittable, the properties follow from
remark 3.16.

(3) =⇒ (2), (4) =⇒ (2): Follows from remark 3.15.

6



4 Semisimplicity

Throughout the seciton, let R be a ring. We denote by Mod(R) the abelian
category of R-modules, and Irr(R) := Irr(Mod(R)).

4.1 Semisimple modules

Lemma 4.1. Let M be a non-zero R-module. Then M admits a simple sub-
quotient.

Proof. ReplacingM by a non-zero finitely-generated submodule, we may assume
that M is finitely-generated. We will show that in this case M admits a simple
quotient. This follows from the fact that submodules of M , not equal to M ,
satisfy the conditions of Zorn’s lemma (this follows by choosing a finite set of
generators of M , and noticing that a submodule of M is equal to M if and only
if it contains all these generators).

Claim 4.2. Let M be an R-module. The following are equivalent:

1. M is semisimple.

2. M can be written as a direct sum of simple submodules.

3. M can be written as a sum of simple submodules.

Proof.
(1) =⇒ (2): By Zorn’s lemma, we can find a maximal family of simple

submodules I ⊂ Sub(M) such that the sum of submodules in I is direct. We
claim that the sum of submodules in I is M . Indeed, let N ⊂M be a submodule
complimentary to said sum. From the maximality of I, we deduce that N
doesn’t contain simple submodules. By semisimplicity, N can’t contain then
any simple subquotients. It then follows from lemma 4.1 that N = 0.

(2) =⇒ (3): Clear.
(3) =⇒ (1): Suppose that M =

∑
i∈IMi, and let N ⊂M be a submodule.

By Zorn’s lemma, we can find maximal J ⊂ I such that
(∑

i∈JMi

)
∩ N = 0.

We want to show that
(∑

i∈JMi

)
+N = M . If that is not the case, then there

exists j ∈ I such that Mj 6⊂
(∑

i∈JMi

)
+ N . Since Mj is simple, this implies

Mj ∩
((∑

i∈JMi

)
+N

)
= 0. Then

(∑
i∈J∪{j}Mi

)
∩N = 0, contradicting the

maximality of J (notice that j /∈ J).

Claim 4.3.

1. Let (Mi)i∈I be a family of semisimple R-modules. Then ⊕i∈IMi is semisim-
ple.

2. Let M be an R-module, and (Mi)i∈I a family of semisimple submodules
of M . Then

∑
i∈IMi is semisimple.
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Proof.

1. This clearly follows from the characterization of the previous claim.

2. Notice that
∑
i∈IMi is a quotient of ⊕i∈IMi, and hence the claim fol-

lows from the previous point and semisimplicity being a Serre property
(alternatively, again directly from the previous claim).

4.2 Isotypic components

Definition 4.4. Let M be an R-module and π ∈ Irr(R). We denote by Mπ

the sum of all submodules of M which are simple of isomorphism class π (it is
called the isotypic component of M corresponding to π).

Lemma 4.5. Let M be an R-module. One has (Mπ)π = Mπ. The family
(Mπ)π∈Irr(R) is linearly independent, and M = ⊕π∈Irr(R)Mπ if and only if M
is semisimple.

Proof. The only slightly non-trivial thing is to check that the family (Mπ)π∈Irr(R)

is linearly independent. For that, it is enough to show that if E ⊂Mπ1
+ . . .+

Mπn is a simple submodule, then the isomorphism class of E is in {π1, . . . , πn}.
Indeed, since E is finitely generated we have E ⊂ E1 + . . .+Em where each Ei
is a simple submodule whose isomorphism class is in {π1, . . . , πn}. It is easy to
see that the Jordan Holder support of E1 + . . .+ Em is contained in the set of
isomorphism classes of E1, . . . , Em. Since it also contains the isomorphism class
of E, by the Jordan Holder theorem we obtain that the isomorphism class of E
is equal to the isomorphism class of one of E1, . . . , Em.

Lemma 4.6. Let M,N be R-modules and φ : M → N a morphism. Then for
every π ∈ Irr(R) we have φ(Mπ) ⊂ Nπ.

Proof. Clear.

Definition 4.7. Let S ⊂ Irr(R). For an R-module M , we define MS :=∑
π∈SMπ.

Remark 4.8. Let S ⊂ Irr(R). For an R-module M , one has (MS)S = MS . If
M is semisimple, then M = MS ⊕Mc(S), where we denote c(S) := Irr(R)− S.

4.3 Semisimple rings

Definition 4.9. The ring R is called semisimple, if the category Mod(R) is
semisimple (i.e. every R-module is semisimple).

Example 4.10. A field is semisimple. More generally, a division ring is
semisimple. Indeed, given a submodule N ⊂ M , we can choose a basis of N ,
and then completing it to a basis of M . The span of the complementing elements
will be a submodule complementary to N .
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Claim 4.11. The following are equivalent:

1. The ring R is semisimple.

2. The R-module R is semisimple.

Proof.
(1) =⇒ (2): Clear.
(2) =⇒ (1): Every module is a quotient of a direct sum of copies of R.

Recall, that R is called left Noetherian/left Artinian, if R as an (left) R-
module is so.

Claim 4.12. Suppose that R is semisimple. Then R is left Noetherian and left
Artinian.

Proof. The claim will follow if we show that R can be expressed as a finite
direct sum of simple left ideals (because then R (as an R-module) will be of
finite length, and hence Noetherian and Artinian). By semisimplicity, one can
write R = ⊕σ∈ΣIσ where Iσ ⊂ R are simple left ideals. Decomposing 1 along
this, we obtain 1 =

∑
σ∈Σ′ fσ where Σ′ ⊂ Σ is a finite subset. But then for

f ∈ Iτ , for τ ∈ Σ− Σ′, one obtains

f = f · 1 =
∑
σ∈Σ′

f · fσ ∈
∑
σ∈Σ′

Iσ.

This forces f = 0, and thus one must have Σ = Σ′, i.e. Σ is finite.

Corollary 4.13. Suppose that R is semisimple. Then Irr(R) is finite.

Proof. Notice first that for every π ∈ Irr(R) one has Rπ 6= 0. Indeed, a
simple R-module of isomorphism class π can be realized as a quotient R/I. By
semisimplicity, this quotient module of R can be realized as a submodule of R.

Now, one has R = ⊕π∈Irr(R)Rπ. Since R is left Noetherian, this must be a
finite sum.

4.4 Two-sided ideals and splittings

Throughout this subsection, we assume that R is semisimple.

Lemma 4.14. Let E,F ⊂ R be two isomorphic simple submodules. Then there
exists r ∈ R such that F = Er.

Proof. By semisimplicity, we can find a projection R → E which is left inverse
to the inclusion E ⊂ R, compose it with an isomorphism of E with F , and then
compose it with the embedding F ⊂ R thus obtaining an R-module morphism
R → R whose image when restricted to E is F . Such a morphism must be
given by a multiplication on the right by an element r ∈ R. We thus obtain
F = Er.
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Lemma 4.15.

1. Let S ⊂ Irr(R). The left ideal RS ⊂ R is a two-sided ideal.

2. Let S, T ⊂ Irr(R), and suppose that S ∩ T = ∅. Then RSRT = 0.

3. Let I ⊂ R be a two-sided ideal. Then there exists a unique S ⊂ Irr(R)
such that I = RS.

Proof.

1. Let r ∈ R. Since x 7→ xr is a left R-module homomorphism, it preserves
RS .

2. Follows from RS , RT being two-sided ideals, and RS ∩RT = 0.

3. It is enough to show that if E,F ⊂ R are two isomorphic simple sub-
modules, and if E ⊂ I, then F ⊂ I. This follows at once from lemma
4.14.

Let S ⊂ Irr(R). Recall that we denote c(S) := Irr(R) − S. Decomposing
1 ∈ R along R = RS ⊕Rc(S), we obtain an expression 1 = eS + ec(S). We have
eSr = reS = r for r ∈ RS and eSr = reS = 0 for r ∈ Rc(S). We notice that RS
is itself a ring, with unit eS . One has R = RS×Rc(S), a direct product of rings.

Let us denote by Mod(R)S the full subcategory of Mod(R) consisting of
R-modules M for which MS = M .

Lemma 4.16. Mod(R)S ⊂ Mod(R) is a Serre subcategory, closed under infi-
nite (small) direct sums. One has a canonical bijection Irr(Mod(R)S) ∼= S.

Lemma 4.17. Let E be a simple R-module. Then eS acts as identity (resp.
zero) on E if the isomorphism class of E is in S (resp. c(S)).

Proof. Recall that R contains a submodule isomorphic to E. Such a submodule
is contained in RS or Rc(S), according to the isomorphism class of E being in
S or c(S). Since eSr = r for r ∈ RS and ec(S)r = 0 for r ∈ Rc(S), the claim
follows.

Lemma 4.18. Let M ∈Mod(R). The following are equivalent:

1. M ∈Mod(R)S.

2. ec(S)m = 0 for every m ∈M .

3. eSm = m for every m ∈M .

Proof. Follows from the previous lemma.
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Claim 4.19 (Localization). One has an equivalence of categories

Mod(R)S �Mod(RS).

The ring RS is semisimple and one has a canonical bijection Irr(RS) ∼= S.

Proof. Let us describe what are the functors (leaving the verifcations as an
exercise). Both functors act as identity on the underlying abelian groups. The
functor from left to right is given by restricting along RS → R. The functor
from right to left is given by letting RS ⊂ R act as it acts, and letting Rc(S) ⊂ R
act by zero.

That RS is semisimple follows from Mod(RS) ≈Mod(R)S , and noting that
Mod(R)S is semisimple as a Serre subcategory of Mod(R).

Finally, notice that the equivalence yields Irr(RS) ∼= Irr(Mod(R)S) ∼= S.

Definition 4.20. A ring R is called simple, if it is semisimple and Irr(R)
contains exactly one element.

Corollary 4.21 (From semisimple to simple). Let R be a semisimple ring. Then
one has a canonical factorization R =

∏
π∈Irr(R)Rπ, where Rπ are simple rings.

Remark 4.22. By claim 4.15, if R is a simple ring then the only two-sided
ideals in R are 0 and R. A ring with such a property is called sometimes
quasi-simple (or, non-compatibly with our terminology, simple). A quasi-simple
ring might not be left Artinian, hence not semisimple (we will see later that a
quasi-simple left Artinian ring is simple). As an example, one can check that
R = C{z, ∂z}/(∂zz − z∂z − 1) (the Weyl algebra, i.e. the algebra of differential
operators with polynomial coefficients on the line) is quasi-simple and not left
Artinian.

4.5 Jacobson’s density theorem

Theorem 4.23. Let M be a semisimple R-module. Let S := EndR(M). Let
t ∈ EndS(M) and v1, . . . , vn ∈ M . Then there exists r ∈ R such that tvi = rvi
for 1 ≤ i ≤ n.

Proof. We first deal with the case n = 1. Since M is semisimple, we can write
M = Rv1 ⊕M ′ for some R-submodule M ′ ⊂ M . One has the projection on
Rv1 along M ′, which is an element s ∈ S. Notice now that stv1 = tsv1 = tv1,
and thus tv1 ∈ Rv1. This means that there exists r ∈ R such that tv1 = rv1.

For general n, let us consider theR-moduleMn, and the vector (v1, . . . , vn) ∈
Mn. Abusing notation, we denote by t ∈ End(Mn) the diagonal operator
(t, t, . . . , t). We now notice that t commutes with elements in EndR(Mn) (by
writing each element in EndR(Mn) in matrix form). Using now the n = 1 case
in this setting, gives us the desired claim.
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Corollary 4.24. Let M be a semisimple R-module. Let S := EndR(M).
Suppose that M is finitely generated as an S-module. Then the morphism
R→ EndS(M) is surjective.

Remark 4.25. On EndS(M) we can define the ”weak” topology, for which a
subbasis of neighbourhoods of 0 consists of sets Uv := {t ∈ EndS(M) | tv = 0}
for v ∈M . The one can state Jacobson’s density theorem as follows: The image
of the morphism R→ EndS(M) is dense w.r.t. the weak topology.

4.6 Simple rings - the Artin-Wedderburn theorem

Proposition 4.26. Assume that R is simple, and let E be a simple R-module.
Denote D := EndR(E) (recall that it is a division ring). Then E is finite-
dimensional over D, and the natural morphism R → EndD(E) is an isomor-
phism.

Proof. Notice that the morphism R→ EndD(E) is injective; Indeed, if r maps
to zero, then r acts by zero on every simple module, hence on every module
(since every module is a sum of simple modules), and hence in particular on R,
giving r = 0. Alternatively, injectivity is clear since R is quasi-simple.

If we will show that E is finite-dimensional over D, then the morphism
R→ EndD(E) will be surjective, by Jacobson’s density theorem.

We have, for some n ∈ Z≥1, R ∼= En. Let us notice that

E ∼= HomR(R,E) ∼= HomR(En, E) ∼= HomR(E,E)n,

where the D-module structure on each Hom-space is by postcomposing. Since
HomR(E,E) is a free D-module of rank 1, we see that E is of dimension n over
D.

Corollary 4.27. Assume that R is semisimple. Then R is isomorphic to a
finite direct product of rings of the form EndD(E) where D is a division ring
and E is a finite-dimensional vector space over D.

4.7 Morita equivalence

Of course, in order for the previous subsection to be complete, we need also to
check for ourselves that rings of the form Mn(D), where D is a division ring,
are simple. We will take the opportunity for a more general discussion.

Definition 4.28. Let R,S be rings. We say that A and B are Morita equiv-
alent, if the categories Mod(R) and Mod(S) are equivalent.

Proposition 4.29. Let A be an abelian category, admitting infinite direct
sums2. Let P ∈ A be an object. Consider the functor

G : A →Mod(End(P )op) : M 7→ Hom(P,M).

2In perhaps more modern terminology, ”infinite direct sums” = ”small coproducts”.
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Then G is an equivalence of categories if and only if P is a compact projective
generator of A, where:

• P is projective means Hom(P, ·) : A → Ab is exact.

• P is compact means Hom(P, ·) : A → Ab commutes with infinite direct
sums.3.

• P is a generator means that for every M ∈ A, Hom(P,M) = 0 implies
M = 0 4.

Proof. Let us abbreviate R := End(P )op.
If G is an equivalence of categories, then to check the properties for P ∈ A is

the same as to check the properties for R ∈Mod(R). This is left as an exercise.
Suppose now that P is a compact projective generator. We would like to

verify that G is fully faithful and essentially surjective.
First, let us check that G is fully faithful, i.e. that for a pair (N,M) ∈ A2,

the map cN,M : Hom(N,M) → Hom(G(N), G(M)) is a bijection. Let us fix
M , and study for which N the map cN,M is a bijection. For N = P , that cP,M
is a bijection is more-or-less a tautology. Both sides send infinite direct sums to
infinite products (here we use P being compact). Also, both sides send cokernel
diagrams to kernel diagrams (here we use P being projective). Hence, if an
object N can be obtained from P by performing iteratively infinite direct sums
and cokernels, cN,M will be a bijection. And indeed, we claim that every object
N ∈ A is a cokernel of a morphism of the type P I → P J . For this, it is enough
to show that every object N ∈ A admits a surjection from some P J . We have
the universal try φ : PHom(P,N) → N . Every moprhism P → Coker(φ) can be
lifted to a morphism P → N since P is projective, and hence is zero. Since P
is a generator, we obtain that Coker(φ) = 0, i.e. φ is surjective.

Now, let us check that G is essentially surjective. We notice that G preserves
infinite direct sums and cokernel diagrams. Hence, since we already know that
G is fully faithful, the essential image of G is closed under infinite direct sums
and cokernel diagrams. Since R = G(P ) is in the essential image and every
R-module can be presetned as the cokernel of a morphism of type RI → RJ ,
we see that every R-module is in the essential image of G.

Example 4.30. Let R be a ring. The object Rn ∈ Mod(R) is a compact
projective generator. Notice that End(Rn)op ∼= Mn(R). Hence, the previous
proposition gives us an equivalence of categories

Mod(R) ≈Mod(Mn(R)).

Thus, Mn(R) is Morita equivalent to R.

3the way we define compact is good only when P is projective, and we will use it only then.
4the way we define generator is good only when P is projective, and we will use it only

then.
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Example 4.31. Notice that the properties of being semisimple/simple is stable
under Morita equivalence. In particular, we obtain that for a division ring D,
the ring Mn(D) is simple.

Claim 4.32. Let R,S be simple rings. Then the following are equivalent:

1. R and S are Morita equivalent.

2. Given a simple R-module E and a simple S-module F , the division rings
End(E) and End(F ) are isomorphic.

3. There exists a division ring D and integers n,m ∈ Z≥1 such that R ∼=
Mn(D) and S ∼= Mm(D).

Proof.
(1) =⇒ (2): This holds because the endomorphism ring of the (unique, up

to isomoprhism) simple object is described category-theoretically.
(2) =⇒ (3): By Artin-Wedderburn, R is isomoprhic to Mn(D) for some

n ∈ Z≥1, where D is the opposite of the endomorphism ring of a simple R-
module.

(3) =⇒ (1): We saw that Mn(D) is Morita equivalent to D.

The following claim we will need later, when discussing central simple alge-
bras.

Claim 4.33. Let R,S, T be rings, and assume that R and S are Morita equiv-
alent. Then R⊗ T and S ⊗ T are Morita equivalent.

Proof. Given an abelian category A, we can consider the category AT of objects
M ∈ A equipped with a morphism T → End(M). One easily shows that there
is a natural equivalence of categories Mod(R⊗T ) ≈Mod(R)T . Hence, if R and
S are Morita equivalent, we obtain

Mod(R⊗ T ) ≈Mod(R)T ≈Mod(S)T ≈Mod(S ⊗ T ).

Also, a nice feature is:

Exercise 4.34. Let R be a ring. Then Z(R) is isomorphic naturally to the
endomorphism ring of the identity functor IdMod(R).

Corollary 4.35. Let R,S be rings. If R and S are Morita equivalent, then
Z(R) and Z(S) are isomorphic.

Corollary 4.36. Let R,S be commutative rings. If R and S are Morita equiv-
alent, then R and S are isomorphic.

Remark 4.37. All the above have variants, if we work with k-algebras instead
of with rings. Then all morphisms/abelian categories/functors should be k-
linear, all tensor products should be over k, etc.
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4.8 The Jacobson radical

Definition 4.38. The Jacobson radical J(R) ⊂ R is defined as the subset of
all elements r ∈ R such that rE = 0 for any simple R-module E.

Remark 4.39. Thus, in picturesque terms, the Jacosbon radical consists of
operators which are immaterial on the irreducible spectrum.

Lemma 4.40.

1. J(R) ⊂ R is a two-sided ideal.

2. J(R) is equal to the intersection of all maximal left ideals.

3. Let r ∈ R. Then r ∈ J(R) if and only if 1 − sr is left-invertible for all
s ∈ R.

Proof.

1. Clear.

2. Notice that we can think of maximal left ideals as annihilators of non-zero
elements in simple modules. From this, the claim is straightforward.

3. Suppose that r ∈ J(R). Let s ∈ R. Then 1 − sr is not contained in any
maximal left ideal. Hence, R(1− sr) = R. Hence, 1− sr is left-invertible.
Conversely, suppose that r /∈ J(R). Then there exists a maximal left ideal
I ⊂ R such that r /∈ I. Then Rr + I = R. Hence, there exist s ∈ R, i ∈ I
such that sr+ i = 1. Then, 1− sr ∈ I and so 1− sr is not left-invertible.

Lemma 4.41 (Nakayama’s lemma). Let M be a finitely-generated R-module.
If J(R)M = M , then M = 0.

Proof. Let v1, . . . , vn ⊂ M be a set of generators of M . We can find elements
r1, . . . , rn ∈ J(R) such that v1 = r1v1 + . . . + rnvn. Then (1 − r1)v1 ∈ Rv2 +
. . . + Rvn. Since 1 − r1 is left-invertible, we get v1 ∈ Rv2 + . . . + Rvn. Thus,
v2, . . . , vn is also a set of generators of M . Continuing like this, we deduce that
M = 0.

Lemma 4.42.

1. every nilpotent left ideal in R is contained in J(R).

2. If R is left Artinian, J(R) is nilpotent.

Proof.

1. Let I ⊂ R be a nilpotent left ideal, say In = 0, and let E be a simple
R-module. Then if IE 6= 0, we have IE = E and so, iterating, we obtain
0 = IkE = E - a contradiction. Hence IE = 0.
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2. The decreasing sequence J(R)n must stabilize - denote the common value
J(R)∞. Then J(R)∞J(R)∞ = J(R)∞. Consider the family of left ideals
I ⊂ J(R)∞ which are finitely generated and for which J(R)∞I 6= 0.
If J(R)∞ 6= 0, this family is non-empty, and hence contains a minimal
element I0 (by the left Artinian property).

Then J(R)∞I0 6= 0, and since J(R)∞J(R)∞I0 = J(R)∞I0, we can find
v ∈ J(R)∞I0 such that J(R)∞v 6= 0. Then Rv lies in our family, and
hence by the minimality of I0 we have I0 = Rv. In particular, since Rv ⊂
J(R)∞I0 ⊂ I0, we obtain I0 = J(R)∞I0, and thus clearly also J(R)I0 =
I0. Then, by Nakayama’s lemma, we have I0 = 0 - a contradiction. Hence
J(R)∞ = 0 or, in other words, J(R) is nilpotent.

Claim 4.43. Suppose that R is left Artinian. Then R is semisimple if and only
if J(R) = 0.

Proof. Suppose that R is semisimple. Then R is the sum of its simple submod-
ules. Then, given 0 6= r ∈ R, since r doesn’t act on R by zero, it must act not
by zero on some simple submodule of R.

Conversely, suppose that J(R) = 0. Since J(R) is the intersection of all
maximal left ideals, and by the left Artinian property, we deduce that in fact we
can find finitely many maximal left ideals I1, . . . , In whose intersection is J(R),
i.e 0 by our assumption. This means that the natural R-module morphism

R→ R/I1 ⊕ · · · ⊕R/In

is injective. This in turn shows that R is a semisimple R-module, since it can
be embedded into a semisimple R-module.

Example 4.44. Consider the ring Z. Then J(Z) = 0, but Z is not semisimple.

Claim 4.45. Suppose that R is left Artinian, and let M be an R-module. Then
M is semisimple if and only if J(R)M = 0.

Proof. If M is semisimple, it is a direct sum of simple modules, and J(R)
annihilates every simple module, so the claim is clear in one direction.

Conversely, suppose that J(R)M = 0. Then we can consider M as an
R/J(R)-module. Since J(R/J(R)) = 0 and R/J(R) is left Artinian, we have
that R/J(R) is semisimple. Hence M is a semisimple R/J(R)-module, and thus
clearly a semisimple R-module.

Exercise 4.46. Show that for a general R, the class of semisimple modules is
not necessarily closed under infinite products. However, show that if R is left
Artinian, the class of semisimple modules is closed under infinite products.

For the next claim, let us recall that if R is a finite-dimensional algebra over
a field k, then we have a functional trR : R→ k given by sending y ∈ R to the
trace of the linear endomorphism of R given by x 7→ yx.
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Claim 4.47. Let k be a field, and suppose that R is a finite-dimensional k-
algebra. Then J(R) is contained in the radical of the symmetric bilinear form
(x, y) 7→ trR(xy). In particular, if (x, y) 7→ trR(xy) is non-degenerate, then R
is semisimple.

Proof. Let r ∈ J(R) and s ∈ R. Since J(R) is nilpotent, rs is nilpotent. Thus,
the linear transformation x 7→ rsx is nilpotent, and so tr(rs) = 0.

Example 4.48. The converse of the claim is not true, due to inseparable field
extensions, basically. Namely, if k is a field of characteristic p and α ∈ k has no
p-th root in k, then we consider R := k( p

√
α), which is a k-algebra of dimension

p. Then it is easy to calculate that the trace functional is zero for the k-algebra
R.

5 Central simple algebras

Throughout this section, we fix a field k. By an algebra, we mean a k-algebra,
by an abelian category/functor we mean a k-linear abelian category/functor,
etc.

For a k-algebra A and a field extension K/k, we will denote AK := K ⊗k A
(it is a K-algebra).

5.1 Central simple algebras

Definition 5.1. A k-algebra A is called central, if Z(A) = k. We abbreviate
”CSA” for ”central f.d. simple algebra” and ”CDA” for ”central f.d. division
algebra”.

Recall that we say that a ring R is quasi-simple, if it has no two-sided
ideals except 0 and R. Also, recall that we saw that a quasi-simple ring which
is left Noetherian is simple.

Lemma 5.2. Let A,B be quasi-simple k-algebras, and assume that A central.
Then A⊗k B is quasi-simple.

Proof. Let I ⊂ A ⊗k B be a non-zero two-sided ideal. We can choose a non-
zero element c =

∑
1≤i≤n aibi ∈ I, and also assume without loss of generality

that b1, . . . , bn are linearly independent. We can also assume without loss of
generality that a1 = 1. Indeed, by reordering we can assume that a1 6= 0 and
then, since A is quasi-simple, we can find a1

j , a
2
j ∈ B such that

∑
j a

1
ja1a

2
j = 1.

Then we replace c by
∑
j(a

1
j ⊗ 1)c(a2

j ⊗ 1), to obtain an element as desired.

Now we can prove by induction on n that I = A ⊗k B (i.e. 1 ⊗ 1 ∈ I). If
n = 1, then we have c = 1⊗ b1 ∈ I, and since b1 6= 0 by an argument like above
(using the quasi-simplicity of B) we see that 1 ⊗ 1 ∈ I. Next, if ai ∈ k for all
i, then c = 1 ⊗ (

∑
i aibi) so we reduce to the case n = 1. Otherwise, we take

j such that aj /∈ k. Since A is central, there exists a ∈ A such that aaj 6= aja.
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Then (a⊗ 1)c− c(a⊗ 1) is equal to 1⊗ b1 +
∑
i>1,i6=j(aai− aia)⊗ bi, so we can

proceed by induction.

Definition 5.3. A k-algebra A is called a matrix algebra, if A is isomorphic
to Mn(k) for some n ∈ Z≥1.

Exercise 5.4. A matrix algebra is a CSA (can do this concretely, or notice
that a matrix algebra is Morita equivalent to k, and being central and simple are
stable under Morita equivalence).

Lemma 5.5. Let A,B be k-algebras. Then Z(A⊗k B) = Z(A)⊗k Z(B).

Proof. Let c ∈ Z(A ⊗k B). We can write c =
∑
i ai ⊗ bi with the ai’s linearly

independent. Then (1 ⊗ b)c = c(1 ⊗ b) for all b ∈ B implies that bi ∈ Z(B)
for all i. Now we can present c =

∑
j a
′
j ⊗ b′j with the bj ’s linearly independent

and every b′j is equal to one of the bi’s. Then analogously to before we see that
a′j ∈ Z(A) for all j. Therefore c ∈ Z(A)⊗k Z(B).

Lemma 5.6. Let A be a k-algebra and K/k a field extension.

1. A is central if and only if AK is central.

2. If AK is quasi-simple then A is quasi-simple.

3. If A is a CSA then AK is a quasi-simple.

4. A is a CSA if and only if AK is a CSA.

Proof.

1. One has Z(AK) = K ⊗k Z(A). From this, the claim is clear.

2. If I ⊂ A is a non-trivial two-sided ideal, then K⊗k I ⊂ AK is a non-trivial
two-sided ideal.

3. This follows from lemma 5.2.

4. This follows from the previous items.

Claim 5.7. The following are equivalent:

1. A is a central simple algebra.

2. For an algebraic closure K/k, AK is a matrix algebra.

3. There exists a finite field extension K/k such that AK is a matrix algebra.

Proof. (1) =⇒ (2): By lemma 5.6, AK is a CSA. By Artin-Wedderburn, AK
is isomorphic to Mn(D) where n ∈ Z≥1 and D is a division algebra over K. But
K is the only such division algebra, hence AK is a matrix algebra.

(2) =⇒ (3): This is standard, from finite-dimensionality.
(3) =⇒ (1): A matrix algebra is a CSA, hence AK is a CSA, and hence,

by lemma 5.6, A is a CSA.
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Lemma 5.8.

1. Let A,B be CSA’s. Then A⊗k B is a CSA.

2. Let A be a CSA. Then Aop is a CSA.

3. Let A be a CSA. Then Aop ⊗k A is a matrix algebra.

Proof.

1. By passing to a suitable finite algebraic extension, we reduce to A,B being
matrix algebras. Then the claim follows from Mn(k)⊗kMm(k) ∼= Mnm(k)
(alternatively, this follows from lemmas above).

2. By passing to a suitable finite algebraic extension, we reduce to A being
a matrix algebra. Then the claim follows from Mn(k)op ∼= Mn(k).

3. One has a morphism of k-algebras φ : Aop ⊗k A→ Endk(A), given by

a⊗ b 7→ (c 7→ bca).

Since Aop⊗A is simple by the already established part (1), φ is injective.
By comparing dimensions, we deduce that φ is an isomorphism.

Definition 5.9. The Brauer group of k is defined as the group of isomorphism
classes of CSA’s up to Morita equivalence, with the tensor product as the group
operation.

Remark 5.10. By claim 4.33 and lemma 5.8, the binary operation is well-
defined. Clearly k defines the unit for this operation, and by lemma 5.7 inverses
exist.

Remark 5.11. The elements of the Brauer group are in bijection with isomor-
phism classes of CDA’s (because every CSA is Morita equivalent to a unique
CDA, upt to isomorphism), but what should be the group operation is less clear
if we would define it like this (because the tensor product of two CDA’s might
not be a CDA, but it is a CSA).

Remark 5.12. From all what was said above, we see that the elements of the
Brauer group might be roughly considered as equivalence classes of k-linear cat-
egories A (maybe with some extra condition), such that for an algebraic closure
K/K, one has AK ≈ Mod(K). In other words, the Brauer group classifies
forms of the category of vector spaces, where ”form” has the following sense:
Suppose that for a field L, one has a world of entities CL. Suppose that for a
field extension M/L, one has a transformation CL → CM , with some expected
properties (the ”base change”). Suppose we pick an entity F ∈ CM . Then a
standard question is to find all entities f ∈ CL which become equivalent to F
under the transformation above. Such f ’s are then called ”L-forms” of F .
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5.2 The centralizer theorem

Lemma 5.13. Let A be a simple ring and V an A-module of finite length. Then
EndA(V ) is also a simple ring.

Proof. Since A is semismiple, the module V is projective. Since V is projective
and finitely generated over A, it is compact. Since A is simple, V is a generator
of Mod(A). Therefore, EndA(V )op is Morita equivalent to A, so is simple. The
opposite of a simple ring is simple. Therefore EndA(V ) is simple.

Alternatively, write V ∼= En where E is a simple A-module. Then denoting
D = EndA(E) (a division algebra) we have EndA(V ) ∼= Mn(D) and hence it is
simple.

Lemma 5.14. Let A be a simple ring and E a simple A-module. Denote D =
EndA(E). Then dimD E = [A : [E]]. In particular, if A is a k-algebra, we have
dimk A = (dimD E)2 · dimkD.

Proof. Writing A ∼= En (so n = [A : [E]]) we have (we already done this
computation once before)

E ∼= HomA(A,E) ∼= HomA(En, E) ∼= HomA(E,E)n ∼= Dn

and this is a D-module isomorphism. So dimD E = n, as desired. In the case
that A is a k-algebra, we have

dimk A = [A : [E]] · dimk E = [A : [E]] · dimD E · dimkD = n · n · dimkD.

Theorem 5.15 (Centralizer theorem). Let A be a CSA, and B ⊂ A a simple
subalgebra. Then:

1. CA(B) ⊂ A is simple.

2. dimk A = dimk B · dimk CA(B).

3. CA(CA(B)) = B.

Proof.

1. Let us consider A as an (Aop⊗kB)-module, via (a, b)∗x = bxa. We notice
that

CA(B) ∼= EndAop⊗kB(A), c 7→ (x 7→ cx).

Since Aop ⊗B is simple, EndAop⊗kB(A) is also simple.

2. Denote by ` the length of A as a (Aop⊗kB)-module, by n the dimension of
a simple (Aop⊗kB)-module over the division algebra of its endomorphisms,
and bym the dimension over k of the division algebra of the endomorphism
of a simple (Aop ⊗k B)-module.

Then dimk A = ` ·n ·m, dimk(Aop⊗kB) = n2 ·m and dimk CA(B) = `2 ·m.

Hence, dimk B = dimk(Aop⊗kB)
dimk A

= n/` and the desired relation is evident.
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3. Since B ⊂ CA(CA(B)), the assertion follows by comparing dimensions,
using the previous two assertions.

5.3 Maximal subfields

Claim 5.16. Let D be a CDA, and K ⊂ D a maximal subfield. Then dimkD =
(dimkK)2.

Proof. Notice that CD(K) = K. Hence, the assertion follows from the claim
5.15.

Claim 5.17. Let D be a CDA, and K ⊂ D a maximal subfield. Then DK is a
matrix algebra.

Proof. We consider D as a K-vector space, by right multiplication. Then we
obtain a k-algebra homomorphism D → EndK(D), given by left multiplication.
Extending scalars, we obtain a K-algebra homomorphism φ : DK → EndK(D).
Since both are K-algebras of dimension dimkD and DK is simple, φ is an
isomorphism.

Lemma 5.18 (Noether, Jacobson). Let D be a CDA. If D 6= k, then there
exists d ∈ D − k such that k(d)/k is separable.

Proof. Omitted for now.

Claim 5.19. Let D be a CDA. Then there exists a maximal subfield K ⊂ D
such that K/k is separable.

Proof. Let K ⊂ D be maximal among subfields which are separable over k.
We want to show that K is a maximal subfield in D. Consider CD(K). By
the centralizer theorem, CD(K) is a CDA over K. If CD(K) = K then K has
the correct dimension that by the centralizer theorem forces it to be a maximal
subfield. Suppose by contradiction that CD(K) 6= K. Then by lemma 4.1 there
exists d ∈ CD(K)−K such that K(d)/K is separable - which clearly contradicts
the maximality of K.

Corollary 5.20 (of claims 5.19 and 5.17). Let A be a CSA. Then there exists
a separable finite extension K/k such that AK is a matrix algebra.

Remark 5.21. The last corollary says that CSA’s always become matrix al-
gebras over the separable closure (so it is not necessary to pass to the possibly
bigger algebraic closure). This is important for the cohomological interpretation
of the Brauer group.

21



5.4 The Noether-Skolem theorem

Lemma 5.22. Let A,B be two k-algebras. Then CA⊗kB(A⊗k k) = Z(A)⊗kB.

Proof. Easy.

Lemma 5.23. Let A be a f.d. simple k-algebra, and M,N two f.d. A-modules.
Then M ∼= N if and only if dimkM = dimkN .

Proof. Clear, since every f.d. A-module is simply a direct sum of copies of the
unique (up to isomorphism) simple A-module.

Lemma 5.24. Let A be a f.d. simple k-algebra, M a f.d. k-vector space,
and θ1, θ2 : A → Endk(M) two k-algebra morphisms. Then there exists U ∈
GLk(M) such that θ2(a) = Uθ1(a)U−1 for all a ∈ A.

Proof. The morphisms θ1, θ2 impose on M two A-module structures. By the
previous lemma, the two resulting modules are isomorphic. An isomorphism
between them is exactly U as wanted.

Theorem 5.25 (Noether-Skolem). Let A be a CSA, B a simple algebra, and
φ1, φ2 : B → A algebra morphisms. Then there exists u ∈ A× such that φ2(b) =
uφ1(b)u−1 for all b ∈ B.

Proof. Consider two (Aop ⊗k B)-module structures on A given by ιi : Aop ⊗k
B → Endk(A) where ιi(a ⊗ b)(x) = φi(b)xa (where i = 1, 2). Recalling that
Aop⊗kB is simple, we see by the previous lemma that there exists an invertible
U ∈ Endk(A) such that U ◦ ι1(a ⊗ b) ◦ U−1 = ι2(a ⊗ b). Also, recall that
ι : Aop ⊗k A → Endk(A) given by ι(a1 ⊗ a2)(x) = a2xa1 is an isomorphism of
algebras. Hence, setting u1 := ι−1(U), we have

u1(a⊗ φ1(b))u−1
1 = a⊗ φ2(b).

Setting b = 1, we see that u1 ∈ CAop⊗kA(Aop ⊗k k) = Z(Aop) ⊗k A = k ⊗k A.
Hence we can write u1 = 1 ⊗ u for u ∈ A (notice that u ∈ A×), and we get,
substituting a = 1 this time,

uφ1(b)u−1 = φ2(b) b ∈ B.

Corollary 5.26. Let A be a CSA, and B,C ⊂ A two simple subalgebras. Sup-
pose given an isomorphism of algebras θ : B → C. Then there exists u ∈ A×
such that ubu−1 = θ(b) for all b ∈ B.

Corollary 5.27. Let A be a CSA, and θ : A→ A an automorphism of algebras.
Then there exists u ∈ A× such that θ(a) = uau−1 for all a ∈ A.
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5.5 Examples

5.5.1 Symbol algebras

Can we produce concrete examples of CSA’s?
Let n ∈ Z≥2, assume that n 6= 0 in k, and assume that k contains all n-th

roots of unity. Fix ζ ∈ k, a primitive n-th root of unity.
Given a, b ∈ k×, define

Ca,b := Cn,ζa,b (k) := k〈x, y〉/〈xn = a, yn = b, xy = ζyx〉.

Notice that it is not hard to understand that Ca,b is an n2-dimensional k-algebra,
with basis (xiyj)0≤i,j≤n−1.

Here are some other properties which are not hard to establish:

Lemma 5.28.

1. Cacn,b ∼= Ca,bcn ∼= Ca,b for a, b, c,∈ k×.

2. Ca,b ∼= Cb−1,a for a, b ∈ k×.

3. Ca,b ∼= Copb,a for a, b ∈ k×.

Lemma 5.29. C1,b is a matrix algebra.

Proof. Notice that an n2-dimensional k-algebra A is a matrix algebra if and
only if there exists a simple n-dimensional A-module E for which EndA(E) = k
(indeed, given such a module, the map A→ Endk(E) is surjective by Jacobson’s
density theorem and therefore an isomorphism by comparing dimensions).

Therefore, let us try to construct an n-dimensional A-module E. Since xn =
1, by diagnolization of the operator-to-be that x defines, it seems reasonable to
fix a basis (ei)i∈Z/nZ of E and set xei = ζiei. Furthermore, xy = ζyx shows
that we must have yei = ciei+1 for some ci ∈ k. Then choosing arbitrarily (ci)’s
such that

∏
ci = b gives as an Ca,b-module E. It is easy to see that E is simple

(Since x is diagnolizable, every submodule is a direct sum of k ·ei’s; Since y acts
by translation, this must be the sum of all of them...). Then one can see that
EndCa,b(E) = k either by easy direct computation, or by noticing that, fixing an
algebraic closure K/k, one has dimEndCa,b(E) = dimEnd(Ca,b)K (EK), so that
(since (Ca,b(k))K ∼= Ca,b(K), and EK is again a module of the same nature, so in
particular simple by what we have already shown) it is easy to see that one can
reduce to the case when k is algebraically closed, and then, since EndCa,b(E) is
a division algebra, it must be k.

Corollary 5.30. Suppose that a admits an n-th root in k. Then Ca,b is a matrix
algebra.

Proof. If a admits an n-th root in k, say αn = a, then Ca,b ∼= Cαn,b ∼= C1,b so
by the above it is a matrix algebra.
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Claim 5.31. Ca,b is a CSA.

Proof. We set K = k( n
√
a), and then Ca,b(K) is a matrix algebra, so, since

Ca,b(k)K ∼= Ca,b(K), we see that Ca,b(k) is a CSA.

Claim 5.32. We have [Ca,bc] = [Ca,b] · [Ca,c] (equality in the Brauer group).

Proof (from Milnor’s book on K-theory). Denote by x, y (resp. X,Y ) the gen-
erators of Ca,b (resp. Ca,c) as above and consider the algebra

C = Ca,b ⊗k Ca,c.

Consider now the subalgebra B of C generated by x ⊗ 1 and y ⊗ Y , and the
subalgebra B′ of C generated by x−1⊗X and 1⊗Y . Then it is easy to see that
B ∼= Ca,bc and B′ ∼= C1,bc. Moreover, we see also that C ∼= B ⊗k B′. Therefore

Ca,b ⊗k Ca,c ∼= Ca,bc ⊗ C1,bc.

Since C1,bc is trivial in the Brauer group, we get the claimed.

Proposition 5.33. [Ca,b] = 1 whenever a+ b has an n-th root in k. In partic-
ular, we have the Steinberg relation [Ca,1−a] = 1 when a 6= 1 and the relation
[a,−a] = 1.

Proof (from Milnor’s book on K-theory). We first compute that we have (x +
y)n = xn + yn, in general. Indeed, it is easy to see that the coefficient of yixn−i

in the unfolding of the LHS is the coefficient of T i in (1+Tζ0) · . . . · (1+Tζn−1).
This polynomial is (−T )n − 1 up to a constant.

Thus, if a+ b is an n-th root in k (write a+ b = cn) we see that z := x+ y
is an element in A := Ca,b which satisfies the polynomial equation Tn − cn = 0
and no equation of lower degree. Therefore, since the polynomial Tn − cn

splits completely over k, we see that k[z] is isomorphic to the product of n
copies of k. We can thus consider the corresponding orthogonal idempotents
e1, . . . , en ∈ k[z]. One then sees that A = Ae1 ⊕ Ae2 ⊕ . . . ⊕ Aen. Therefore,
A is an n2-dimensional CSA admitting a simple module of k-dimension ≤ n.
It is easy to see from the Artin-Wedderburn theorem that A is then a matrix
algebra.

Remark 5.34. Thus, by the properties that we have seen, we obtain that
(a, b) 7→ [Ca,b] defines a Z-bilinear anti-symmetric map

(−,−)n : k×/(k×)n × k×/(k×)n → Br(k)

which furthermore satisfies the Steinberg identity (a, 1− a)n = 1 when a 6= 1.

Proposition 5.35. The algebra Ca,b is a matrix algebra (i.e. (a, b)n = 1) if
and only if b is in the image of the norm map from k( n

√
a) to k or equivalently

from k[T ]/(Tn − a) to k.

Proof (from Milnor’s book on K-theory). The two criteria are equivalent be-
cause k[T ]/(Tn − a) is the product of several fields isomorphic to k( n

√
a). The

rest of the proof is omitted for now (we will establish below the special case
when n = 2).
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5.5.2 Quaternion algebras

Definition 5.36. A quaternion algebra is a CSA of dimension 4.

Notice that by dimension reasoning, a quaternion algebra is either a matrix
algebra or a division algebra, and two Morita equivalent quaternion algebras are
in fact isomorphic. The most famous quaternion algebra is C2

−1,−1 in the case
of k := R - the Hamilton quaternions. We will check below that it is a division
algebra.

Claim 5.37. Assume that char(k) 6= 2. Then every quaternion algebra is
isomorphic to C2

a,b for some a, b ∈ k×.

Proof. Let D be a quaternion algebra. If D is a matrix algebra, thne D ∼= C2
1,1

so that we are OK. Assume thus that D is a division algebra. A maximal
subfield K ⊂ D is of dimension 2, hence we can find an element 0 6= x ∈ K such
that a := x2 ∈ k. By the Noether-Skolem theorem, we can find 0 6= y ∈ D such
that conjugation by y induces the non-trivial automorphism of K, i.e. yxy−1 =
−x (or xy = −yx). By dimension considerations, D has basis 1, x, y, xy, in
particular x, y generate D. Notice that y2xy−2 = x, so y2 centralizes both x
and y, thus lies in the center of D, hence b := y2 ∈ k. Now clearly D ∼= C2

a,b.

Corollary 5.38. For a quaternion algebra A, one has that A⊗k A is a matrix
algebra. In other words, elements in the Brauer group represented by quaternion
algebras are 2-torsion.

Proof. Writing A ∼= C2
a,b, we have

[A⊗k A] ∼= [C2
a,b ⊗k C2

a,b] = [C2
a,b2 ] = [C2

a,1]

and the latter is trivial.

Construction 5.39. Let A be a CSA. Fix a field extension K/k such that AK is
a matrix algebra. Considering a simple AK-module V , we define RNm : A→ K
by setting RNm(a) to be the determinant of the endomorphism that a induces
on the K-vector space V . Then, in fact the image of RNm lies in k, and the
map RNm does not depend on the choice of K/k. One can see this easily if
one knows that there always exist a separable splitting field, using Galois theory.
The resulting map RNm : A → k is a multiplicative monoid morphism, and
reflects invertibility (i.e. a ∈ A is invertible if RNm(a) 6= 0).

Claim 5.40. Assume that char(k) 6= 2. Let a, b ∈ k×. Then C2
a,b is a matrix

algebra (equivalently, not a division algebra) if and only if b lies in the image of
Nm : k(

√
a)× → k×.

Proof. If a has a square root in k×, then it is clearly a norm and also we already
saw that C2

a,b is a matrix algebra, so everything is OK. Hence, we may assume

that a has no square root in k×. Notice that C2
a,b is a matrix algebra if and
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only if there exists a non-zero element in C2
a,b which is non-invertible, and such

an element is automatically a left and right zero-divisor.

Proof 1: One calculates

RNm(c0 + c1x+ c2y + c3xy) = c20 − ac21 − bc22 + abc23.

Thus, C2
a,b is a matrix algebra if and only if there exists z ∈ C2

a,b such that z 6= 0

and RNm(z) = 0, or in other words if there exists 0 6= (c0, c1, c2, c3) ∈ k4 such
that

b =
c20 − ac21
c22 − ac23

which is to say

b = Nm
k(
√
a)

k (
c0 +

√
ac1

c2 +
√
ac3

).

This explains the claim.

Proof 2: Denote K = k[x] ⊂ C2
a,b. One has C2

a,b = K ⊕ K · y. Denote
by θ : K → K the non-trivial k-automorphism (i.e. θ(x) = −x). Notice that
ry = yθ(r) for r ∈ K. The existence of a zero-divisor is equivalent to the
existence of r, s ∈ K such that (y + r)(y + s) = 0 (because we will have some
(r1y + r2)(ys1 + s2) = 0 but then we can multiply by r−1

1 on the left and by
s−1

1 on the right). This equation unfolds to y(θ(r) + s) + (rs + b) = 0, i.e. to
s = −θ(r) and b = −rs. Therefore the existence of a zero-divisor is equivalent
to the existence of r ∈ K such that b = rθ(r) = NmK

k (r).

We also have a reinterpretation of the condition we found:

Lemma 5.41. Assume that char(k) 6= 2. Let a, b ∈ k×. Then b lies in the
image of Nm : k(

√
a)× → k× if and only if the equation z2 = ax2 + by2 has a

non-zero solution (x, y, z) ∈ k3.

Proof. If a is a square in k then the equation has a non-zero solution (1, 0,
√
a)

and b lies in the image of the norm, so we are good. Suppose that a is not a
square in k. Then b lies in the image of the norm if and only if there exists
(c, d) ∈ k2 such that b = c2 − ad2. In other words, if and only if the equation
z2 = ax2 + b has a solution. Since a is not a square in k, this equation has a
solution if and only if the equation z2 = ax2 + by2 has a non-zero solution.

5.5.3 Algebraically closed fields

Let D be a f.d. division algebra over k, and let d ∈ D − k. Then k[d] ⊂ D is a
f.d. integral commutative k-algebra, hence a field. From this, we conclude:

Claim 5.42. If k is algebraically closed, then Br(k) = 1.

Proof. Indeed, there are no non-trivial f.d. division algebras over k.
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5.5.4 Finite fields

Claim 5.43. If k is a finite field, then Br(k) = 1.

Proof. Let D be a f.d. central division k-algebra; We want to show that D = k.
For a maximal subfield K ⊂ D, we saw that dimK =

√
dimD. Hence, all maxi-

mal subfields are isomorphic in our case where k is finite. By the Noether-Skolem
theorem, we get that every two maximal subfields are conjugate. Thus, fixing
a maximal subfield K ⊂ D, we see in particular that D× = ∪u∈D×uK×u−1. A
simple lemma about finite groups (see below) gives us D× = K× and so D = K.
Since D is central, we get D = k.

We used the following lemma in the proof above:

Lemma 5.44. Let G be a finite group, and H ⊂ G a subgroup. If ∪g∈GgHg−1 =
G, then H = G.

5.5.5 The field R

Claim 5.45. The only non-trivial CDA over R is the Hamilton quaternion
algebra C2

−1,−1.

Proof. Let D be a CDA over R. Since the only finite field extensions of R are
R and C, by the results above on maximal subfields, if D 6= R then D must be
four-dimensional. Hence, from what we saw above, D ∼= C2

a,b for some a, b ∈ R×.
Since we can change a and b by squares, we can assume a, b ∈ {1,−1}. Since if
either a or b are 1 then C2

a,b is a matrix algebra, we are only left with C2
−1,−1,

which is indeed a division algebra (for example, because −1 is not a norm from
C to R).

Corollary 5.46. Br(R) ∼= Z/2Z.

We denote by inv∞ : Br(R) → Q/Z the unique embedding (i.e. the non-
trivial element in Br(R) goes to 1/2 + Z).

5.5.6 The fields Qp

We will not discuss too much, but just note the following theorem:

Theorem 5.47 (Part of local class field theory). One has a canonical isomor-
phism

Br(Qp) ∼= Q/Z.

In particular, there is, up to isomorphism, only one quaternion algebra over
Qp which is not a matrix algebra.
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5.5.7 Local-to-Global stuff

Theorem 5.48 (Albert-Brauer-Hasse-Noether). Let D be a CSA over Q. Then
D is a matrix algebra if and only if for every v ∈ pl(Q), DQv is a matrix algebra.

Lemma 5.49. Let D be a CSA over Q. Then, for almost all v ∈ pl(Q), the
CSA DQv is a matrix algebra.

Thus, we can rephrase the theorem by saying that

Br(Q)→
⊕

v∈pl(Q)

Br(Qv)

is injective.

Recall that we have a canonical homomorphism invv : Br(Qv)→ Q/Z which
is an isomorphism when v is non-archimedean.

Theorem 5.50 (Part of global class field theory). The sequence

0→ Br(Q)→
⊕

v∈pl(Q)

Br(Qv)
∑
v invv−−−−−→ Q/Z→ 0.

is exact.

Corollary 5.51. Let A be a quaternion algebra over Q. Then the number of
v ∈ pl(Q) for which AQv is not a matrix algebra is even.

Example 5.52. In particular, consider the CSA Cp,q(Q) where p and q are odd
primes. By the corollary, the number of v ∈ pl(Q) for which z2 = px2 + qy2 has
no solution in Qv is even. For v =∞ there clearly is a solution. Using Hensel’s
lemma etc., it is quite easy to see the following. For v = p (resp. v = q) there
is a solution if and only if q (resp. p) is a square modulo p (resp. q). For an
odd prime ` /∈ {p, q}, there is always a solution. For v = 2, there is a solution
if and only if at least one of the number p, q is equal to 1 modulo 4, i.e. if and
only if p−1

2 ·
q−1

2 is even. Therefore we see that(
p

q

)(
q

p

)
(−1)

p−1
2 ·

q−1
2 = 1.

.

5.6 The Brauer group as a cohomology group

To be added later, perhaps

6 Representations and characters

In this section, we fix a field k, and all vector spaces, algebras etc. are over k.
By G we denote a finite group and by A we denote a f.d. algebra.
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6.1 Group algebras and group representations

Definition 6.1. A representation of G is a pair (V, ρ) consisting of a vector
space V and group morphism ρ : G → GL(V ). A morphism of representations
(V, ρ), (W, θ) is a linear transformation T : V → W such that T ◦ ρ(g) = θ(g) ◦
T for all g ∈ G. The category of representations we denote Repk(G). The
morphism spaces in this category we denote HomG(·, ·). The category Repk(G)
is an abelian category. We also denote Irrk(G) := Irr(Repk(G)) (the set of
isomorphism classes of irreducible representations).

Remark 6.2. Sometimes, given a group representation (V, ρ), we simply write
gv instead of ρ(g)(v). We might also simply say that V is a representation of
G, omitting ρ all together (in the same way as when referring to an A-module
M , one does not keep the structurual A → End(M) or A ×M → M in the
notation).

Remark 6.3. We said that Repk(G) is an abelian category. The reader should
decipher for himself, what are subrepresentations, quotient representations, di-
rect sums of representations, etc. Also, decipher what does it mean concretely
for Repk(G) to be semisimple.

Example 6.4. The trivial representation k ∈ Repk(G) is the one-dimensional
vector space k, together with the trivial G-action, that is the corresponding
ρ : G → GL(k) is given by ρ(g) = idk for all g ∈ G. More generally, given
a group homomorphism θ : G→ k×, one can consider the one-dimensional rep-
resentation kθ ∈ Repk(G), which is the vector space k with the ρ : G → GL(k)
given by ρ(g) = θ(g) · idk. Note that one-dimensional representations are al-
ways irreducible. Check that this construction yields an bijection between the
set of group homomorphisms Hom(G, k×) and the set of isomorphism classes
of one-dimensional representations in Repk(G).

Definition 6.5. The group algebra of G, denoted k[G], is the algebra with
basis G and the product extending the one of G by bilinearity. Thus, concretely,
elements of the group algebra are formal expressions

∑
g∈G agg, and the product

is ∑
g∈G

agg ·
∑
g∈G

bgg =
∑
g∈G

(∑
h∈G

agh−1bh

)
g.

Remark 6.6. Given an algebra A, the set of algebra morphisms k[G] → A
is in bijection with the set of group morphisms G → A×. In particular, given
a vector space V , the structure of a module over k[G] on V , i.e. an algebra
morphism k[G] → End(V ), is the same as the structure of a representation of
G on V , i.e. a group morphism G → GL(V ). We obtain in this way a natural
equivalence of categories between Repk(G) and Mod(k[G]) which we will use
extensively.
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6.2 Maschke’s theorem and examples of non-semisimplicity

Claim 6.7. Suppose that char(k) does not divide |G|. Then k[G] is semisimple
(in other words, Repk(G) is a semisimple category).

Proof. Proof 1: Let us notice that for g1, g2 ∈ G ⊂ k[G], one has tr(g1g2) =
|G| · δg1,g−1

2
. Thus, the symmetric bilinear form (x, y) 7→ tr(xy) on k[G] is

nondegenerate. Thus, as we saw, J(k[G]) = 0 and so k[G] is semisimple.
Proof 2: Let M ∈ Mod(k[G]) and N ⊂ M a submodule. Let p : M → M

be a projection operator with image N . Define p1 := 1
|G|
∑
g∈G gpg

−1. Then

one checks that p1 is again a projection operator with image N , and that p1 is
a k[G]-module morphism. Hence, Ker(p1) is a k[G]-submodule complimentary
to N .

Claim 6.8. Suppose that char(k) = p > 0 and that p divides |G|. Then k[G] is
not semisimple.

Proof. Consider r :=
∑
g∈G g ∈ k[G]. Notice that gr = r for g ∈ G and

r2 = 0. Hence, the left ideal generated by r is nilpotent. Thus r ∈ J(k[G]), so
J(k[G]) 6= 0 and so k[G] is not semisimple.

Let us illustrate an extreme:

Claim 6.9. Suppose that char(k) = p > 0 and that G is a p-group. Then the
trivial representation defines the only element in Irr(G).

Proof. Let E be an irreducible G-representaiton, and let us write ρ : G →
GL(E) for the corresponding morphism. Notice that for every g ∈ G, one has
gp
r

= 1 for some r ∈ Z≥1, and thus (recall that in char. p one has (T + S)p
r

=
T p

r

+ Sp
r

) (ρ(g) − idE)p
r

= 0 and thus in particular ρ(g) − idE is nilpotent,
and hence not invertible. Now, suppose in addition that g ∈ Z(G). Then
ρ(g) − idE ∈ EndG(E). Recall that since E is irreducible, by Schur’s lemma
EndG(E) is a division algebra. Hence ρ(g) − id, being non-invertible, must be
zero. Thus we obtain ρ(g) = idE for all g ∈ Z(G). This allows to think about E
as a representation of G/Z(G), which again is irreducible. Recall now that for a
non-trivial p-group, the center is non-trivial. This allows to assume inductively
that we already know the claim for G/Z(G). We obtain that E is the trivial
representation of G/Z(G), and hence obviously the trivial representation of G.

6.3 Character theory - 1

Throughout this subsection, we assume that k is algebraically closed. We fix a
f.d. algebra A, and denote by E1, . . . , En representatives of isomorphism classes
of simple A-modules (recall that Irr(A) is finite).

Remark 6.10. Let us recall that by the material we saw (Schur’s lemma, Jacob-
son density theorem, Artin-Wedderburn theorem, etc.), we have EndA(Ei) = k
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(because k is algebraically closed and EndA(Ei) is a division k-algebra), the
natural algebra morphism

A→ Endk(E1)× . . .× Endk(En)

is surjective, and it is injective if and only if A is semisimple (the kernel of this
morphism is the Jacobson radical J(A)). In case A is indeed semisimple, the
two-sided ideal A[Ei] ⊂ A corresponds under the above isomorphism to End(Ei).

Definition 6.11. The cocenter of A is the vector space

cc(A) := A/〈ab− ba : a, b ∈ A〉.

We also call cc(A)∗ the space of trace functionals on A.

Example 6.12. Suppose A = k[G]. Then Z(k[G]) is the subspace of elements∑
g∈G agg such that ahgh−1 = ag for all h, g ∈ G. The space k[G]∗ can be iden-

tified with the space of functions from G to k, and the space cc(k[G])∗ consists
of the functions α : G → k for which α(hgh−1) = α(g) for all h, g ∈ G. Let us
denote by Funcl(G, k) ⊂ Fun(G, k) the subspace of such functions; it is called
the space of class functions on G.

Definition 6.13. Let E be a f.d. A-module. Define the character of E,
χE ∈ cc(A)∗, by

χE(a) := tr(a;E).

Remark 6.14. Given a short exact sequence of f.d. A-modules

0→ E1 → E2 → E3 → 0,

one has χE2
= χE1

+ χE3
.

Theorem 6.15. The characters χE1 , . . . , χEn ∈ cc(A)∗ are linearly indepen-
dent. If A is semisimple, these are moreover a basis of cc(A)∗.

Proof. By remark 6.10, for 1 ≤ i ≤ n, we can find an element ai ∈ A such that
ai acts on Ej by zero if j 6= i and by a linear transformation with trace 1 if
j = i. Then χj(ai) = δi,j , so that the first claim follows. Let us assume now
that A is semisimple. Then to show that dim cc(A) = n, by remark 6.10 it is
enough to show that dim cc(Mm(k)) = 1 for m ∈ Z≥1. This we will do below.

Definition 6.16. The algebra A, equipped with a trace functional δ ∈ cc(A)∗,
is called a symmetric Frobenius algebra, if the symmetric bilinear form on
A given by 〈a1, a2〉 := δ(a1a2) is non-degenerate. We refer to δ as a non-
degenerate trace functional. We denote by δa ∈ A∗ the functional given by
δa(b) := δ(ab). We also denote by 〈·, ·〉 the induced non-degenerate symmetric
bilinear form on A∗, i.e. 〈δa, δb〉 := 〈a, b〉.
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Example 6.17. The usual trace functional tr : Mm(k)→ k is a non-degenerate
trace functional, so that (Mm(k), tr) is a symmetric Frobenius algebra. We then
see that if A is semisimple then it admits a structure of a symmetric Frobenius
algebra, by using the decomposition in remark 6.10.

Example 6.18. Let G be a finite group, and assume that char(k) does not divide
|G|. Then the functional δ := χk[G] is more concretely given by δ(

∑
g∈G agg) =

|G| ·a1, and is easily seen to be non-degenerate, so that (k[G], δ) is a symmetric
Frobenius algebra. The from 〈·, ·〉 on k[G]∗ is given concretely by

〈α, β〉 =
1

|G|
∑
g∈G

α(g)β(g−1).

Indeed, 〈g, h〉 = |G| · δh,g−1 . Therefore δg = |G| · 1g−1 . Therefore

〈1g,1h〉 = 〈 1

|G|
δg−1 ,

1

|G|
δh−1〉 =

1

|G|2
〈g−1, h−1〉 =

1

|G|
δh−1,g

from which the formula follows easily by bilinearity.

Claim 6.19. Let (A, δ) be a symmetric Frobenius algebra. Then there are nat-
ural isomorphisms

A
a 7→δa
∼

// A∗

Z(A)
?�

OO

∼ // cc(A)∗
?�

OO .

Proof. The map A → A∗ given by a 7→ δa is an isomorphism because δ is a
non-degenerate trace functional. We check now that δa sits in cc(A)∗ if and
only if a ∈ Z(A). Indeed, δa(bc) = δa(cb) means δ(abc) = δ(acb) or equivalently
δ(abc) = δ(bac) or yet equivalently δ((ab − ba)c) = 0 and by non-degeneracy
this holds for all b, c ∈ A if and only if a ∈ Z(A).

Corollary 6.20. One has dim cc(Mm(k)) = 1.

Proof. Since (Mm(k), tr) is a symmetric Frobenius algebra, and is also central,
one has dim cc(Mm(k)) = dimZ(Mm(k)) = dim k = 1.

Let us now provide the two most basic numerical relations.

Claim 6.21. Suppose that A is semisimple (we do not assume that it is a
symmetric Frobenius algebra here).

1. One has
dimA =

∑
1≤i≤n

(dimEi)
2.

In particular, for A = k[G], we obtain

|G| =
∑

1≤i≤n

(dimEi)
2.
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2. One has
dimZ(A) = dim cc(A) = n(= |Irr(A)|).

In particular, for A = k[G], we get that the number of irreducible repre-
sentations of G is equal to the number of conjugacy classes in G.

Proof.

1. Clear from remark 6.10.

2. From theorem 6.15 we have that n = dim cc(A). We also notice that
dimZ(A) = n, as is clear from the decomposition of remark 6.10.

Remark 6.22. Suppose that A is semisimple. Then A ∼= ⊕1≤i≤nE
dimEi
i as A-

modules (although not canonically so). For example, notice that in terms of the
decomposition of remark 6.10, one has Endk(Ei) = A[Ei] (the corresponding
isotypic component), so Endk(Ei) is a direct sum of copies of Ei, and from
observing the dimensions it is clear how many.

Remark 6.23. For a finite group G in the semisimple setting, define the “zeta
function”

ζG(s) :=
∑

[E]∈Irrk(G)

dim(E)−s.

Then we saw that ζG(0) is equal to the number of conjgacy classes in G, while
ζG(−2) is equal to the number of elements in G. There is a formula of Frobenius
generalizing this:

ζG(−2 + 2n) =
1

|G|2n−1
|c−1
n (1)|

for n ∈ Z≥0, where cn : G2n → G is given by

cn(x1, y1, . . . , xn, yn) := [x1, y1] · . . . · [xn, yn].

Example 6.24. Consider G = S3 and k = C. The character table is the
following:

(•)(•)(•) (••)(•) (• • •)
1 1 1
1 −1 1
2 0 −1

Example 6.25. Suppose that G is abelian. Then every irreducible representa-
tion is one-dimensional (This is because the center Z(G) must act by scalars
on an irreducible representation by Schur’s lemma), and one gets Irr(G) ∼=
Hom(G, k×). Then χE1 , . . . , χEn = χ1, . . . , χn are simply the elements of
Hom(G, k×). One obtains now two natural bases of Fun(G, k) - the basis of
delta functions (1g)g∈G and the basis χ1, . . . , χn. The first basis diagnolizes the
operators Mf of pointwise multiplication by a function f ∈ Fun(G, k), while the
second basis diagnolizes the operators Sg of shift by g ∈ G.
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6.4 Character theory - 2

We continue with the notations of the previous subsection, but furthermore
assume that A is semisimple, and δ ∈ cc(A)∗ is a non-degenerate trace functional
(so that (A, δ) is a symmetric Frobenius algebra). Thus, when we concentrate
on the case A = k[G], we assume that char(k) does not divide |G|, and we take
δ = χk[G].

Recalling remark 6.10, we denote by ei ∈ Z(A) the unique element that acts
on Ej by δi,j . Then e1, . . . , en is a basis of Z(A) and we have the relations
eiei = ei , eiej = 0 when i 6= j and e1 + . . .+ en = 1.

Claim 6.26. The following are equivalent:

1. δ(ei) 6= 0 for all 1 ≤ i ≤ n.

2. dimEi 6= 0 in k, for all 1 ≤ i ≤ n.

3. The restriction of 〈·, ·〉 to Z(A) is non-degenerate.

If these conditions are satisfied, then one has

χEi =
dimEi
δ(ei)

· δei .

Proof. Recall the isomorphism Z(A) ∼= cc(A)∗, and let us denote by zi ∈ Z(A)
the element corresponding to χEi (in other words, δzi = χEi). Thus, we have
to bases for Z(A) , the basis e1, . . . , en and the basis z1, . . . , zn. Notice that we
have:

〈ei, ej〉 = δ(eiej) = δ(ei) · δi,j
and

〈ei, zj〉 = χEj (ei) = dimEi · δi,j .

From this, the claim is clear.

Exercise 6.27. Show that the conditions of the previous claim are also equiv-
alent to the following one: The composition Z(A) → A → cc(A) of the natural
inclusion followed by th enatural projection, is an isomorphism.

Corollary 6.28. [Orthogonality relations] Suppose that the conditions of claim
6.26 are satisfied for A. Then

〈χEi , χEj 〉 =
(dimEi)

2

δ(ei)
· δi,j .

Proof. We have

〈χEi , χEj 〉 = 〈dimEi
δ(ei)

ei,
dimEj
δ(ej)

ej〉 =
(dimEi)

2

δ(ei)
· δi,j .
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Example 6.29. Suppose that char(k) = p > 0. Then (Mp(k), tr) fails to satisfy
the conditions in claim 6.26.

Claim 6.30. In the case A = k[G], the conditions of claim 6.26 are satisfied.

Proof. We would like to check that the restriction of 〈·, ·〉 to Z(k[G]) is non-
degenerate.

Let us consider the linear operator av : k[G] → k[G] given by av(D) :=
1
|G|
∑
g∈G g ·D · g−1. Then it is easy to check that av is a projection operator,

with image Z(k[G]). Furthermore, it is easy to check the adjunction formula

〈D1, av(D2)〉 = 〈av(D1), D2〉, D1, D2 ∈ k[G]

and therefore in particular

〈D1, av(D2)〉 = 〈D1, D2〉, D1 ∈ Z(k[G]), D2 ∈ k[G].

Thus, if for D1 ∈ Z(k[G]) one has 〈D1, D2〉 = 0 for all D2 ∈ Z(k[G]) then one
also has 〈D1, D2〉 = 0 for all D2 ∈ k[G] so that D1 = 0.

Remark 6.31. Thus, our non-degenerate symmetric bilinear form 〈·, ·〉 on
Fun(G, k) restricts to a non-degenerate form on Funcl(G, k).

Claim 6.32. In the case A = k[G], one has δ(ei) = (dimEi)
2.

Proof. Let us notice that

δ(ei) = χA(ei) =
∑

1≤j≤n

dimEj · χEj (ei) = (dimEi)
2.

Corollary 6.33. [Orthogonality relations for groups] In the case A = k[G], one
has:

〈χEi , χEj 〉 = δi,j .

More concretely:
1

|G|
∑
g∈G

χEi(g)χEj (g
−1) = δi,j .

Proof. We just plug the result of claim 6.32 in the relation of 6.28.

Corollary 6.34. In the case A = k[G], one has:

ei =
dimEi
|G|

∑
g∈G

χEi(g
−1) · g.
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Proof. First, let D ∈ k[G]. Write D =
∑
g∈G cg · g. Then

cg =
1

|G|
〈D, g−1〉 =

1

|G|
δD(g−1).

In other words, we have

D =
1

|G|
∑
g∈G

δD(g−1) · g.

We saw that
δei = dimEi · χEi .

Therefore

ei =
dimEi
|G|

∑
g∈G

χEi(g
−1) · g.

Remark 6.35. Let us describe a second approach to orthogonality relations in
the case of a group.

For a f.d. representaiton M ∈ Repk(G), we can construct the contragradi-
ent, or dual, representation M∗, which is the dual vector space, with G-action
(gα)(m) = α(g−1m). For two f.d. representations M,N ∈ Repk(G), we can
construct the tensor product representation M ⊗k N , which is the tensor prod-
uct of vector spaces, with G-action g(m ⊗ n) = gm ⊗ gn. Given a f.d. rep-
resentaiton M ∈ Repk(G), we can construct a vector space MG, given by:
MG = {m ∈M : gm = m ∀g ∈ G}.

Alongside, for a function f ∈ Fun(G, k) let us define f∗(g) := f(g−1). For
functions f1, f2 ∈ Fun(G, k), let us define (f1 · f2)(g) := f1(g)f2(g). Let us also
define a linear functional

∫
: Fun(G, k)→ k by

∫
f := 1

|G|
∑
g∈G f(g).

One can check now that χM∗ = χ∗M , χM⊗kN = χM · χN and dimMG =∫
χM . Finally, one can check that one has a natural isomorphism of vector space

(M∗ ⊗k N)G ∼= HomG(M,M) and also that one has an equality
∫

(f∗1 · f2) =
〈f1, f2〉. Aggregating all this, one obtains:

dimHomG(M,N) = 〈χM , χN 〉.

Now, ifM andN are irreducible, by Schur’s lemma the number dimHomG(M,N)
is equal to 0 if M and N are non-isomorphic, and to 1 otherwise. Hence we
obtain the orthogonality relations.

The next claim describes how the symmetric bilinear form 〈·, ·〉 on Funcl(G, k)

is a ”decategorification” of the Hom-spaces in Repf.d.k (G).

Claim 6.36. Let M1,M2 ∈ Repk(G) be f.d. representations. Then

dimHomG(M1,M2) = 〈χM1
, χM2

〉.
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Proof.
Option 1: Both sides are biadditive in short exact sequences, and hence we

reduce to the case when M1,M2 are irreducible. Then the left-hand side is 0
if M1,M2 are not isomorphic and 1 otherwise, by Schur’s lemma. The right-
hand side is 0 if M1,M2 are not isomorphic and 1 otherwise, by orthogonality
relations. Hence, both sides are equal.

Option 2: As in remark 6.35 above.

Example 6.37. Consider G = S3 and k = C. The inner product is:

〈χ1, χ2〉 =
1

6
(χ1((•)(•)(•))χ2((•)(•)(•)) + 3 · χ1((••)(•))χ2((••)(•)) + 2 · χ1((• • •))χ2((• • •))) .

One can check the orthogonality relations in the the table in example 6.24.

Remark 6.38. Let E be a f.d. representation of G. Then one has a non-
canonical isomorphism E ∼= ⊕1≤i≤nE

⊕mi
i for some uniquely defined vector

(m1, . . . ,mn) ∈ Zn≥0. Then, using the orthogonality relations, one calculates:

〈χE , χE〉 =
∑

1≤i≤n

m2
i .

In particular, we see that E is irreducible if and only if the ”length squared” of
its character, 〈χE , χE〉, is equal to 1.

Remark 6.39. Let us sum up. Let k be an algebraically closed field, and
G a finite group. Assume that the characteristic of k does not divide the
order of G. Then the category Repfdk (G) of representations of G on finite-
dimensional vector spaces over k is a semisimple abelian category, with finitely
many irreducible objects up to isomorphism, which for convenience of nota-
tion we list E1, . . . , En. In the space of functions Fun(G, k) one has a sub-
space Funcl(G, k) of class functions, which are those functions f which sat-
isfy f(ghg−1) = f(h) for all g, h ∈ G. One has a symmetric bilinear form
〈·, ·〉 on Fun(G, k), given by 〈f1, f2〉 = 1

|G|
∑
g∈G f1(g)f2(g−1). This form is

non-degenerate, and moreover its restriction to the subspace of class functions
Funcl(G, k) is again non-degenerate. To each E ∈ Repfdk (G) one assigns a
class function χE ∈ Funcl(G, k) (its character). For a short exact sequence
0 → E′ → E → E′′ → 0 one has χE = χE′ + χE′′ . One has that χE1

, . . . , χEn
are a basis of the space of class functions Funcl(G, k), which moreover satisfy
the orthogonality relations 〈χEi , χEj 〉 = δi,j . The number of irreducible repre-
sentation, n = |Irrk(G)|, is equal to the number of conjugacy classes in G. The
sum

∑
1≤i≤n dimE2

i is equal to |G|.

7 Induction

In this section, we fix a field k, and all vector spaces, algebras etc. are over k.
By G we denote a finite group. We assume that k is algebraically closed, and
that char(k) does not divide |G| (i.e. k[G] is semisimple).
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7.1 Restriction and induction

Let φ : B → A be a morphism of algebras. We have a functor resAB : Mod(A)→
Mod(B) simply given by restriction of the action along φ. It has a left adjoint
indBA : Mod(B) → Mod(A) and a right adjoint IndBA : Mod(B) → Mod(A).
They are described as follows:

indBA(M) := A⊗B M,

IndBA(M) := HomB(A,M)

(in the last expression, the space HomB(A,M) is a left A-module via (aφ)(a′) =
φ(aa′)).

Exercise 7.1. Recall what are adjoint functors, write explicitly what the ad-
junction means in the above two cases, and verify the above adjunctions.

7.2 0-th Hochchild homology and cohomology

Definition 7.2. Let A be a k-algebra and M an A-bimodule. We define the
vector spaces:

HH0(A;M) := {m ∈M | am = ma ∀a ∈ A}

and
HH0(A;M) := M/Span{am−ma}a∈A,m∈M .

Example 7.3. Let M be A itself as an A-bimodule in the standard way. Then
HH0(A;A) = Z(A) and HH0(A;A) = cc(A).

Notice that we have an obvious linear map

HH0(A;M)→ HH0(A;M)

(by the inclusion into M followed by the projection).

Claim 7.4. Let A = k[G], where G is a finite group and char(k) 6 ||G|. Then
HH0(A;M)→ HH0(A;M) is an isomorphism for any A-bimodule M .

Proof. We define av : M toM by

m 7→ 1

|G|
∑
g∈G

gmg−1.

On element of the form gm −mg this map vanishes, and so it induces a map
HH0(A;M) → HH0(A;M). One now easily checks that it is inverse to our
map HH0(A;M)→ HH0(A;M).

Remark 7.5. I could not figure out whether the last Claim still holds when
A is a symmetric Frobenius algebra with the extra condition we had above
(equivalent to Z(A)→ cc(A) being an isomorphism).
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7.3 The coincidence of the left and right adjoints

Let A,B be finite-dimensional algebras, and let φ : B → A.

We have
indAB(M) = A⊗B M ∼= HH0(B;A⊗kM).

Here B acts on A⊗k M on the left by b(a⊗m) = a⊗ bm and on the right by
(a ⊗ m)b = aφ(b) ⊗ m. These actions commute with the left action of A (by
a′(a ⊗m) = a′a ⊗m) and therefore HH0(B;A ⊗k M) is a quotient A-module
of A⊗kM , and the above stated isomorphism is an isomorphism of A-modules.

We have

IndAB(M) = HomB(A,M) ∼= HH0(B;Homk(A,M)) ∼= HH0(B;A∗ ⊗kM).

Here B acts on Homk(A,M) on the left by (bθ)(a) = bθ(a) and on the right
by (θb)(a) = θ(φ(b)a). These actions commute with the left action of A (by
(a′θ)(a) = θ(aa′)) and therefore HH0(B;Homk(A,M)) is a sub A-module of
Homk(A,M), and the first above stated isomorphism is an isomorphism of A-
modules. The second stated isomorphism is given by the standard isomorphism
Homk(A,M) ∼= A∗ ⊗k M . In the second description, the left action of B is by
b(` ⊗m) = ` ⊗ bm, the rigt action of B is by (` ⊗m)b = `b ⊗m and the left
action of A is by a(`⊗m) = a`⊗m.

Remark 7.6. Let A be a finite-dimensional algebra. Then A is an A-bimodule
naturally. Also, A∗ is an A-bimodule naturally. Suppose that δ is a non-
degenerate trace functional on A. It induces an isomorphism of vector spaces
A ∼= A∗. We then easily check that this is in fact an isomorphism of A-
bimodules.

If A is a symmetric Frobenius algebra, then by the Remark, we can identify
A∗ ⊗k M with A ⊗k M , and this identification preserves the left A-module
structure and the left and right B-module structures. We thus identify

IndAB(M) ∼= HH0(B;A∗ ⊗kM) ∼= HH0(B;A⊗kM).

Therefore, we obtain a morphism

indAB(M) ∼= HH0(B;A⊗kM)→ HH0(B;A⊗kM) ∼= IndAB(M).

If B = k[H] (when char(k) 6 ||H|), by the above we obtain that this morphism
is an isomorphism.

Therefore, we have obtained:

Corollary 7.7. Let H → G be a morphism of finite groups. Assume that
char(k) 6 ||G|. Then one has a canonical isomorphism

indGH → IndGH .
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7.4 Concrete descriptions in the case of group algebras

Let us describe IndHG more concretely. One has:

IndHG (M) = Homk[H](k[G],M) ∼= {f : G→M | f(hg) = hf(g) ∀h ∈ H, g ∈ G}

with G-action
(g′f)(g) = f(gg′).

Let us also describe indHG (M) more concretely. Choosing representatives
g1, . . . , gr ∈ G for the cosets G/H, One can describe IndHG (M) as ”g1”M ⊕
. . .⊕ ”gr”M (where ”gi” are formal placeholders, so that we are dealing with a
direct sum of several copies of M), and the G-action is g · ”gi”m = ”gj”(hm)
where we should write ggi = gjh for some (uniquely defined) 1 ≤ j ≤ r and
h ∈ H.

7.5 Characters and induction

Let again H ⊂ G be a subgroup. Let M ∈ Repk(G) be a f.d. representation. We
would like to calculate χindHGM ∈ Fun

cl(G, k) in terms of χM ∈ Funcl(H, k).

Claim 7.8. One has

χindHG (M)(g) =
∑

x∈G/H s.t. x−1gx∈H

χM (x−1gx)

(here the meaning of the expression x−1gx is that we first should replace x
with an actual representative of it in G, and the answer doesn’t depend on this
choice).

Proof. We will use the last description of induction above. We fix g ∈ G, and
count what contributes to the trace of g acting on ”g1”M ⊕ . . .⊕ ”gr”M . First,
only 1 ≤ i ≤ r for which ggi ∈ giH, i.e. g−1

i ggi ∈ H, contribute. For such i,
writing ggi = gih with h ∈ H, one has a commutative diagram

”gi”M
g
// ”gi”M

M
h //

OO

M

OO

where the vertical arrows are simply the isomorphisms of appending the place-
holder. Hence, the trace of g on ”gi”M is equal to the trace of h on M , i.e. to
χM (h) = χM (g−1

i ggi).

Next, let us see how the adjunction between induction and restriction reflects
in terms of characters.
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Claim 7.9 (Frobenius reciprocity). Let M ∈ Repk(H) and N ∈ Repk(G) be
f.d. representations. Then one has

〈χindHGM , χN 〉 = 〈χM , χresGHN 〉

(here the first inner product is of functions on G, and the second one of functions
on H).

Proof. One has:

〈χindHGM , χN 〉 = dimHomG(indHGM,N) = dimHomH(M, resGHN) = 〈χM , χresGHN 〉.

Remark 7.10. We can define indHG : Funcl(H, k)→ Funcl(G, k) by the same
formula as above:

indHG (f)(g) :=
∑

x∈G/H s.t. x−1gx∈H

f(x−1gx).

Of course, we also have a natural operation resHG : Funcl(G, k)→ Funcl(H, k)
given by simply restricting the function. Then one has:

〈f1, ind
H
Gf2〉 = 〈resGHf1, f2〉

for all f1 ∈ Funcl(G, k), f2 ∈ Funcl(H, k). Either one checks that independently
(which is more natural, since we don’t want to know representation theory to
check such a simple claim), or one reduces to Frobenius reciprocity above thanks
to characters spanning the space of class functions.

As a simple application, let us show:

Theorem 7.11 (Artin). Let M ∈ RepC(G) be a f.d. representation. χM can
be written as a linear combination with rational coefficients of characters of the
form χindHGCθ where H ⊂ G is a cyclic subgroup, θ ∈ H → C× a homomorphism,
and Cθ the corresponding one-dimensional representation of H.

Proof. Let us first notice that it is enough to show that the characters of the
peculiar form span the space of class functions on G. Indeed, this would mean
that χM can be written as a linear combination with complex coefficients of
such characters, and since all characters reside in the Z-lattice spanned by the
basis χE1

, . . . , χEn , the claim then follows from linear algebra.
Next, in order to show that the characters of the peculiar form span the

space of class functions on G, it is enough to show that if a class function
f ∈ Funcl(G, k) is orthogonal to all such characters, then it is 0. But

〈f, χindHGCθ 〉 = 〈resGHf, χCθ 〉,

so we obtain that resGHf is orthogonal to all χCθ ’s. Since the Cθ’s are all the
irreducible representations, their characters span Funcl(H, k), and hence we get
resGHf = 0. In other words, f is zero on every cyclic subgroup, and hence clearly
f is zero.
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Remark 7.12. Artin used the above theorem to deduce some information about
Artin L-functions. Better information would be granted if one knows Brauer’s
theorem, which replaces the rational coefficients in Artin’s theorem with integer
coefficients.

7.6 A geometric interpretation of induction of class func-
tions

By a finite groupoid we mean a category G all the arrow in which are isomor-
phism, for which the set π0(G) of isomorphism classes of objects is finite, and
for which every IsomG(x1, x2) is finite for all objects x1, x2 ∈ G.

Every finite set we consider a finite groupoid with only identity isomor-
phisms.

The basic example of finite groupoids: Let G be a finite group acting on a
finite set X. Then we define a finite groupoid G\X, whose objects are elements
of X, and

IsomG\X(x1, x2) := {g ∈ G | gx1 = x2}.
It is straight-forward to define composition.

Given functors between finite groupoids F1 : H1 → G and F2 : H2 → G,
the fiber product H1×

G
H2 is defined by the relevant universal property in the 2-

category of finite groupoids. Let us describe it concretely. An object of H1×
G
H2

is a triple (x1, x2, α) consisting of an object x1 of H1, an object x2 of H2, and an
isomorphism α : F1(x1) ∼= F2(x2) in G. One defines isomorphisms in an evident
way (we skip the explication for now).

For a finite groupoid G, we denote

Fun(G, k) := Fun(π0(G), k).

We define an inner product on Fun(G, k) by

〈f1, f2〉G :=
∑

[x]∈π0(G)

f1(x) · f2(x)

|AutG(x)|
.

For example, allowing ourself the frivolity of an infinite finite groupoid, we will
find that 〈1, 1〉N = e where N denotes the groupoid of finite sets and e is Euler’s
constant (base of natural logarithm).

Let F : H → G be a functor between finite groupoids. We want to define
linear maps

F ∗ : Fun(G, k) � Fun(H, k) : F∗.

We define F ∗ simply by F ∗(f)(x) := f(F (x)). We then define F∗ as adjoint to
F ∗ (with respect to the inner products defined above). Concretely,

(F∗)(f)(x) =
∑

y∈•×
G
H

f(pr2(y))

|Aut(y)|

42



where the map • → G is by x.

Notice that for a finite group G we have π0(G\G) ∼= Conj(G) where here
the action of G on G is by conjugation. Correspondingly, we have

Fun(G\G, k) ∼= Funcl(G, k).

Now, consider an injective morphism of finite groups φ : H → G. It induces
a functor between finite groupoids Fφ : H\H → G\G. We then claim that

(Fφ)∗ : Fun(H\H, k)→ Fun(G\G, k)

is precisely
indHG : Funcl(H, k)→ Funcl(G, k)

(under our identification of the space of class functions with the space of func-
tions on the corresponding finite groupoid). Indeed, first denote

Fix(G,G/H) := {(g, g′H) ∈ G×G/H | gg′H = g′H}

and define an action of G on Fix(G,G/H) by

g̃(g, g′H) := (g̃gg̃−1, g̃g′H).

Then it is easy to construct an equivalence of finite groupoids

H\H ≈ G\Fix(G,G/H).

From this we obtain a fiber product diagram

{g′H ∈ G/H | gg′H = g′H} //

��

Fix(G,G/H)

��

// H\H

��

{g} // G // G\G

.

Therefore,

(Fφ)∗(f)(g) =
∑

g′H∈G/H s.t. gg′H=g′H

f((g′)−1gg′).

(requires a bit of work to explain things in a clearer way)

7.7 Mackey stuff

LetH,K ⊂ G be two subgroups. For g ∈ G and (M,ρ) ∈ Repk(H), let us denote
by (TgM,Tgρ) ∈ Repk(g−1Hg) the representation which is M as a vector space,
and the action given by (Tgρ)(x)(m) = ρ(gxg−1)(m).
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Claim 7.13. Let g1, . . . , gr ∈ G be representatives for the double cosets H\G/K.
Then one has an isomorphism of functors Repk(H)→ Repk(K):

resGK ◦ IndHG ∼=
⊕

1≤i≤r

Ind
K∩g−1

i Hgi
K ◦ resg

−1
i Hgi

K∩g−1
i Hgi

◦ Tgi .

Proof. We can obviously decompose resGK(IndHG (M)) into the direct sum of sub-
space Vi(M), where Vi(M) consists of functions f : G→M which are zero out-
side ofHgiK. Notice that each Vi(M) us a subrepresentation of resGK(IndHG (M)).
Let us write concretely:

Vi(M) = {f : HgiK →M | f(hx) = hf(x) ∀h ∈ H,x ∈ HgiK.},

and the action of K on Vi(M) is by (kf)(x) = f(xk).

Now, it is easy to see that there is an isomorphism of vector spaces between
the above

{f : HgiK →M | f(hx) = hf(x) ∀h ∈ H,x ∈ HgiK.}

and

{f̃ : K →M | f̃(rx) = (girg
−1
i )f̃(x) ∀r ∈ K ∩ g−1

i Hgi, x ∈ K}

given by sending f in the former to f̃(x) := f(gix) in the latter. This isomor-
phism respects the action of K on both vector spaces by appending on the right.
For the former, this results in the K-representation resGK(IndHG (M)). For the
latter, this results in the K-representation

Ind
K∩g−1

i Hgi
K

(
res

g−1
i Hgi

K∩g−1
i Hgi

(
Tgi(M)

))
.

Corollary 7.14 (Irreducibility criterion). Suppose that H is normal in G. Let
g1 = 1, . . . , gr be representatives for the cosets G/H. Let E,F ∈ Repk(H) be two
irreducible representations. Then dimkHomG(IndHGE, Ind

H
GF ) is equal to the

number of 1 ≤ i ≤ r for which TgiE is isomorphic to F . In particular, IndHGE
is irreducible if and only if TgiE is not isomorphic to E for all 2 ≤ i ≤ r.

Proof. One has

HomG(IndHGE, Ind
H
GF ) ∼= HomH(resGHInd

H
GE,F ) ∼=

∼=
⊕

1≤i≤r

HomH(Ind
H∩g−1

i Hgi
H res

g−1
i Hgi

H∩g−1
i Hgi

TgiE,F ) ∼=

∼=
⊕

1≤i≤r

HomH(TgiE,F )

and from this the claim is clear.
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Remark 7.15. Let H ⊂ G be a subgroup. Notice that every irreducible rep-
resentation of G is isomorphic to a subrepresentation of the induction from H
to G of an irreducible representation. Indeed, for irreducible E ∈ Repk(G),
one has resGHE 6= 0, and hence one can find an irreducible quotient represen-
tation resGHE → L. But then by adjunction one obtains a non-zero morphism
E → IndHGL, which is therefore an injection since E is irreducible. Hence, by
decomposing into irreducibles the inductions to G of irreducible representations
of H, we will find all irreducible representations of G, up to isomorphism.

8 Example: The dihedral group

Let
G = D2n = 〈r, s : rn = 1, s2 = 1, srs−1 = r−1〉

be the dihedral group. We would like to compute the character table of G.

G has a normal subgroup of index 2, namely H = 〈r〉. We will follow the
strategy of Remark 7.15.

Denote by µn ⊂ k× the group of n-th roots of unity (it is a cyclic group with
n elements, since char(k) 6 ||G| = 2n). Then we have an isomorphism of groups
µn ∼= Hom(H, k×), given by sending ζ to the homomorphism χζ : ri 7→ ζi.
Thus, the irreducible representations of H are given, up to isomorphism, by
kχζ , for ζ ∈ µn.

Notice that the non-trivial element in G/H, represented by s, sends (by
the action Ts as above) kχ to kχ−1 . Therefore, by the criterion above, the
dimension of HomG(IndHGkχζ , Ind

H
Gkχη ) is equal to the number of elements in

{ζ, ζ−1} which are equal to η. Thus, fixing for simplicity of notation a primitive
root of unity ζ1 ∈ µn and writing χi := χζi , we see that an exhaustive and
non-repetitive list of irreducible representations of G is given by:

• Ei := IndHGkχi for 0 < i < n/2.

• Two irreducible constituents of IndHGkχ0
.

• If n is even, two irreducible constituents of IndHGkχn/2 .

Notice that IndHGkχi is two-dimensional, and hence when it is reducible, its
irreducible constituents are simply one-dimensional representations of G whose
restriction toH maps non-trivially into kχi (again by adjunction), so they simply
correspond to θ ∈ Hom(G, k×) such that θ|H = χi. It is simple to observe that
such exist exactly whenever χi(r) = ±1, and then there are exactly two such
(differentiated by θ(s) = 1 and θ(s) = −1). This, incidentally, recovers the
above without need for the irreducibility criterion.

Using the formula for the character of induction, one easily now writes the
character table of G (the first row is a general expression for the character of
IndHGχi, but we consider it for 0 < i < n/2; The second and third rows are the

45



two irreducible constituents of IndHGkχ0 , and the fourth and fifth rows are the
two irreducible constituents of IndHGkχn/2 (exist only if n is even):

rj srj

indHGkχζ (ζ = ζi1(0 < i < n/2)) ζj + ζ−j 0

E+
0 1 1

E+
0 1 −1

E+
n/2 (−1)j (−1)j

E−n/2 (−1)j −(−1)j

9 Example: SL2(Fq)
Let is consider the group G = SL2(Fq), where Fq is a finite field with q el-
ements. Let us consider the Borel subgroup B ⊂ G, which consists of the
upper-triangular matrices. It is convenient also to denote by U the subgroup
of unipotent upper-triangular matrices, by B− the subgroup of lower-triangular
matrices, and by T the subgroup of diagonal matrices.

For χ ∈ Hom(T,C×), let us denote by χ̃ ∈ Hom(B,C×) the composition
B → T → C× where B → T sends a matrix to its diagonal part. The principal
series of representations of G are given by

Pχ := IndBGCχ̃.

To analyze the reducibility of the principal series, we first notice G = B
∐
BwB

where w =

(
0 −1
1 0

)
. We now have as in the irreducibility criterion:

HomG(Pχ, Pχ′) ∼= HomB(resGBInd
B
GCχ̃,Cχ̃′) ∼=

∼= HomB(Cχ̃,Cχ̃′)⊕HomB(IndTBres
B−

T TwCχ̃,Cχ̃′) ∼=

∼= HomB(Cχ̃,Cχ̃′)⊕HomB(IndTBCwχ,Cχ̃′) ∼=
∼= HomB(Cχ̃,Cχ̃′)⊕HomT (Cwχ,Cχ′) ∼=
∼= HomT (Cχ,Cχ′)⊕HomT (Cwχ,Cχ′).

Here wχ(

(
t 0
0 t−1

)
) = χ(

(
t−1 0
0 t

)
). Let us say that χ is regular, if χ 6=

wχ, and singular otherwise. Then we see that Pχ is irreducible if and only if
χ is regular, and has length two (with two different irreducible constituents)
otherwise.

Let us parametrize χ(

(
t 0
0 t−1

)
) = α(t) where α ∈ Hom(F×q ,C×). We

notice that there are exactly two singular χ’s - the trivial χ and that lgndr
corresponding to α being the Legendre symbol. The representation P1 consists
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of functions on G/B, has the trivial representation as a subrepresentation, and
the complementary representation is an irreducible representation called the
Steinberg representation - denote it by St.

Let us calculate characters of the irreducible representations entering the
principal series. First, we will simply calculate the characters of the principal
series themselves. We have:

χPχ(g) =
∑

x∈G/B s.t. gxB=xB

χ(x−1gx).

But what is χ(x−1gx)? First, let us interpret G/B as the set P(F2
q) of one-

dimensional subspaces of F2
q, by sending gB to gL0 where L0 := Span{(1, 0)t}.

For g fixing L0, i.e. sitting in B, we notice that χ(g) is equal to α(g|L0
) where

we abuse notation and denote by g|L0
the scalar in F×q by which g acts on L0.

Then, for g which fixes xL0, we see that χ(x−1gx) = α((x−1gx)|L0
) = α(g|xL0

).
Therefore, we can rewrite

χPχ(g) =
∑

L∈P(F2
q) s.t. gL=L

α(g|L).

In other words, to compute the character of Pχ on an element g, we need to sum
the eigenvalues of g, running over all possible eigen-lines. We therefore calculate
(the last column is for matrices which have no eigenvalues over Fq):

(
t 0
0 t

)
(t ∈ {±1})

(
t 0
0 t−1

)
(t /∈ {±1})

(
t a
0 t

)
(t ∈ {±1}, a ∈ F×q )

(
a εb
b a

)
(b 6= 0)

Pχ (q + 1) · α(t) α(t) + α(t−1) α(t) 0
C 1 1 1 1
St q 1 0 −1

It is left to calcaulte the characters of the two irreducible representations
appearing in Plgndr. For this, we consider G ⊂ G′ ⊂ G′′ where G′′ = GL2(Fq)
and G′ is the subgroup of matrices with the determinant being a square in F×q .
We define principal series representations for G′′ and G′ exactly in the same
way as for G (and all the T,B, etc.). We see easily (using Mackey theory or
directly) that, since G′B′′ = G′′, one has

resG
′′

G′ (P ′′χ′′)
∼= P ′χ′′|T ′ , resG

′

G (P ′χ′)
∼= Pχ′|T .

Let us now set α : F×q → C× to be the Legendre character, and let us

consider χ′′(

(
t 0
0 s

)
) = α(t). Then using Mackey theory as above, we see that

P ′′χ′′ is irreducible, but P ′χ′ is reducible, decomposing into two non-isomorphic
irreducible representations

P ′χ′ = E ⊕ F.
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Denoting by h ∈ G′′ some element with non-square determinant, we notice that
hE is a subrepresentation of P ′χ′ , which is not E (since P ′′χ′′ is irreducible), so
has no intersection with E, and therefore we must in fact have hE = F . Thus,
the characters of E and F simply differ by conjugation by h. We can now try
to complete our table (where we now restrict E and F further to G):

(
t 0
0 t

)
(t ∈ {±1})

(
t 0
0 t−1

)
(t /∈ {±1})

(
t a
0 t

)
(t ∈ {±1}, a ∈ F×q )

(
a εb
b a

)
(b 6= 0)

Plgndr (q + 1) · α(t) α(t) + α(t−1) α(t) 0

E q+1
2 · α(t) α(t) ? 0

F q+1
2 · α(t) α(t) ? 0

Here, the problem is that for t ∈ {±1} the matrices conjugate to those of
the form (

t a
0 t

)
fall into two conjugacy classes in SL2(Fq) - depending on whether a is a square
or a non-square, and conjugation by h swaps them - let gt,a denote an element in
one of those four conjugacy classes. We want to compute χE(gt,a) and χF (gt,a).
We know that

χE(g1,a) + χF (g1,a) = 1.

Also, we know that

χE(g−1,a) = χE(−1 · g1,−a) = α(−1) · χE(g1,−a)

and similarly for F . Then we use the relation 〈χE , χE〉 = 1 to compute (com-
plete this sometime - can copy from my finite group representation notes).

10 Groups and group actions

10.1 G-sets

We fix a group G.

Definition 10.1. A (left) G-set is a pair (X, a) consisting of a set X and a
map a : G×X → X such that a(g1, a(g2, x)) = a(g1g2, x) for all g1, g2 ∈ G and
x ∈ X, and such that a(1, x) = x for all x ∈ X. A morphism between two G-sets
(X, a) and (Y, b) is a map f : X → Y which satisfies f(a(g, x)) = b(g, f(x)) for
all g ∈ G and x ∈ X. We denote by Set(G) the category of G-sets.

Remark 10.2. We usually omit a from the notation, and write gx, or g ∗ x,
for a(g, x).

Example 10.3. Let H ⊂ G be a subgroup. Then we can consider the G-set
G/H, where the G-action is g∗(g′H) := gg′H. The resulting G-set when H = 1
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we can call the regular G-set - let us denote it by G (meaning that if not said
otherwise, this is the G-set structure on G that we consider).

Notice that one has a unique G-set morphism G → G/H which sends 1 to
1H.

Example 10.4. The set G has also two other G-set structures, except the one
from the previous example. One is g∗g′ := g′g−1 and another is g∗g′ := gg′g−1.

Definition 10.5. Let X be a G-set.

1. We define an equivalence relation on X, by declaring x1, x2 ∈ X to be
equivalent if there exists g ∈ G such that gx1 = x2. We call the equivalence
classes G-orbits. We denote the equivalence class passing x by OG(x).

2. X is called transitive (one also says that the G-action on X is transitive)
if the number of G-orbits on X is 1.

3. Given x ∈ X, we define the stabilizer of x in G to be the subgroup
StG(x) ⊂ G given by {g ∈ G | gx = x}.

Lemma 10.6. Let X be a G-set, and let x ∈ X. Then there exists a unique
isomorphism of G-sets G/StG(x)→ O(x) mapping 1 · StG(x) to x.

10.2 p-stuff

Fix a prime number p.

Definition 10.7. A p-group is a finite group whose order is a power of p.

Lemma 10.8. Let P be a p-group and let X be a P -set. Denote by FixP (X) ⊂
X the subset {x ∈ X | px = x | ∀p ∈ P}. Then |FixP (X)| is congruent to |X|
modulo p. In particular, if |X| is prime to p, then |FixP (X)| 6= 0 (i.e. there
exists a fixed point).

Proof. Notice that |X| is equal to |FixP (X)| plus a sum of sizes of G-orbits in
X which are not singletons. Each such G-orbit is isomorphic to G/H for some
subgroup H 6= G. Thus the size of each such G-orbit is a positive power of p.
From this the claim is clear.

Claim 10.9. Let P be a p-group. If P 6= 1, then Z(P ) 6= 1.

Proof. Consider the action of P on itself by conjugation. Then the set of fixed
points is equal to Z(P ). By lemma 10.8, we get that |Z(P )| is congruent to |P |
modulo p, so p divides |Z(P )|. Since |Z(P )| ≥ 1 (since 1 ∈ Z(P )), we obtain
|Z(P )| ≥ p, and so Z(P ) 6= 1.

Another claim, which we will use to show that Sylow subgroups exist, is as
follows:

Claim 10.10. Let G be a finite group, and P ⊂ G a p-subgroup. Suppose that
[G : P ] is divisible by p. Then NG(P ) 6= P .
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Proof. Consider the P -action on G/P . The set of fixed points is NG(P )/P .
By lemma 10.8, we see that [NG(P ) : P ] is congruent to [G : P ] modulo p, so
[NG(P ) : P ] is divisible by p, so [NG(P ) : P ] 6= 1 and thus NG(P ) 6= P .

Claim 10.11 (Cauchy’s theorem). Let G be a finite group, whose order |G| is
divisible by p. Then there exists g ∈ G of order p (i.e. g 6= 1 and gp = 1).

Proof. Consider the subset X ⊂ Fun(Z/pZ, G) consisting of functions f for
which

∏
i∈Z/pZ f(i) = 1. The subset X is stable under the Z/pZ-action on

Fun(Z/pZ, G) given by (i ∗ f)(j) = f(i− j). The fixed points of this action on
X are in correspondence with element g ∈ G for which gp = 1. The number of
fixed points, by lemma 10.8, is congruent to |G|p−1 modulo p, i.e. is divisible
by p. Hence, since it is ≥ 1, it is ≥ p.

10.3 Sylow subgroups

In this subsection, G denotes a finite group.

Definition 10.12. Let p be a prime number. Denote by k ∈ Z≥0 the largest
integer for which pk | |G|. A p-Sylow subgroup of G is a subgroup of order pk.

Theorem 10.13 (Sylow). Let p be a prime number.

1. There exists a p-Sylow subgroup in of G.

2. Let P ⊂ G be a p-Sylow subgroup and Q ⊂ G a p-subgroup. Then there
exists g ∈ G such that gQg−1 ⊂ P .

3. Let P ⊂ G be a a p-subgroup. Then P is contained in some p-Sylow
subgroup of G.

4. Let P,Q ⊂ G be two p-Sylow subgroups. Then P,Q are conjugate, i.e.
there exists g ∈ G such that gPg−1 = Q.

5. Denote by np(G) The number of p-Sylow subgroups of G. Then np(G) is
congruent to 1 modulo p, and np(G) divides |G|/pk, where k ∈ Z≥0 is the
largest integer for which pk | |G|.

Proof.

1. Let us denote by k ∈ Z≥1 the largest integer for which pk | |G|. It is
enough to show that if G contains a subgroup H of order pi, for some
0 ≤ i < k, then G contains a subgroup of order pi+1. Indeed, by claim
10.10, NG(H) 6= H, and by Cauchy’s theorem we can find an element
xH ∈ NG(H)/H of order p. Then 〈H,x〉 is a subgroup of G of order pi+1.

2. Let P ⊂ G be a p-Sylow subgroup and Q ⊂ G a p-subgroup. Consider
the action of Q on G/P . From lemma 10.8 we deduce that this action
admits a fixed point xP . We then have qxP = xP for all q ∈ Q, which
gives x−1Qx ⊂ P .
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3. Clear from item (2).

4. Clear from item (2).

5. Denote by Sylp(G) the set of p-Sylow subgroups of G. We have a natural
action of G on Sylp(G), by conjugation. By the above, this action is
transitive and hence, fixing some P ∈ Sylp(G), we have |G|/|StG(P )| =
|Sylp(G)|. Notice that P ⊂ StG(P ), and hence |G|/|StG(P )| | |G|/pk,
showing that |Sylp(G)| divides |G|/pk.

Also, consider the restriction of this action of G on Sylp(G) to P . We
have then that |SylP (G)| is congruent to |FixP (Sylp(G))| modulo p, so
it is enough to show that P is the only fixed point of the P -action on
Sylp(G). In other words, we want to show that if for a p-Sylow subgroup
Q ⊂ G one has pQp−1 = Q for all p ∈ P , then Q = P . Let us consider
NG(Q) = {g ∈ G | gQg−1 = Q}. We see that P,Q ⊂ NG(Q). Since P
and Q are clearly p-Sylow subgroups of NG(Q), we obtain that P and Q
are conjugate in NG(Q). But Q is normal in NG(Q), so that only it is
conjugate to itself. We obtain Q = P .

11 Integrality and Burnside’s theorem

We assume that k is algebraically closed of characteristic 0 throughout.

11.1 Integral elements

Let A be a k-algebra.

Definition 11.1. An element a ∈ A is called integral, if there exists a monic
polynomial p ∈ Z[X] such that p(a) = 0.

Lemma 11.2. An element of Q is integral if and only if it is an integer.

Proof. An exercise.

Claim 11.3. Let a ∈ A. Then a is integral if and only if Z[a] is finitely
generated as a Z-module.

Proof. Suppose that a is integral. Then clearly powers 1, a, . . . , an−1 span Z[a],
so it is finitely generated as a Z-module.

Conversely, suppose that Z[a] is finitely generated as a Z-module. Then
considering the sub Z-module Pn spanned by 1, a, . . . , an−1, by Noetherity one
has Pn = Pn+1 for some n. Then clearly a satisfies a monic polynomial of degree
n.

Corollary 11.4. Suppose that A is finitely generated as a Z-module. Then all
elements of A are integral.
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Claim 11.5. Suppose that A is commutative. Then the subset of integral ele-
ments in A is a subring.

Proof. Clearly 1, 0 are integral. For two integral elements a, b, clearly Z[a, b]
generated by finitely many elements of the form anbm (here we use the com-
mutativity of A), and hence is finitely generated as a Z-module. Hence, by the
above, all its elements, and in particular a+ b, ab, are integral.

11.2 Integrality in the group algebra

Claim 11.6. Let G be a finite group and consider the group algebra k[G].

1. The elements 1g ∈ k[G] are integral.

2. For a conjugacy class C ⊂ G, the elements 1C :=
∑
g∈C 1g ∈ k[G] are

integral.

3. If for an element D =
∑
g∈G dg · 1g ∈ Z(k[G]) all dg are integral, then D

is integral.

4. Let V ∈ Repfdk (G). Then χV has integral values.

Proof. .

1. This is clear since 1
|G|
g = 1.

2. The Z-span of the elements 1C is a commutative subalgebra , and it is
finitely generated as a Z-module. Hence all its elements are integral.

3. This is clear, because we can write D =
∑
C∈Conj(G) dgC · 1C where gC ∈

C, and thus D is the sum of products of integral elements in a commutative
algebra, hence integral.

4. Since each g acts on V by a transformation whose some integer power is
1, and so which is integral, this follows from Lemma 11.7 that follows.

Lemma 11.7. Let V be a finite-dimensional vector space over k, and let T :
Endk(V ) be integral. Then tr(T ;V ) ∈ k is integral.

Proof. We can base change to an algebraic closure, in which case the trace is a
sum of eigenvalues. Since the transformation is integral, it is clear that all its
eigenvalues are integral as well, and thus also their sum.

Claim 11.8. Let V ∈ Repfdk (G) and D ∈ k[G].

1. If D is integral then χV (D) is integral.

2. If D is integral and central, and V is irreducible, then χV (D)
dimV is integral.

Proof. Denote by π : k[G]→ Endk(V ) the action.
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1. Since D is integral, so is π(D). Hence tr(π(D);V ) = χV (D) is integral,
by Lemma 11.7.

2. Since V is irreducible, π(D) is a scalar multiple π(D) = c · IdV . Thus,
since c is integral since it is the eigenvalue of the integral π(D). Finally,

notice that c = χV (D)
dimV .

Claim 11.9. Let E ∈ Repfdk (G) be irreducible. Then dimE divides |G|.

Proof. Consider e ∈ k[G] - the central idempotent corresponding to E (i.e. act-
ing as identity on E and as zero on all irreducible representations not isomorphic
to E). By Corollary 6.34, we have

e =
dimE

|G|
∑
g∈G

χE(g−1) · g.

Notice therefore that |G|
dimE · e is integral element of Z(k[G]), by parts 3 and 4

of Claim 11.6. Therefore, by the previous Claim, we have that

χE( |G|dimE e)

dimE
=
|G|

dimE
· dimE

dimE
=
|G|

dimE

is integral. Therefore, dimE divides |G|.

In fact a more refined statement is true:

Claim 11.10. Let E ∈ Repfdk (G) be irreducible, and Z ⊂ G the center. Then
dim(E) divides [G : Z].

Proof (Attributed by Serre to Tate). Let m ≥ 1 and consider the representation
E⊗m of Gm. It is irreducible. Let Zm ⊂ Zm be the subgroup consisting
of vectors (z1, . . . , zm) satisfying z1 · · · zm = 1. Since Z acts on E via some
character, Zm acts trivially on Z⊗m. Hence E⊗m descends to an irreducible
representation of Gm/Zm, and thus by the previous claim we get that dim(E⊗m)
divides |Gm/Zm|. In other words, dim(E)m divides |G|m/|Z|m−1. Thus, we get
for each prime p that m · vp(dim(E)) ≤ m · vp(|G|) − (m − 1) · vp(|Z|), or
vp(dim(E)) ≤ vp(|G|) − m−1

m vp(|Z|). Taking the limit as m → ∞ we obtain
vp(dim(E)) ≤ vp(|G|)−vp(|Z|) = vp([G : Z]). Thus dim(E) divides [G : Z].

An even more refined statement is true, for which we will have a Lemma
first.

Lemma 11.11. Let H ⊂ G be a normal subgroup, and E ∈ Repk(G) an
irreducible representation. Then either resGH(E) is isotypical, or there exists
H ⊂ K ⊂ G and irreducible F ∈ Repk(K) such that K 6= G and IndKG (F ) ∼= E.
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Proof. Since H is normal in G, the group G permutes the H-isotypical com-
ponents in E, and since E is irreducible it does so transitively. Let E0 ⊂ E
be one such isotypical component. Set K = {g ∈ G | gE0 = E0}. Clearly
H ⊂ K and E0 is a representation of K. It is easy to see that the natural map
indGK(E0) → E is an isomorphism. The case K = G corresponds to E0 = E,
meaning resGH(E) is isotypical.

Proposition 11.12. Let E ∈ Repfdk (G) be irreducible, and A ⊂ G be a normal
abelian subgroup. Then dim(E) divides [G : A].

Proof. We proceed by induction on |G|. If resGA(E) is isotypical, then A acts on
E via a character; Denoting by ρ : G→ GLk(E) the relevant morphism, we see
that ρ(A) sits in the center of ρ(G) (consisting of scalars), hence by Claim 11.10
we see that dim(E) divides [ρ(G) : ρ(A)] which devides [G : A]. Otherwise, by

the previous Lemma there exists A ⊂ H ⊂ G and an irreducible F ∈ Repfdk (H)
such that IndHG (F ) ∼= E and H 6= G. By induction, dim(F ) divides [H : A]. So
dimE = [G : H] · dim(F ) divides [G : H] · [H : A] = [G : A].

We will need the following Claim in the next subsection.

Claim 11.13. Let E ∈ Repfdk (G) be irreducible, and g ∈ G. Denote by Cg ⊂ G
the conjugacy class containing g. Then

|Cg|
dimEχE(g) is integral.

Proof. Since 1Cg is integral by part 2 of Claim 11.6, we obtain by Claim 11.8
that

χE(1Cg )

dimE
=
|Cg|

dimE
χE(g)

is integral.

11.3 Burnside’s theorem

An integral complex number is said to be an algebraic integer.

Lemma 11.14. Let ζ1, . . . , ζd ∈ C× be roots of unity. Then:

1. The average ζ1+...+ζd
d is of absolute value ≤ 1, and 1 is attained if and

only if ζ1 = ζ2 = . . . = ζd.

2. The average ζ1+...+ζd
d is an algebraic integer if and only either it equals 0

or ζ1 = ζ2 = . . . = ζd.

Proof. Point (1) is a simple exercise (say, imagine the orthogonal projection to
the line passing through 0 and the average...).

Let’s prove (2). Notice that the norm-squared of an algebraic integer is an
integer. Hence there are no algebraic integers c with 0 < |c| < 1. Thus, (2) is
clear by (1).
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Claim 11.15. Let E ∈ RepfdC (G) be irreducible. Let g ∈ G be an element for
which

gcd(|Cg|,dimE) = 1.

Then either χE(g) = 0, or g acts on E by a scalar.

Proof. By Claim 11.13, the number
|Cg|

dimEχE(g) is integral. Since gcd(|Cg|,dimE) =
1 and χE(g) is integral, we obtain easily that 1

dimEχE(g) is integral. Notice that
χE(g) is the sum of dimE roots of unity (the eigenvalues of g acting on E).
Hence by claim 11.14 either χE(g) = 0 or all the eigenvalues of g acting on E
are equal, meaning that g acts by a scalar on E.

Claim 11.16. Let G be a group, and C ⊂ G a conjugacy class such that |C| is
a positive power of a prime number. Then G is not simple.

Proof. Let us denote by p the prime whose power is |C|. It suffices to show that

there exists a non-trivial irreducible E ∈ RepfdC (G) on which elements in C act
by scalar (then, taking two different g, h ∈ C, the element gh−1 acts as identity
on E, and hence E is not faithful, showing that G is not simple). For that, using
claim 11.15, it is enough to find a non-trivial irreducible E of dimension prime
to p, such that χE(C) 6= 0. Computing the trace of the action of an g ∈ C on
k[G], we obtain ∑

[E]∈Irr(G)

dimE · χE(C) = 0.

Let us partition the sum as follows:

1+
∑

[E]∈Irr(G), p| dimE

dimE·χE(C)+
∑

[E]∈Irr(G), p-dimE, [E] 6=[Triv]

dimE·χE(C) = 0.

Since p divides all the summands in the first sum (in the sense of algebraic
integers), it must not divide all the elements in the second sum, so in particular
χE(C) 6= 0 for some irreducible E ∈ Rep(G) whose dimension is not divisible
by p.

Corollary 11.17. Let G be a finite group such that |G| is divided by exactly
two different primes. Then G is not simple.

Proof. It is enough, by the previous Claim, to see that there exists a conjugacy
class C in G such that |C| is a positive prime power. If there is no such conjugacy
class, then every conjugacy class either has 1 element or its size is divisible by pq
(where p and q are the two primes dividing |G|). Therefore, we would get that
|G|−|Z(G)| is divisible by pq. Since |G| is divisible by pq, this would imply that
|Z(G)| is divisible by pq. In particular, Z(G) 6= 1, and therefore G is not simple
(because then either Z(G) is a non-trivial normal subgroup, or Z(G) = G, and
the only abelian finite groups which are simple are the cyclic groups, so their
order has only one prime divisor).

Theorem 11.18 (Burnside). Let G be a finite group whose order is divisible
by at most two primes. Then G is solvable.
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Proof. It is known that groups of prime power order are solvable. Hence we can
deduce the claim from the previous Corollary, by induction (our group is not
simple, so has a proper normal subgroup, and both the normal subgroup and
the quotient by it are solvable by induction, so the group itself is solvable).

12 Equivariant sheaves and induction

12.1 G-equivariant sheaves

Definition 12.1. Let X ∈ Sets. A sheaf V on X is the data of a k-vector
space Vx for every x ∈ X. Sheaves on X form naturally a k-linear category
Sh(X).

If π : X → Y is a map, we have functors π∗ : Sh(Y ) → Sh(X) and π∗ :
Sh(X)→ Sh(Y ) described as follows. We have π∗(V)x = Vπ(x) and π∗(W)y =∏
π(x)=yWx (we omit the standard details). The functor π∗ is naturally left

adjoint to π∗. In particular, for π : X → ∗, we denote Γ := π∗ (global sections
functor).

Definition 12.2. Let X ∈ Set(G). A G-equivariant sheaf (V, α) on X is
the datum of a sheaf V on X, and an isomorphism αg,x : Vx

∼−→ Vgx for all
g ∈ G and x ∈ X, with the conditions αh,gx ◦ αg,x = αhg,x and α1,x = id.
G-equivariant sheaves on X form a k-linear category Sh(X)G.

Example 12.3. We have an equivalence of categories Sh(∗)G ≈ Rep(G).

For a G-equivariant map π : X → Y , the functors π∗, π∗ naturally extend
to functors π∗ : Sh(Y )G → Sh(X)G, π∗ : Sh(X)G → Sh(Y )G. In particular, we
have Γ : Sh(X)G → Sh(∗)G ≈ Rep(G).

Definition 12.4. A groupoid is a category in which every morphism is an
isomorphism.

Example 12.5. Given a G-set X, we construct the action groupoid G\\X,
whose objects are elements of X and Hom(x, y) = {g ∈ G | gx = y}.

Claim 12.6. Given a G-set X, one has an equivalence of categories Sh(X)G ≈
Funct(G\\X,V ect).

Claim 12.7. Let X be a transitive G-set, x ∈ X, and H := StabG(x). Then
we have a natural equivalence of categories Sh(X)G ≈ Rep(H).

Proof. We have an equivalence of groupoids H\\∗ → G\\X given by sending ∗
to x. Therefore we have

Sh(X)G ≈ Funct(G\\X,V ect) ≈ Funct(H\\∗, V ect) ≈ Sh(∗)H ≈ Rep(H).
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Remark 12.8. Let us illustrate. Let V be a finite-dimensinoal vector space
over R, and denote by XV the space of inner products on V . Fix B ∈ XV .
Then G := GL(V ) acts transitively on XV , and the stabilizer of B is OB , the
corresponding orthogonal group. Thus, Rep(OV ) ≈ Sh(X)G.

We have a natural equivalence of categories Sh(X)G ≈ Funct(G\\X,V ect).

Now, in our case, let us also consider the groupoid Euclid, whose objects
are R-vector spaces of dimension dimV equipped with an inner product, and
morphisms are isomorphisms of vector spaces preserving the inner product. We
have an evident functor G\\X → Euclid, which is an equivalence of categories.
Thus, we obtain

Rep(OV ) ≈ Sh(X)G ≈ Funct(G\\X,V ect) ≈ Funct(Euclid, V ect).

The point is that Funct(Euclid, V ect) is a very reasonable object of study
- it consists of ”universal” prescriptions of vector spaces to Euclidean vector
spaces. One might argue that the motivation for Rep(OV ) is less clear, but the
statement above says that those are equivalent.

The relation of equivariant sheaves to induction is as follows:

Claim 12.9. Let X be a transitive G-set, x ∈ X, and H := StabG(x). Then
the functor

Rep(H) ≈ Sh(X)G
Γ−→ Sh(∗)G ≈ Rep(G)

is isomorphic to IndGH .

The character formula for induction reads using this language as follows:

Claim 12.10. Let G act on a finite X, and let F ∈ Sh(X)G. Consider Γ(F)
as a G-representation via Sh(•)G ≈ Rep(G). Then

χΓ(F)(g) =
∑

x∈X s.t. gx=x

Tr(g;Fx).

12.2 Mackey’s theorem revisited

Let us see how Mackey theorem’s proof is interpreted in terms of equivariant
sheaves.

Thus, let G be a finite group and H,K ⊂ G two subgroups. We want first
to interpret the functor

resGKInd
H
G : Rep(H)→ Rep(K)

in terms of equivariant sheaves. We interpret IndHG (M) as Γ(F) where F ∈
Sh(G/H)G is the corresponding G-equivariant sheaf. Then resGK(IndHG (M)) =
resGK(Γ(F)) can be rewritten as Γ(resGK(F)). Now, G/H as a K-set breaks
down into the disjoint union of transitive K-sets X1, . . . , Xr passing through
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points g1H , . . . , grH (where g1, . . . , gr are representatives for double cosets
K\G/H). Therefore

Γ(resGK(F)) ∼=
⊕

1≤i≤r

Γ

(
resGK(F)|Xi

)
.

Now, F can be described as the G-equivariant sheaf on G/H correspond-
ing to the StabG(giH) = giHg

−1
i -representation Tg−1

i
M . Therefore, clearly

(resGKF)|Xi can be described as the K-equivariant sheaf corresponding to the

(giHg
−1
i ∩ K)-representation res

giHg
−1
i

giHg
−1
i ∩K

(Tg−1
i
M). Therefore Γ((resGKF)|Xi)

can be described as

Ind
giHg

−1
i ∩K

K (res
giHg

−1
i

giHg
−1
i ∩K

(Tg−1
i
M)).

12.3 Case of G = V oH, where V is commutative

Let V be a commutative group, and H a group acting on V (by group au-
tomorphisms). We form the semidirect product G := V o H. Notice that
H acts on Irr(V ). Given E ∈ Rep(G), restricting it to V we obtain a de-
composition E = ⊕ω∈Irr(V )Eω. Notice that hEω = Eh∗ω. We can thus con-
struct FE ∈ Sh(Irr(V ))H , for which (FE)ω := Eω... We obtain a functor
Rep(G)→ Sh(Irr(V ))H .

Claim 12.11. The above functor Rep(G)→ Sh(Irr(V ))H is an equivalence.

Proof. The inverse functor is constructed by sending F ∈ Sh(Irr(V ))H to E :=
⊕ω∈Irr(V )Fω, letting V act on the piece Fω via the character associated to ω,
and letting H act naturally, since F is H-equivariant.

Put differently, given F , by letting V act on Fω by the character associated
to ω, we upgrade the H-equivariant structure on F to a G-equivariant structure.
We obtain an equivalence of categories between Sh(Irr(V ))H and Sh(Irr(V ))G◦
- the full subcategory of Sh(Irr(V ))G consisting of sheaves for which V acts on
the fiber over ω by the character associated to ω. Then we have an equivalence
Sh(Irr(V ))G◦ → Rep(G), by taking global sections.

Corollary 12.12. Let (ωi) be representatives of the H-orbits on Irr(V ). Let
Hi := StabH(ωi). Then Rep(G) ≈ ⊕iRep(Hi).

Concretely, the embedding Rep(Hi) → Rep(G) is given by first considering
E ∈ Rep(Hi) as a (V o Hi)-representation, by letting V act via ωi, and then
sending it to IndGVoHiE.

Corollary 12.13. We have a bijection between Irr(G) and
∐
i Irr(Hi).

Example 12.14. Let V = 〈r : rn = 1〉, H = 〈s : s2 = 1〉 where the action
of s sends r to r−1. Thus, G = V o H is the dihedral group D2n again. We
can identify Irr(V ) with µn, where ζ ∈ µn corresponds to ωζ(r

i) = ζi. The
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resulting action of H on µn is by s ∗ ζ = ζ−1. The stabilizers are trivial for all
ζ ∈ µn except ζ = 1 and, when n is even, ζ = −1. Therefore, the irreducible
representations of G are IndGV (Cωζ ) for ζ /∈ {1,−1} and also two or four one-
dimensional representations, given by the multiplicative characters which are
equal to a quadratic character on V and one of the two multiplicative characters
on H.

Example 12.15. Let V = Fq, H = F×q . Then G = V oH is the group of affine
transformations of the field Fq. We can identify Irr(V ) with Fq, associating to

x ∈ Fq the character ψx(y) = ψ(xy) = e
2πi
q xy. The H-action on Irr(V ) ∼= Fq

is again by homotheties. We have two orbits, with representatives 0, 1. We
obtain Rep(G) ≈ Rep(H)⊕V ect. Concretely, given an H-representation E, we
construct the G-representation resHG (E) (where we restrict along the projection
G → H). Given a vector space E, we treat it as a V -representation by letting
V act via ψ, and then construct the G-representation indGV E.

So, the irreducible representations of Fq o F×q are given by: Cχ, where χ is

a character of F×q and we pullback via Fq o F×q → F×q . Also, ind
FqoFo

q

Fq Cψ.
Let us write the character table:

type (0, 1) (1, 1) (0, c) (c 6= 1)
Cχ 1 1 χ(c)

ind
FqoFo

q

Fq Cψ q − 1 −1 0

13 Brief remarks on characteristic p

We fix a finite group G and an algebraically closed field k.

13.1 p-Regular and p-torsion elements

Definition 13.1. Let p be a prime number. An element x ∈ G is called p-
regular (resp. p-torsion), if o(x) is prime to p (resp. a power of p).

Claim 13.2 (”Jordan decomposition”). Let p be a prime number, and x ∈ G.
Then there exists a unique pair (y, z) ∈ G2 such that y is p-regular, z is p-
torsion, y and z commute, and x = yz.

Proof. Let us show uniqueness first. If x = yz = y′z′, then xp
N

= yp
N

= (y′)p
N

when N is large enough. Then 〈y〉 = 〈ypN 〉 = 〈(y′)pN 〉 = 〈y′〉. If r is the order
of that group, then r is prime to p, and hence we can write ar+ bpN = 1. Then

y = (yp
N

)b = ((y′)p
N

)b = y′.
Let us show existence now. Let pNk be the order of x, where k is prime to

p. Then we can write apN + bk = 1 and set y = xap
N

, z = xbk. Then the order
of y divides k and so is prime to p, while the order of z divides pN , so is a power
of p.
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Definition 13.3. In the notations of the above claim, we will write y = xp-reg

and z = xp-tor.

Remark 13.4. Notice that Gp-reg ⊂ G, the subset of p-regular elements, is
stable under conjugation. It will play a role in the representation theory over a
field of characteristic p.

13.2 Characters

We can define characters of representations as we did in characteristic zero. The
following claim is still true:

Claim 13.5. The system (χE)[E]∈Irrk(G) ⊂ Fun(G; k)cl is linearly independent.

Proof. Recall that we have still an isomorphism of k[G]/J(k[G]) with

Endk(E1)× . . .× Endk(En)

(where E1, . . . , En are representatives for isomorphism classes in Irrk(G)). There-
fore, we still can find D ∈ k[G] such that χEi(D) = Tr(D;Ei) = 1 for some
1 ≤ i ≤ n and χEj (D) = Tr(D;Ej) = 0 for j 6= i.

We now notice that the characters will not generally span Fun(G, k)cl:

Claim 13.6. Let V ∈ Repfdk (G). Then for every g ∈ G, we have χV (g) =
χV (gp-reg).

Proof. Since gp-tor is acts unipotently and commutes with gp-reg, this is an easy
exercise.

However, the following theorem is true:

Theorem 13.7 (Brauer). The system (χE)[E]∈Irrk(G) forms a basis of Fun(Gp-reg, k)cl.
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