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1 Introduction

These notes are not polished yet; They are not very organized, and contain
some mistakes. My main source was the book ”Representations of Compact Lie
Groups” by Brocker and Dieck.

Consider the circle group S1 ∼= R/Z ∼= C×1 - it is a compact group. One
studies the space L2(S1) of square-integrable complex-valued fucntions on the
circle. We have an action of S1 on L2(S1) given by

(gf)(x) = f(g−1x).

We can suggestively write

L2(S1) =

∧∫
x∈S1

C · δx,

where
gδx = δgx.

Thus, the ”basis” of delta functions is ”permutation”, or ”geometric”. Fourier
theory describes another, ”spectral” basis. Namely, we consider the functions

χn : x (mod 1) 7→ e2πinx

where n ∈ Z. The main claim is that these functions form a Hilbert basis for
L2(S1), hence we can write

L2(S1) =

∧⊕
n∈Z

C · χn,

where
gχn = χ−1

n (g)χn.

In other words, we found a basis of eigenfunctions for the translation operators.

3



What we would like to do in the course is to generalize the above picture
to more general compact groups. For a compact group G, one considers L2(G)
with the action of G×G by translation on the left and on the right:

((g1, g2)f) (x) = f(g−1
1 xg2).

When the group is no longer abelian, we will not be able to find enough eigen-
functions for the translation operators to form a Hilbert basis. Eigenfunctions
can be considered as spanning one-dimensional invariant subspaces, and what
we will be able to find is ”enough” finite-dimensional ”irreducible” invariant sub-
spaces (which can not be decomposed into smaller invariant subspaces). This
we will do for a general compact group (the Peter-Weyl theorem). The second
problem is to ”parametrize” these ”iireducible” building blocks and ”under-
stand” them. This we will do for a connected compact Lie group (theory of
highest weight, Weyl’s character formula).

2 Preliminaries

2.1 Topological groups

Definition 2.1. Definitions of a topological group (a set equipped with a
Hausdorff topology and a group structure, such that the multiplication and
inverse maps are continuous), a morphism between topological groups (a con-
tinuous group homomorphism).

We are ”mostly” interested in locally compact topological groups. Examples
of locally compact topological groups:

1. Discrete groups - such as Z, finitely generated groups, fundamental groups;
In particular, finite groups (those are the compact discrete groups) - such
as Sn. For a linear algebraic group G over a finite field F , we have the
finite group G(F ) - such as GLn(Fq).

2. Lie groups (A set equipped with the structure of a smooth manifold and
the structure of a group, such that the multiplication and inverse maps are
continuous). for a linear algebraic group G over R, we have the Lie group
G(R) (or for G over C, we have G(C)) - such as GLn(R) (non-compact)
or On(R) (compact).

3. Totally disconnected groups (the topology admits a basis consisting of
open-compact subsets); In particular, profinite groups (those are the com-
pact totally disconnected groups) - such as infinite Galois groups. For a
linear algebraic group G over the field of p-adics Qp, we have the totally
disconnected group G(Qp) - such as GLn(Qp). We also obtain compact to-
tally disconnected groups by taking Zp-points of algebraic groups defined
over Zp - such as GLn(Zp).

4. Adelic groups. For a linear algebraic group G over Q, we have G(AQ).
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People also study some smooth but not locally compact groups, such as
Diff(S1) (the group of diffeomorphisms of S1) or Ω(S1) (the groups of loops
in S1).

In this course we will be interested in representation theory of compact
groups, especially connected compact Lie groups.

2.2 G-spaces

Let G be a locally compact topological group.

Definition 2.2. A G-space is a locally compact topological space X, equipped
with a G-action, i.e. a continuous map a : G × X → X satisfying a(e, x) = x
and a(g1, a(g2, x)) = a(g1g2, x). We usually write simply gx instead of a(g, x).
A morphism between two G-spaces X,Y is a continuous map φ : X → Y
satisfying φ(gx) = gφ(x).

Example 2.3. Let E be a Euclidean space (a finite-dimensional real vector
space equipped with an inner product). Let O(E) ⊂ GL(E) be the subgroup
of orthogonal transformations, and let S(E) ⊂ E be the subset of unit-length
vectors. Then O(E) is a locally compact topological group, S(E) is a locally
compact topological space, and we have the natural action of O(E) on S(E).

Example 2.4 (Homogenous G-spaces). Let H ⊂ G be a closed subgroup.
Then we equip G/H with the quotient topology (the finest topology for which
the quotient map G → G/H is continuous), and the natural G-space structure
(a(g1, g2H) = g1g2H).

Remark 2.5. Let X be a G-space. Assume that the action of G on X is
transitive (i.e. for any x, y ∈ X there exists g ∈ G such that gx = y). Let
x0 ∈ X and set H = {g ∈ G | gx0 = x0}. Then we have a bijective G-space
morphism G/H → X, given by gH 7→ gx0. One can show that if G is separable
(i.e. admits a dense countable subset), then this is in fact a homeomorphism
(i.e. its inverse is also continuous) - so a G-space isomorphism.

Example 2.6. In the example above, the action of O(E) on S(E) is transitive.
In standard coordinates On is the group of orthogonal n × n matrices. Set
x0 = (1, 0, . . . , 0)t. Then H = StabOn(x0) ∼= On−1 is the subgroup of block
diagonal matrices of type (1, n − 1) whose first component is 1, so that we are
dealing with the homogenous space On/On−1 (abusing notation...).

In some sense, the theory of representations of G is a ”qunatization” of the
theory of G-spaces. To describe the ”quantization procedure” X 7→ L2(X), we
will review topological vector spaces, measures and Haar measures.

2.3 Topological vector spaces

All vector spaces are over R or C.
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Definition 2.7. Definition of a topological vector space (TVS) (a vector
space equiped with a Hausdorff topology, for which addition and multiplication
by scalar are continuous).

Example 2.8. Let V be finite-dimensional. Then one can show that V admits
a unique topology making it a TVS. It is the ”standard one”, inherited by any
linear isomorphism V ∼= Rd.

Example 2.9. Let us be given an inner product 〈·, ·〉 on a vector space V . Then
we can equip V with the topology induced by the metric d(v, w) := ||w−v|| where
||u|| :=

√
〈u, u〉. This makes V a TVS. The pair (V, 〈·, ·〉) is called a Hilbert

space if V is complete w.r.t. the metric d.

2.4 Representations of topological groups

Let G be a topological group. For a topological vector space V (over R or C),
we denote by Aut(V ) the group of automorphisms of V as a topological vector
space (i.e. continuous linear self-maps admitting a continuous linear inverse).

Definition 2.10. .

1. A representation of G (or a G-representation) is a pair (V, π) consist-
ing of a topological vector space V and a homomorphism π : G→ Aut(V )
such that the resulting map act : G×V → V given by act(g, v) := π(g)(v)
is continuous.

2. A morphism between G-representations (V1, π1) and (V2, π2) is a con-
tinuous linear map T : V1 → V2 satisfying T ◦ π1(g) = π2(g) ◦ T for all
g ∈ G.

Definition 2.11. A representation (V, π) of G on a Hilbert space is called
unitary, if 〈π(g)v, π(g)w〉 = 〈v, w〉 for all v, w ∈ V and g ∈ G.

Remark 2.12. If V is finite-dimensional, the continuity requirement can be
stated as follows: choosing a basis e1, . . . , en for V and writing π(g)ei =

∑
j aij(g)ej ,

the functions aij on G should be continuous.

Remark 2.13. If V is an Hilbert space and π(g) is unitary for every g ∈ G,
the continuity requirement can be stated as follows: For every v ∈ V , the map
ov : G→ V given by ov(g) = π(g)v is continuous at e.

2.5 Measures and Haar measures

Let X be a locally compact topological space. Denote by C(X) the vector space
of continuous complex-valued functions on X. For a compact subset K ⊂ X,
denote by CK(X) ⊂ C(X) the subspace of functions vanishing outside of K.
Denote

Cc(X) := ∪KCK(X) ⊂ C(X)
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(in this union, K runs over all compact subsets of X) - this is the space of
continuious functions with compact support on X. Define a topology on CK(X)
using the supremum norm. Define a topology on Cc(X) as the finest for which
all the inclusions CK(X) ⊂ Cc(X) are continuous.

Definition 2.14 (Radon measure). Let X be a locally compact topological
space.

1. A signed measure on X is a continuous linear functional µ on Cc(X).
Concretely, the continuity means that for every compact subset K ⊂ X
there exists C > 0 such that |µ(f)| ≤ C · supx∈K |f(x)| for every f ∈
CK(X).

2. A measure on X is a signed measure µ on X satisfying µ(f) ≥ 0 for
f ≥ 0.

3. A nowhere vanishing measure on X is a measure µ on X satisfying
µ(f) > 0 for 0 6= f ≥ 0.

Let G be a locally compact topological group. For g ∈ G and f ∈ Cc(G), we
define (Lgf)(x) = f(g−1x) and (Rgf)(x) = f(xg). A measure µ on G is called
left-G-invariant (right-G-invariant) if µ(Lgf) = µ(f) (µ(Rgf) = µ(f)) for every
g ∈ G, f ∈ Cc(G).

Theorem 2.15 (Haar measure). Let G be a locally compact topological group.
There exists a non-zero left-G-invariant measure on G. Moreover, each such
two differ by a positive scalar multiple. Those measures are nowhere vanishing.
Analogous claims hold for right-G-invariant measures.

Example 2.16. A Haar measure on R is got by

f 7→
∫
R
f(x)dx.

Example 2.17. Consider the locally compact topological group C×1 - the complex
numbers of length 1 (with complex multiplication as group law). It can also be
denoted S1 or SO(2). To describe a Haar measure on it, consider the map
φ : R→ C×1 given by φ(x) = e2πix. Then one can see that

f 7→
∫ 1

0

f(φ(x))dx

is a Haar measure on C×1 .

Remark 2.18 (The modulus function). Given a left Haar measure µ on G and
an element g ∈ G, we get a new left Haar measure by f 7→ µ(Rg−1f); So, it
must differ from µ by a scalar, which we denote by ∆G(g). Then ∆G : G→ R>0

is a continuous group homomorphism. It is trivial if and only if left and right
Haar measures coincide.
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Remark 2.19. Left and right Haar measures must coincide in the following
cases: If G is abelian - clear. If G is compact - then ∆G(G) must be a compact
subgroup of R×+, hence {1}. If G is discrete - then the counting measure is left
and right Haar measure.

Remark 2.20. In the case when G is compact, we can (and usually will)
normalize the Haar measure by requiring that the measure of 1G is 1. In the
case when G is discrete, we can normalize the Haar measure by requiring that
the measure of 1{e} is 1. Notice that for a finite group, these normalizations
do not coincide - their quotient is an important number, the cardinality of the
finite group (i.e. we get some canonical ”volume”).

Similarly to above, we can define G-invariant measures on a G-space X.

Theorem 2.21. Let H ⊂ G be a closed subgroup. Then G/H admits a non-zero
G-invariant measure if and only if ∆G|H = ∆H . In that case, each such two
differ by a positive scalar multiple, and those measures are nowhere vanishing.

2.6 The representations L2(X)

Given a locally compact topological space X and a nowhere vanishing measure
µ on X, we consider on Cc(X) the inner product

〈f1, f2〉 := µ(f1 · f2) =

∫
X

f1(x)f2(x)dµ.

The completion of Cc(X) w.r.t. to the resulting norm ||f || :=
√
〈f, f〉 is a

Hilbert space (complete inner product space), denoted by L2(X,µ).
Let G be a locally compact topological group and X a homogenous G-space

equipped with a G-invariant measure µ. Then L2(X) = L2(X,µ) is naturally a
unitary G-representation, by extending by completion the G-action on Cc(X).

Basic problem 2.22. To study the unitary G-representation L2(G/H) for
interesting pairs (G,H).

For example, unitary representations such as L2(SL2(R)/SL2(Z)) or L2(SL2(A)/SL2(Q))
occupy (arguably) a central place in mathematics. As a simpler example, the
study of the O(E)-representation L2(S(E)) is called the study of spherical
harmonics. Another very important example is the following; Assume that
left and right Haar measures on G coincide. Consider G as a G×G-space, via
(g1, g2)g = g1gg

−1
2 . Then L2(G) (where the measure is a Haar measure), as a

(G×G)-representation, is the basic object to study regarding G.
As we will formalize later (as a consequence of the Peter-Weyl theorem),

when dealing with compact groups, we can safely restrict ourselves to finite-
dimensional representations, so we will next concentrate on those.
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3 Finite-dimensional representations of compact
groups

We assume that all vector spaces are over C.

Definition 3.1. Denote by Repfd(G) the category of finite-dimensional repre-
sentations of G, and by HomG(·, ·) the Hom-spaces in this category.

3.1 Constructions

Definition 3.2. A subrepresentation of aG-representation (V, π) ∈ Repfd(G)
is a subspace W ⊂ V invariant under the operators π(g) for g ∈ G. Then W
itself naturally becomes a G-representation (with τ : G → Aut(W ) given by
τ(g) := π(g)|W ).

Example 3.3. 0 ⊂ V and V ⊂ V are examples of subrepresentations.

Example 3.4. Another example of a subrepresentation is V G = {v ∈ V | π(g)v =
v ∀g ∈ G} - the subspace of G-invariants. The action of G on V G is trivial.

Remark 3.5. One should also define quotient representations, and give the
example of coinvariants VG. One should state that for compact G, the natural
map V G → VG is an isomorphism.

Example 3.6. Given a G-morphism T : (W, τ)→ (V, π), the subspaces Ker(T ) ⊂
W and Im(T ) ⊂ V are subrepresentations.

We have the following standard functorial constructions:

1. Trivial representation: (C, π) ∈ Repfd(G) where π(g) = id for every
g ∈ G.

2. Dual (or contra-gradient): For (V, π) ∈ Repfd(G), we define (V ∗, τ) ∈
Repfd(G) by τ(g) := π(g−1)t (here (·)t is the transpose).

3. Complex conjugate: For (V, π) ∈ Repfd(G), we define (V , τ) ∈ Repfd(G)
by V being the same topological abelian group as V , but with complex
scalar action twisted by conjugation, and τ = π.

4. Direct sum: For (V1, π1), (V2, π2) ∈ Repfd(G), we define (V1 ⊕ V2, τ) ∈
Repfd(G) by τ(g) := π1(g)⊕ π2(g).

5. Tensor product: For (V1, π1), (V2, π2) ∈ Repfd(G), we define (V1 ⊗
V2, τ) ∈ Repfd(G) by τ(g) := π1(g)⊗ π2(g).

6. Hom: For (V1, π1), (V2, π2) ∈ Repfd(G), we define (Hom(V1, V2), τ) ∈
Repfd(G) by τ(g)(T ) := π2(g) ◦ T ◦ π1(g−1).

Remark 3.7. For V,W ∈ Repfd(G), we should not confuse HomG(V,W ) with
Hom(V,W ). One has in fact HomG(V,W ) = Hom(V,W )G. Notice that we
also have HomG(C, V ) ∼= V G.

Lemma 3.8. One has a functorial isomorphism of G-representations Hom(V1, V2) ∼=
V2 ⊗ V ∗1 .

9



3.2 Complete reducibility and Schur’s lemma

Definition 3.9. A representation (V, π) ∈ Repfd(G) is called irreducible if
V 6= 0 and V contains no subrepresentations except V and 0.

Claim 3.10 (Schur’s lemma). .

1. Let V ∈ Repfd(G) be irreducible. Then EndG(V ) = C · IdV .

2. Let V,W ∈ Repfd(G) be irreducible. If V is isomorphic to W , then
HomG(V,W ) is one-dimensional, and every non-zero element in HomG(V,W )
is an isomorphism. If V is non-isomorphic to W , then HomG(V,W ) = 0.

Proof. Let V,W be irreducible. Let T : V → W be non-zero. Then Im(T )
is a non-zero subrepresentation of W , hence Im(T ) = W , so T is surjective.
Similarly, Ker(T ) is a subrepresentation of V which is not the whole of V ,
hence Ker(T ) = 0, so T is injective. Thus, T is an isomorphism.

This shows that if V,W are non-isomorphic, then HomG(V,W ) = 0.
Let T ∈ EndG(V ). We know that T has an eigenvalue (since V 6= 0), say λ.

Then S := T − λ · IdV has non-trivial kernel, hence is not an isomorphism. So
by what we saw, S = 0, i.e. T = λ · IdV .

If V,W are isomorphic, HomG(V,W ) ∼= HomG(V, V ) (by composing with
any isomoprhism), hence the dimension is 1.

Lemma 3.11. (V, π) ∈ Repfd(G). Then there exists a unique projection AvG ∈
EndG(V ) onto V G (a projection is an operator P satisfying P 2 = P ; it is onto
it’s image, on which it acts as identity).

Proof. We construct

AvG(v) :=

∫
G

π(g)vdµ

(here, and in shat follows, µ is the Haar measure normalized by requiring µ(1) =
1). Uniqueness is seen as follows; It is easy to see that AvG commutes with any
G-morphism T ∈ EndG(V ). Hence, given another projection P ∈ EndG(V )
onto V G, we have P = AvG ◦ P = P ◦AvG = AvG.

Lemma 3.12. Let V ∈ Repfd(G). Then there exists a G-invariant inner prod-
uct 〈·, ·〉 on V .

Proof. Basically, we can interpret the space of Hermitian forms on V asHom(V, V ),
and the subspace ofG-invariant Hermitian forms asHomG(V, V ) = Hom(V, V )G.
The space of inner products on V is a cone in the space of Hermitian forms.
Now we pick any inner product β0 and consider β := AvG(β0). It will be a
G-invariant inner product.

Concretely, let 〈·, ·〉′ be any inner product on V . Define

〈v, w〉 :=

∫
G

〈π(g)v, π(g)w〉′dµ,

and check that it is indeed a well-defined G-invariant inner product.
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Claim 3.13 (Maschke). Let V ∈ Repfd(G), and let W ⊂ V be a subrepresen-
tation. Then there exists a subrepresentation U ⊂ V such that V = W ⊕ U .

Proof. First proof: Let 〈·, ·〉 be a G-invariant inner product on V . Then W⊥ is
a subrepresentation of V (easy to check), and V = W ⊕W⊥.

Second proof: The problem is equivalent to finding a G-morphism T :
(V, π) → (W, τ) satisfying T ◦ i = idW where i : W → V is the inclu-
sion (then Ker(T ) will be the desired U). As a first step, find a linear map
T0 ∈ Hom(V,W ) satisfying T0 ◦ i = idW . Now construct

T := AvG(T0).

Then T ∈ HomG(V,W ). In addition,

T ◦ i = AvG(T0) ◦ i = AvG(T0) ◦AvG(i) = AvG(T0 ◦ i) = AvG(idW ) = idW .

Corollary 3.14. Let V ∈ Repfd(G). Then there exist irreducible subrepresen-
tations V1, . . . , Vk ⊂ V such that V = V1 ⊕ · · · ⊕ Vk.

Proof. Use repeatedly Maschke’s theorem.

Corollary 3.15. Let V ∈ Repfd(G). Then we can write V ∼= E⊕d11 ⊕. . .⊕E⊕dkk

where Ei are pairwise non-isomorphic irreducible representations. We have

di = dimHomG(Ei, V ) = dimHom(V,Ei).

In particular, di doesn’t depend on the above decomposition.

Definition 3.16. For V ∈ Repfd(G) and irreducible E, the number dimHomG(E, V )
is called the multiplicity of E appearing in V , and denoted [V : E].

Remark 3.17. We see that two representations V,W are isomorphic if and
only if [V : E] = [W : E] for all irreducible E. One can have a more gen-
eral treatment, undependent on Mashcke’s theorem and Schur’s lemma, using
Jordan-Holder series.

Remark 3.18. Add information about isotypical components. Namely, The
subspace E⊕dii is canonically defined, as the sum of all subrepresentations iso-
morphic to Ei. There is a unique G-invariant projection onto the isotpypical
component (later we will have a formula for it using the character). Any mor-
phism in Repfd(G) respects the isotypical components, and best would be to
formulate that Repfd(G) is equivalent to the direct sum of copies of V ect, one
for each irreducible representation isomorphism class.
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3.3 Character

Definition 3.19. Let (V, π) ∈ Repfd(G). The character

χV ∈ C(G)

is defined by
χV (g) := TrV (π(g)).

Definition 3.20. Define the following operations on C(G):

1. f∗(g) := f(g−1).

2. f(g) := f(g).

3. (f1 + f2)(g) := f1(g) + f2(g).

4. (f1 · f2)(g) := f1(g)f2(g).

5. av(f)(g) :=
∫
G
fdµ (considered as a number, or as a constant function on

G).

6. 〈f1, f2〉 = av(f1 · f2) (considered as a number, or as a constant function
on G).

Proposition 3.21. The character construction performs the following ”repre-
sentation to function” translations:

1. Let V have the trivial G-action. Then χV = dimV .

2. χV ∗ = χ∗V .

3. χV = χV .

4. χV⊕W = χV + χW .

5. χV⊗W = χV · χW .

6. χHom(V,W ) = χ∗V · χW .

7. χV G = av(χV ).

Proof. Only the last equality is interesting. For g ∈ G, we have TrV G(π(g)) =
TrV (π(g) ◦AvG) because π(g) ◦AvG acts as π(g) on V G and as 0 on Ker(AvG)
(which is a complement to V G in V ). Hence

TrV G(π(g)) = TrV (π(g)◦AvG) = TrV (

∫
G

π(gh)dµ(h)) =

∫
G

TrV (π(gh))dµ(h) =

∫
G

TrV (π(h))dµ(h).

Claim 3.22. Let V ∈ Repfd(G). Then χ∗V = χV .

12



Proof. An inner product on V gives an isomorphism V → V ∗, which is an iso-
morphism of G-representations if (and only if) the inner product is G-invariant.
Thus, since we know that V admits a G-invariant inner product, we get V ∼= V ∗

as G-representations, so χV = χV ∗ , so χV = χ∗V .

Proposition 3.23. Let V,W ∈ Repfd(G). Then

dimHomG(V,W ) = 〈χW , χV 〉.

Proof. From all the above we have

dimHomG(V,W ) = χHomG(V,W ) = av(χHom(V,W )) = av(χ∗V ·χW ) = av(χV ·χW ) = 〈χW , χV 〉.

Corollary 3.24 (Orthogonality relations). Let E,F ∈ Repfd(G) be irreducible.
Then 〈χE , χF 〉 equals 0 if E and F are non-isomorphic, and 1 if E and F are
isomorphic.

Corollary 3.25. Let V,W ∈ Repfd(G). If χV = χW , then V and W are
isomorphic.

Proof. We have dimHomG(E, V ) = 〈χE , χV 〉 for every irreducible representa-
tion E, hence χV determines the multiplicity of E appearing in V .

We can now give, using the characters, a formula for the projection operators
on isotypical components.

Claim 3.26. Let E, V ∈ Repfd, with E irreducible. Consider the operator
PrE ∈ End(V ) defined by

PrE(v) := dimE ·
∫
G

χE(g)π(g)vdµ.

Then PrE ∈ EndG(V ) and it is the projection on the E-isotypical component
of V .

Proof. It is easy to check that indeed PrE is G-equivariant, using the fact that
χE is central. Furthermore, PrE leaves invariant any subrepresentation (clear
from its formula). Let F ⊂ V be an irreudicble subrepresentation. By Schur’s
lemma, PrE acts by a scalar on F . To find this scalar, we calculate

TrF (PrE) = dimE · 〈χF , χE〉.

By the orthogonality relations, we see that PrE acts by 1 if F ∼= E and by 0
otherwise.
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3.4 Matrix coefficients

Definition 3.27. Let (V, π) ∈ Repfd(G). The matrix coefficient map

MV : End(V )→ C(G)

is defined by
MV (T )(g) := TrV (π(g) ◦ T ).

Remark 3.28. Under the isomorphism V ⊗ V ∗ ∼= End(V ), the matrix coeffi-
cient map becomes

MV (v ⊗ α)(g) = α(π(g)v);

If v is a basis vector and α a dual basis covector, thenMV (v⊗α) is indeed just
a ”matrix coefficient”, which explains the terminology.

For the next claim, let us endow End(V ) and C(G) with (G×G)-action as
follows; (g, h)T := π(h) ◦ T ◦ π(g)−1 and ((g, h)f)(x) = f(g−1xh).

Claim 3.29. Let V ∈ Repfd(G).

1. MV (IdV ) = χV .

2. V ⊗ V ∗ ∼= End(V )
MV−−−→ C(G) is given by v ⊗ α 7→ (g 7→ α(π(g)v)).

3. MV : End(V )→ C(G) is a morphism of (G×G)-representations.

4. If V is irreducible, then MV : End(V )→ C(G) is injective.

Proof. To show item 4, we first claim that End(V ) is irreducible as a (G×G)-
representation. This is since End(V ) ∼= V ⊗ V ∗ and the following lemma: Let
G,H be compact groups and U ∈ Repfd(G),W ∈ Repfd(H) irreducible. Then
U ⊗W is irreducible as a (G×H)-representation. Thus, the mapMV is either
zero or injective, but clearly it is not zero.

Proposition 3.30. The matrix coefficient construction performs the following
”representation to function” translations:

1. MV ∗(T
∗) =MV (T )∗.

2. MV (T ) =MV (T ).

3. MV⊕W (T ⊕ S) =MV (T ) +MW (S).

4. MV⊗W (T ⊗ S) =MV (T ) · MW (S).

5. MHom(V,W )(S ◦ · ◦ T ) =MV (T )∗ · MW (S).

6. MV G(AvG ◦ T ) = av(MV (T )).

Proposition 3.31 (Orthogonality relations). Let E,F ∈ Repfd(G) be irre-
ducible and non-isomorphic, and T ∈ End(E), S ∈ End(F ). Then

〈MF (S),ME(T )〉 = 0.
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Proof. We have

〈MF (S),ME(T )〉 =M(F⊗E)G(AvG ◦ (S ⊗ T )).

But E ∼= E∗, so (F ⊗ E)G ∼= (F ⊗ E∗)G = HomG(E,F ) = 0.

Let E ∈ Repfd(G) be irreducible. Then E admits a unique up to scalar
G-invariant inner product (because there is a unique up to scalar isomorphism

between the irreducible representations E∗ and Ẽ). Thus for T ∈ End(E) the
adjoint operator T ◦ ∈ End(E) is well-defined. Notice that π(g)◦ = π(g−1).

Definition 3.32. Let E ∈ Repfd(G) be irreducible. The Hilbert-Schmidt
inner product on End(E) is defined by 〈T, S〉HS := TrE(T ◦ S◦).

Claim 3.33. Let E ∈ Repfd(G) be irreducible.

1. The Hilbert-Schmidt inner product on End(E) is (G×G)-invariant.

2. The map ME : (End(E), 1
dimE 〈, ·, 〉HS)→ (C(G), 〈·, ·〉) is unitary.

Proof. Since End(V ) is irreducible as a (G × G)-representation, and the inner
products on End(V ) and C(G) are (G × G)-invariant, the map MV must be
unitary up to a scalar. To find the scalar is an exercise.

4 The Peter-Weyl theorem

For simplicity, we assume that the group G is separable.

Claim 4.1. Let f ∈ C(G). The following are equivalent:

1. f is left-G-finite.

2. f is right-G-finite.

3. f is (G×G)-finite.

4. f is in the image of MV for some V .

Proof. (4) =⇒ (3) is clear since MV is (G × G)-equivariant and its domain
is finite-dimensional. (3) =⇒ (2) is clear. Let us show that (2) =⇒ (4)
((3) =⇒ (1) =⇒ (4) is analogous). So, let f ∈ C(G) be right-G-finite. Let
V ⊂ C(G) be a finite dimensional subrepresentation (w.r.t. the right G-action)
which contains f . Denote by α ∈ V ∗ the functional α(h) := h(e). Then we have
MV (f ⊗ α)(g) = α(Rgf) = f(g), so f =MV (f ⊗ α).

Definition 4.2. Denote by C(G)fin the subspace of C(G) consisting of func-
tions f satisfying the equivalent conditions of the previous claim.

Lemma 4.3. C(G)fin ⊂ C(G) is a vector subspace closed under the operations
(f, h) 7→ f · h, f 7→ f .
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Denote by L2(G)fin the subspace of L2(G) consisting of left-G-finite vectors
(we will later see that L2(G)fin = C(G)fin, but for now it is a comfortable
notation).

Claim 4.4. The following are equivalent:

1. C(G)fin is dense in C(G).

2. C(G)fin is dense in L2(G).

3. L2(G)fin is dense in L2(G).

4. For every e 6= g ∈ G, there exists an irreducible representation (π, V ) ∈
Repfd(G) such that π(g) 6= id.

5. C(G)fin separates points of G; i.e. for every g, h ∈ G such that g 6= h,
there exists f ∈ C(G)fin such that f(g) 6= f(h).

Proof. .
(1) =⇒ (2) : Clear, since the map C(G)→ L2(G) is continuous with dense

image.
(2) =⇒ (3): Clear, since C(G)fin ⊂ L2(G)fin.
(3) =⇒ (4): Let e 6= g ∈ G. Then clearly there exist a function f ∈ C(G)

such that Lgf 6= f . Thus, clearly g can not act trivially on L2(G)fin (since then

it would act trivially on L2(G) and hence on f). Pick f̃ ∈ L2(G)fin such that

Lg f̃ 6= f̃ . By definition of L2(G)fin, The vector f̃ sits in a finite-dimensional
subrepresentation V ⊂ L2(G) (w.r.t. the left G-action). We get that g acts
non-trivially on V , as wanted.

(4) =⇒ (5): Clear, by considering gh−1 and matrix coefficients of a repre-
sentation on which it acts non-trivially.

(5) =⇒ (1): C(G)fin ⊂ C(G) is a vector subspace closed under point-
wise multiplication, and pointwise conjugation. Thus, by the Stone-Weierstrass
theorem, C(G)fin separates points of G i.f.f. C(G)fin is dense in G.

Theorem 4.5 (Peter-Weyl). The equivalent conditions of the previous theorem
are satisfied.

To prove theorem 4.5, we have some preparations.
Let X,Y be compact spaces, µ a nowhere vanishing measure on X and ν a

nowhere vanishing measure on Y . Assume WLOG that µ(1) = 1, ν(1) = 1. Let
K ∈ C(Y ×X). Consider the formula

TK(f)(x) :=

∫
K(x, y)f(y)dµ.

Lemma 4.6. TK well-defines a continuous operator C(Y )→ C(X) of operator
norm ≤ ||K||L∞(X×Y ) and a continuous operator L2(Y ) → L2(X) of operator
norm ≤ ||K||L2(X×Y,µ×ν). The later operator is compact, and self-adjoint in

case that K(x, y) = K(y, x).
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Proof. It is easy to see that we get operators with the claimed bound on norm.
The self-adjointness claim is also immediate.

To see that TK : L2(Y ) → L2(X) is compact, one can consider functions
K which are linear combinations of functions of the form K1(y)K2(x), where
K1 ∈ C(Y ),K2 ∈ C(X). By the Stone-Weierstrass theorem, such functions are
dense in C(X × Y ). Hence we get that every TK is a limit (in C(X × Y ), and
hence in L2(X ×Y )) of TK ’s with K such. But for such K, TK is of finite rank.

Let us recall that for a compact self-adjoint operator T : H → H from a
(separable) Hilbert space to itself one has the spectral theorem, which says that

H = Ker(T )⊕ Im(T ), Im(T ) =

∧⊕
λ

Ker(T − λ · Id),

where λ runs over a countable set of non-zero real numbers (for which zero is
the only limit point), and each Ker(T − λ · Id) is finite-dimensional.

In our case X = Y = G. A special class of operators TK as above is
constructed by setting K(x, y) := k(y−1x), where k ∈ C(G). The resulting
TK(f) =: f ∗ k is known as the convolution. It has the special property that
it is a G-morphism w.r.t. to the left G-actions: Lg(f ∗ k) = (Lgf) ∗ k. Also, if
k∗ = k, then TK is self-adjoint.

A second preparation is the following:

Lemma 4.7. Let f ∈ C(G), and ε > 0. Let e ∈ U ⊂ G be open, such that
U = U−1 and |f(x) − f(xy)| ≤ ε for all x ∈ G, y ∈ U (i.e. ||Ryf − f ||sup ≤ ε
for all y ∈ U). There exists uU ∈ C(G) such that uU is non-negative, u∗U = uU ,∫
G
uUdµ = 1 and uU is zero outside U . We have ||f ∗ uU − f ||sup ≤ ε.

Proof of theorem 4.5. We show that condition (3) is satisfied. Let f ∈ L2(G).
We want to show that we can approximate f by G-finite elements in L2(G).
First, we can approximate f by continuous functions, hence we can assume that
f ∈ C(G). Now, using an approximation of unity as in the previous lemma, we
can approximate f by some f ∗ u. Now f ∗ u is in the image of the compact
self-adjoint operator · ∗ u, and hence can be approximated by sums of elements
in non-zero eigenspaces of · ∗ u, which are G-finite.

Corollary 4.8 (Peter-Weyl decomposition). Let (Ei, πi)i∈I be a representa-
tive family of irreducible representations of G. Endow End(Ei) with the inner
product 1

dimEi
〈·, ·〉HS. Then the unitary embeddings MEi : End(Ei) → L2(G)

induce an isomorphism of unitary (G×G)-representations

L2(G) ∼= ⊕̂i∈IEnd(Ei)

Corollary 4.9. L2(G)fin = C(G)fin.

Proof. Let f ∈ L2(G)fin. We have a finite-dimensional subrepresentation V ⊂
L2(G)fin in which f sits. For every irreducible E which does not enter V , the
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projection of L2(G) onto End(E) along the Peter-Weyl decomposition induces
the zero map on V . Thus we see that f has only finitely many non-zero com-
ponenets when decomposed along the Peter-Weyl decomposition.. Thus f lies
in C(G)fin.

5 The convolution product

We define an algebra structure on C(G) by:

(f1 ∗ f2)(x) =

∫
G

f1(xy−1)d2(y)dµ(y)

(this is called the convolution product). A ”more correct” approach is to con-
sider not C(G) but the isomorphic spaceMcont(G) := C(G) ·dµ (of ”continuous
signed measures”). Then the algebra structure is described by

ν1 ∗ ν2 = m∗(ν1 � ν2)

where � : M(G) ⊗M(G) → M(G × G) is the external product of measures
and m : G × G → G is the multiplication map. In fact, we obtain an algebra
structure on the space of all signed measures M(G).

The convolution product makes C(G) a Banach algebra w.r.t. the supremum
norm, and M(G) a Banach algebra w.r.t. the L1-norm (i.e. the standard
functional norm on M(G) considered as dual to C(G)).

We have the convenient formulas δg ∗ (fdµ) = (Lgf) · dµ and (fdµ) ∗ δg =
(Rgf) · dµ.

5.1 Action on representations

If we have a unitary representation (V, π) of G (or, more generally, just any com-
plete locally convex representation), it extends naturally to a algebra morphism
π :M(G)→ End(V ), given by

π(ν)(v) =

∫
G

π(g)v · dν

(here, End(V ) is the algebra of continuous linear endomorphisms of V ).
Let us define the above vector-valued integral. for a continuous function

φ : G → V we define
∫
G
φ(g) · dν as the unique vector w ∈ V such that

α(w) =
∫
G
α(φ(g)) · dν for every continuous functional α on V .

Such a w is unique, if exists (by Hahn-Banach). To show that w exists in case
V is a Hilbert space, fix a Hilbert basis (ei) for V . Denote ci =

∫
G
〈φ(g), ei〉dν.

Then by Cauchy-Schwartz∑
i

|ci|2 ≤ C ·
∫
G

||φ(g)||2d|ν|.

Hence w =
∑
i ciei converges, and we easily see that it is our desired vector.

Back to our algebra morphism π : M(G) → End(V ), it is not difficult to
see that M(G)× V → V is continuous.
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6 Unitary representations of compact groups

Remark 6.1. Let (H,π) be a unitary representation of G. Then for every
subrepresentation U ⊂ H, U⊥ is also a subrepresentation of H.

For a unitary representation (H,π) of G, we denote by Hfin ⊂ H the sub-
space consisting of vectors v for which (π(g)v)g∈G span a finite-dimensional
subspace.

Lemma 6.2. Let (H,π) be a unitary representation of G. Then Hfin is dense
in H.

Proof. Let 0 6= v ∈ H. We can first approximate v by π(u)v for u ∈ C(G)
where u is as in the proof of Peter-Weyl (”approximation of δe”). Then, by
approximating u by functions from C(G)fin, we see that we can approximate v
by π(u)v for u ∈ C(G)fin. But for such u we have π(u)v ∈ V fin, and we are
done.

Claim 6.3. Let (H,π) be an irreducible unitary representation of G. Then H
is finite-dimensional.

Proof. Since H 6= 0, we have Hfin 6= 0. But then H contains a non-zero finite-
dimensional subrepresentation, and so is equal to it (being irreducible).

Claim 6.4. Let (H,π) be a unitary representation of G. Then H = ⊕̂i∈IEi for
some family of irreducible subrepresentations (Ei)i∈I .

Proof. Using Zorn’s lemma and taking orthogonal complements, we reduce to
showing that if H 6= 0, then H contains an irreducible subrepresentation. But
since Hfin 6= 0, H contains a non-zero finite-dimensional subrepresentation,
and thus an irreducible finite-dimensional subrepresentation.

Of course, this situation is radically different from the non-compact one, as
we see by considering the regular action of R on L2(R).

6.1 The case of SU(2)

Set G = SU(2). We consider the subgroup T ⊂ G of diagonal matrices (it is
isomorphic to C×1 ). We denote the characters of T by αn(diag(eiθ, e−iθ)) = einθ

(n ∈ Z). By linear algebra, every unitary operator is diagnolizable, so every
element of G is conjugate to an element in T . Thus, it is plausible that for a
central function f ∈ C(G) we can express the integral

∫
G
f · dµG in the form∫

T
f |T · dν for some measure ν on T . Indeed, we will now use and later prove

the following:

Theorem 6.5 (Weyl’s integration formula). Let f ∈ C(G) be central. Then∫
G

f ·dµG =
1

2

∫
T

f |T ·|α−α−1|2 ·dµT =
1

2π

∫ 2π

0

f(diag(eiθ, e−iθ))·2sin2(θ)·dθ.

19



Let now χ ∈ C(G) be the character of an irreduicble representation. We can
write χT =

∑
n∈Zmn ·αn for mn ∈ Z≥0, almost all of which are zero. We claim

that mn = m−n for all n ∈ Z. Indeed, consider the element w =

(
0 1
−1 0

)
∈

G. Notice that wtw−1 = t−1 for t ∈ T . Hence w maps eigenvectors of T with
eigencharacter αn to eigenvectors with eigencharacter α−n.

We will now interpret the constraint 〈χ, χ〉 = 1 using Weyl’s integration
formula. We get:

||χ||2G = avG(χ·χ) =
1

2
avT (χ|T ·(α−α−1)·χ|T ·(α−1−α)) =

1

2
||χ|T ·(α−α−1)||2T

so
2 = ||

∑
n

(mn−1 −mn+1)αn||2T =
∑
n

(mn−1 − nn+1)2.

Taking into account that almost all of the mn are equal to zero, and that
mn = m−n, we can only have mn = 1 for n ∈ {d, d − 2, d − 4, . . . ,−d} and
mn = 0 otherwise, where d ∈ Z≥0.

We now describe some representations Ed ∈ Repfd(G) with character as
above. Namely, set Ed to be the space of homogenous polynomials of de-
gree d on C2, with the standard action of SU(2) ⊂ GL2(C). Then Ed =
sp{yd, yd−1x, . . . , xd}, and the action of T on yd−ixi is via αd−2i. So indeed
χEd |T = αd + αd−2 + . . . , α−d.

We deduce that Ed are irreducible (since ||χEd ||2G = 1), and that these are
exactly all the irreducible representations of G, up to isomorphism (since we
saw that the character of an irreducible representation must coincide with the
character of one of the Ed).

7 Lie groups

7.1 Preliminaries

Definition 7.1. Definition of a smooth manifold, a morphism between
manifolds, a submersion between manifolds, a closed submanifold (a
closed subset, whose embedding locally looks like that of a vector subspace).

Given a morphism φ : M → N which is a submersion at a point m ∈ M ,
an important property is that φ admits a section locally at φ(m); i.e., there
exists a morphism s : U → M satisfying φ ◦ s = iU and s(φ(m)) = m, where
φ(m) ∈ U ⊂ N is open and iU : U → N is the inclusion.

From this property we get that given a surjective submersion φ : M → N ,
to give a morphism from N is the same as to give a morphism from M constant
on the fibers of φ (this boils down to checking that a map from N is smooth
if its composition with φ is smooth). In particular (”by Yoneda’s lemma”), a
bijective submersion is an isomorphism.

Sard’s lemma says:
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Theorem 7.2. Let M,N be second-countable non-empty manifolds of dimen-
sions m,n. Let φ : M → N be a morphism. Denote by Mφ ⊂ M the subset of
points at which φ is not submersive. Then φ(Mφ) ⊂ N has measure zero (in
particular, is not the whole of N). In particular, a surjective morphism must be
submersive at some point.

Definition 7.3. Definition of a Lie group, a morphism between Lie groups,
a Lie subgroup (a closed submanifold closed under multiplication and inverse).

Definition 7.4. For a Lie group G, definition of a G-manifold.

7.2 Automatic submersiveness results

Claim 7.5. Let M,N be transitive G-manifolds. Then any surjective morphism
of G-manifolds M → N is submersive.

Proof. Sard’s lemma gives that the morphism is submersive at some point. The
transitivity allows to translate this to all points.

Corollary 7.6. A bijective morphism between G-manifolds is an isomorphism.

Notice that a transitive G-manifold M with a point m whose stabilizer is H is
unique up to unique isomorphism; This follows from characterizing morphisms
from M as morphisms from G which are constant on left H-cosets (via the
surjective submersion G→M given by g 7→ gm). We also have existence:

Claim 7.7. Let G be a Lie group, and H ⊂ G a Lie subgroup. Then there exists
a transitive G-manifold M with a point m ∈M such that StabG(m) = H. If H
is normal in G, then M becomes a Lie group itself (such that G→M given by
g 7→ gm becomes a group homomorphism).

Of course, one denotes by G/H such a transitive G-manifold, identifying gH
with gm as usual.

Quite importantly, G→ G/H is a smooth fiber bundle with fiber H; In other
words, locally over G/H the morphism becomes isomorphic (as a morphism
between smooth manifolds) to a projection H × U → U . This follows quite
immediately from G→ G/H being submersive and the fibers being acted upon
freely and transitively by H.

7.3 Automatic smoothness results

As corollary of the previous subsection:

Corollary 7.8. A surjective morphism of Lie groups is submersive. A bijective
morphism of Lie groups is an isomorphism.

Claim 7.9. Let G be a Lie group, and H ⊂ G a closed subgroup. Then H a
Lie subgroup of G.
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Proof. We will use the exponential map, which we will describe later.
It is enough to show that H is a submanifold of G locally around e.
We define h ⊂ TeG by h = {X ∈ TeG | exp(tX) ∈ H ∀t ∈ R}. Using

the lemma that follows, we see that h is a linear subspace of TeG. Let V be
any linear complement to h in TeG. Define a map α : h × V = TeG → G by
(X,Y ) 7→ exp(X) · exp(Y ). Notice that α is a local diffeomorphism around 0.
We claim that α(U) ∩H = {e} where U is a small neighborhood of 0 in V . If
this is true, then the inclusion of H into G looks locally around e, via α, the
same as the inclusion of h into TeG - so H is a submanifold of G around e.

Indeed, set C := {v ∈ V | α(v) ∈ H}. Then C is a closed subset of V , and
is closed under multiplication by scalars in Z. We assume by contradiction that
C∩U 6= {0} for every open 0 ∈ U . This is an exercise that such C must contain
a line through the origin, meaning that V intersects h non-trivially, and we get
a contradiction.

Lemma 7.10. We have

exp(X + Y ) = limn→∞

(
exp(

1

n
X)exp(

1

n
Y )

)n
.

Proof. We have

exp(tX)exp(sY ) = exp(tX + sY +
1

2
ts[X,Y ] +O(r3)).

So (
exp(

1

n
X)exp(

1

n
Y )

)n
= exp(X + Y +

1

2n
[X,Y ] +O(n−3)).

Claim 7.11. Let G1, G2 be Lie groups, and φ : G1 → G2 a continuous group
homomorphism. Then φ is smooth.

Proof. Consider Grφ ⊂ G1×G2, defined by Grφ = {(g1, g2) | g2 = φ(g1)}. Since
φ is continuous, Gr(φ) is closed in G1×G2. Since φ is a group homomorphism,
Gr(φ) is a subgroup of G1×G2. Thus, by claim 7.9, Gr(φ) is a Lie subgroup of
G1×G2. The projection on the first factor gives us a bijective smooth morphism
Gr(φ) → G1. By corollary 7.8, it is an isomorphism of Lie groups. Thus φ is
smooth, since it is the composition of the inverse to the projection onto the first
factor Gr(φ)→ G1 with the projection onto the second factor Gr(φ)→ G2.

This final claim says the two possible notions of finite-dimensional represen-
tations of G - those with continuous matrix coefficients and those with smooth
matrix coefficients - coincide. In other words, C(G)fin ⊂ C∞(G) for a compact
Lie group G.
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7.4 Vector fields

Recall that (smooth) vector fields on a manifoldM can be described as sections
of the tangent bundle, and also as derivation of C∞(M). For a vector field
X ∈ T (M), we have its flow FX(t,m), a smooth function D(X) → M where
D(X) (the domain of definition) is an open subset of R×M intersecting each
R×{m} in an open interval containing zero, with the properties: FX(0,m) = m
for all m ∈ M and the derivative of t 7→ FX(t,m) at t0 is equal to XFX(t0,m).
We also denote F tX(m) := FX(t,m).

The Lie bracket of two vector fields X,Y is defined, in the language of
derivations, as

[X,Y ](f) := X(Y (f))− Y (X(f)) ∀f ∈ C∞(M).

An equivalent characterization is:

[X,Y ]|m = limt→0
1

t

(
(dF tX)−1Y |F tX(m) − Y |m

)
.

To give another interpretation, recall the lemma:

Lemma 7.12. Let α, β : M → N be morphisms of manifolds, let m ∈ M , and
suppose that α(m) = β(m) =: n and dmα = dmβ. Then there is a well-defined
quadratic homogenous function Qα,β : TmM → TnN such that in local charts
β − α = Qα,β +O(r3). For every function f ∈ C∞(N), we have

f ◦ β − f ◦ α = dnf ◦Qα,β +O(r3).

We apply this lemma to α, β : R2 → M given by α(t, s) = FX(t, FY (s,m))
and β(t, s) = FY (s, FX(t,m)), around 0 ∈ R2. We obtain Qα,β(t, s) = t2·? + ts ·
Z + s2·? where Z, ? ∈ TmM ; But plugging in t = 0 or s = 0 gives that ? = 0.
We now claim that Z = [X,Y ]m. Indeed, for every function f ∈ C∞(M), one
one hand we have

∂2

∂t∂s
[f(β(t, s))− f(α(t, s))] =

∂2

∂t∂s
[dmf ◦ (tsZ)] = Z(f)

and on the other hand

∂2

∂t∂s
[f(β(t, s))− f(α(t, s))] =

∂2

∂t∂s
f(β(t, s))− ∂2

∂t∂s
f(α(t, s)) = X(Y (f))−Y (X(f)).

An important property:

Claim 7.13. Let X,Y ∈ T (M). Suppose that [X,Y ] = 0. Then (for small
enough s, t depending on m) FX(t, FY (s,m)) = FY (s, FX(t,m)).

Proof. Notice that [X,Y ] = 0 gives dF sY (X|n) = X|F sY (n). Fix s, and consider
the function φ : t 7→ FY (s, FX(t,m)). We have φ(0) = FY (s,m). Furthermore,
the derivative:

d

dt
φ(t) = dF sY (XFX(t,m)) = XF sY (FX(t,m)) = XFY (s,FX(t,m)).
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7.5 The exponential map

Denote by T (G) the space of vector fields on G. G×G acts on T (G) as usual,
and we denote by T (G)G ⊂ T (G) the subspace of left-invariant vector fields.

Lemma 7.14. The map T (G)G → Te(G) given by sending a vector field to its
value at e is an isomorphism.

Claim 7.15. For any X ∈ Te(G), there exists a unique Lie group morphism
expX : R→ G for which the induced linear map d(expX) : R ∼= T0(R)→ Te(G)
sends 1 7→ X.

Proof. Denoting by X the corresponding left-invariant vector field by abuse of
notation, we notice that expX(t) = FX(t, e), would FX(t, e) be defined for all t ∈
R. This is because the formula FX(t, e)FX(s, e) = FX(s, FX(t, e)) = FX(t+s, e)
holds, because the derivative of the left hand side w.r.t. s is FX(t, e)XFX(s,e) =
XFX(t,e)FX(s,e) (by the left-invariance ofX). But now, we easily see that FX(t, e)
exists for all t ∈ R, because if it exists on some open interval containing [−ε, ε],
we extend it to an open interval containing [−2ε, 2ε] by formulas like FX(ε +
t, e) = FX(ε, e)FX(t, e)...

Definition 7.16. We define the exponential map exp : Te(G)→ G by

exp(X) := expX(1).

Lemma 7.17. The map exp : Te(G)→ G is smooth.

Claim 7.18. .

1. exp(tX) = expX(t) for every X ∈ Te(G) and t ∈ R.

2. exp(X + Y ) = exp(X) · exp(Y ) if X,Y ∈ Te(G) are linearly dependent.

3. exp(0) = e.

4. exp(nX) = exp(X)n for X ∈ Te(G) and n ∈ Z.

5. The differential d(exp) : Te(G)→ Te(G) is equal to the identity map.

6. There exists an open subset 0 ∈ U ∈ Te(G) such that V := exp(U) ⊂ G is
open, and exp : U → V is a diffeomorphism.

7. exp(TeG) generates G◦ as a group.

Proof. The first claim says exptX(1) = expX(t); This is true since s 7→ expX(st)
is a Lie group morphism R → G with differential tX, hence equal to s 7→
exptX(s).

The claims 2,3,4 follow easily from the first claim.
Claim 5: d(exp) evaluated at X is the same as d(exp ◦ αX) evaluated at 1,

where αX : R → Te(G) is given by αX(t) = tX. But exp ◦ αX = expX , hence
d(exp) evaluated at X gives X.
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Claim 6 follows from claim 5 by the inverse function theorem.
Claim 7: Obviously C := exp(TeG) ⊂ G◦ (since TeG is connected). By

claim 6, C contains an open neighbourhood U of e. Set V = U ∩ U−1. Then
∪nCn contains ∪nV n, which is an open subgroup of G◦, hence equal to G◦.

Claim 7.19. Let φ : G → H be a morphism of Lie groups. Then φ ◦ expG =
expH ◦ deφ.

Proof.

Claim 7.20. Let H ⊂ G be a Lie subgroup. Then for X ∈ Te(G), one has
X ∈ Te(H) if and only if expG(tX) ∈ H for all t ∈ R.

Proof. If X ∈ Te(H), then expG(tX) ∈ H is clear by the previous claim applied
to the inclusion H → G. Conversely, The tangent to the curve t 7→ expG(tX)
is X, so if the curve lies in the submanifold H, then X lies in the tangent space
TeH.

7.6 The adjoint representation

Fix g ∈ G. The map cg : G → G given by x 7→ gxg−1 is an automorphism
sending e to e, hence its differential at e gives a linear automorphism of Te(G)
which we denote by Ad(g).

Lemma 7.21. The morphism G→ Aut(Te(G)) given by g 7→ Ad(g) is a (real)
representation (called the adjoint representation).

Claim 7.22. We have g · exp(X) · g−1 = exp(Ad(g)(X)) for all g ∈ G and
X ∈ Te(G).

Proof. Since both g ·exp(tX)·g−1 and exp(Ad(g)(tX)) are Lie group morphisms
R→ G, it is enough to check that they have the same derivative at 0 ∈ R...

7.7 The Lie bracket

We will give various characterizations of the Lie bracket

[·, ·] : Te(G)⊗R Te(G)→ Te(G).

It has the properties
[X,Y ] = −[Y,X]

and
[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]].

First definition is using the isomorphism Te(G) ∼= T (G)G ∼= Der(C∞(G))G.
Here, Der(C∞(G)) is the space of derivations of the algebra of smooth functions
on G, and by (·)G we mean G-invariants w.r.t. the left action. We define for
two derivations D,E a new one given by:

[D,E](f) := D(E(f))− E(D(f)).
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One verifies that [D,E] is indeed a derviation, and that if D,E are G-invariant,
so is [D,E].

Second definition is that [X,Y ] is the unique vector such that

exp(tX)exp(sY ) = exp(tX + sY +
1

2
ts[X,Y ] +O(r3))

(r is the radius on the (t, s)-plane R2).
Second′ definition is that [·, ·] is the unique bilinear form such that

exp(X)exp(Y ) = exp(X + Y +
1

2
[X,Y ] +O(r3))

(r is the radius on TeG× TeG).
Third definition is by taking the differential of Ad : G → End(TeG), ob-

taining a map d(Ad) : TeG→ End(TeG) and setting [X,Y ] := d(Ad)(X)(Y ).
Let us see that the second definition is equivalent to the first. Writing

exp(tX)exp(sY ) = exp(tX + sY + tsZ +O(r3))

(which is possible since (t, s) 7→ exp(tX)(exp(sY ) and (t, s) 7→ exp(tX + sY )
are identical up to order 1 around (t, s) = (0, 0)), by taking inverses we obtain

exp(sY )exp(tX) = exp(tX + sY − tsZ +O(r3))

and thus we obtain
Qα,β = 2tsZ

where α(t, s) = exp(sY )exp(tX) and β(t, s) = exp(tX)exp(sY ). Since α(t, s) =
FX(t, FY (s, e)) and β(t, s) = FY (s, FX(t, e)) (where we identify X,Y with the
corresponding left-invariant vector fields), we get 2Z = [X,Y ].

We leave as an exercise to check that second and second′ definitions agree.
Let us see that the third definition is equivalent to the second′. By using 2′,

we have

exp(sX)exp(tY )exp(−sX) = exp(tY + st[X,Y ]2′ +O(r3)).

We obtain Ad(exp(sX))(Y ) = Y + s[X,Y ]2′ + O(s2) and so [X,Y ]3 =
[X,Y ]2′ .

Claim 7.23. Let X,Y ∈ TeG. If [X,Y ] = 0, then exp(X+Y ) = exp(X)exp(Y ) =
exp(Y )exp(X).

Proof. The expressions exp(tX)exp(sY ) and exp(sY )exp(tX) are equal from
the corresponding claim for flows of vector fields (applied to the left-invariant
vector fields corresponding to X and Y ). In particular, t 7→ exp(tX)exp(tY ) is
a group homomorphism, with derivative X +Y at zero, hence exp(t(X +Y )) =
exp(tX)exp(tY ).

Claim 7.24. Let φ : G→ H be a Lie group morphism. Then dφ : TeG→ TeH
is a Lie algebra morphism, i.e. it commutes with the Lie bracket.
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7.8 The Lie bracket in matrix groups

For G = GL(n, F ), where F ∈ {R,C}, we have Te(G) = M(n, F ) and exp(X) =∑
n≥0

1
n!X

n. The adjoint representation is given by conjugation: Ad(g)(X) =

gXg−1 and the Lie bracket is given by [X,Y ] = XY − Y X (for example, we
calcaulte

exp(tX)exp(sY ) = I + tX + sY +
1

2
(t2X2 + 2tsXY + s2Y 2) + . . .

and

exp(sY )exp(tX) = I + tX + sY +
1

2
(t2X2 + 2tsY X + s2Y 2) + . . .

so that exp(tX)exp(sY )− exp(sY )exp(tX) = ts(XY − Y X) + . . ..
If H ⊂ G is a closed subgroup, then TeH consists of the matrices X ∈

M(n, F ) which satisfy exp(tX) ∈ H for all t ∈ R. The adjoint represetnation
and Lie bracket are just induced by restriction from those for G.

7.9 Some examples

We have the Lie groups GL(n,R), GL(n,C). We have the compact Lie groups
O(n) ⊂ GL(n,R) and U(n) ⊂ GL(n,C). Note that this is not immediately
clear that O(n) and U(n) are submanifolds, but the non-trivial theorem above
states that a closed subgroup is a Lie subgroup.

We also have the Lie groups SO(n) ⊂ O(n) and SU(n) ⊂ U(n).
The Lie group SU(n) acts on S2n−1, with stabilizer isomorphic to SU(n−1).

In particular SU(2) ∼= S3.
The Lie group SO(n) acts on Sn−1, with stabilizer isomorphic to SO(n−1).

In particular SO(2) ∼= S1.
The Lie algebra of O(n) is the subalgebra of M(n,R) consisting of matrices

X satisfying exp(tXt) = exp(−tX) for all t ∈ R. This is equivalent to Xt = −X,
i.e. we get the Lie algebra of skew-symmetric matrices.

Similarly, the Lie algebra of U(n) is the Lie algebra of skew-Hermitian ma-
trices (matrices X satisfying = Xt = −X).

7.10 SU(2)/{±1} ∼= SO(3)

Consider the adjoint representation of SU(2). This is a real three-dimensional
representation. The kernel of this representation is ±1. We obtain a morphism
SU(2)/{±1} → GL(3,R), which we can factor via SU(2)/{±1} → O(3) by
endowing the representation with a SU(2)-invariant inner product. Since SU(2)
is connected, this factors via SU(2)/{±1} → SO(3). Since this is an injective
morphism between manifolds of the same dimension, it has open image (by
the ”invariance of domain” theorem), hence it is surjective (because an open
subgroup of a connected group must be the whole group). Since a bijective
morphism of Lie groups is an isomorphism, we obtain the isomorphism of Lie
groups SU(2)/{±1} ∼= SO(3).
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Notice that diag(SO(2), {1}) ⊂ SO(3) is, up to conjugation, the subgroup
fixing a vector. Also T ⊂ SU(2) (the group of diagonal matrices), is the

subgroup fixing the vector

(
i 0
0 −i

)
in the adjoint representation. so we

can set the isomorphism SU(2)/{±1} ∼= SO(3) so that T/{±1} corresponds
to diag(SO(2), {1}). The corresponding map T → SO(2) must be either

diag(eiθ, e−iθ) 7→
(
cos(2θ) sin(−2θ)
sin(2θ) cos(2θ)

)
or the inverse of that. By conju-

gating by the element diag(

(
0 1
−1 0

)
, 1) ∈ O(3) those get exchanged.

Since SU(2) has exactly one irreducible representation of each dimension
d ∈ Z≥1, and −1 acts trivially exactly on the odd-dimensional ones, we get
that SO(3) has exactly one irreducible representation of each dimension d ∈
2Z≥0 + 1, and no more. Also, we see how those representations decompose
w.r.t. diag(SO(2), {1}).

One can also notice that by considering the action of SU(2) on the unit
sphere in the adjoint representation, we obtain a fiber bundle SU(2) ∼= S3 → S2

with fiber T ∼= S1, which is the well-known Hopf fibration. It allows to see that
π3(S2) ∼= π3(S2) ∼= Z.

Also, we notice that we get that SO(3) is diffeomorphic to RP3, the projective
real 3-space (since RP3 can be thought of as S3 modulo antipodality - which is
the same as SU(2)/{±1}).

7.11 The spherical harmonics for SO(3)

Let G be a compact group, and H ⊂ G a closed subgroup. We are interested
in the space C(G/H)fin. Notice that this is the same as (C(G)fin)H . By the
Peter-Weyl decomposition, we obtain an isomorphism of G-representations

C(G/H)fin ∼= ⊕EE ⊗ (E∗)H ,

where E runs over representatitves of isomorphism classes of irreducible repre-
sentations of G. Thus, to know how many times each irreducible representation
of G occurs in C(G/H)fin, we need to know how many H-invariant functionals
each irreducible representation has.

Let us take G = SO(3) and H = diag(SO(2), 1) from above. We have
an action of G on S2 ⊂ R3, and the stabilizer of the point (0, 0, 1)t is H. So
G/H ∼= S2. Notice that by above we see that for each irreducible representation
E of G, one has dimEH = 1, and so also dim(E∗)H = 1 (by replacing E by E∗,
which is also an irreducible representation of G).

We deduce that C(S3)fin decomposes into the direct sum of irreducible
representations of G, where each irreducible representation occurs exactly once.

7.12 Lie’s theorems

We want to study the functor Lie : G 7→ Te(G), from the category of Lie groups
to the category of Lie algebras.
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Theorem 7.25. Let G,H be Lie groups.

1. If G is connected, Lie : Hom(G,H)→ Hom(Te(G), Te(H)) is injective.

2. If G is connected and simply-connected, Lie : Hom(G,H)→ Hom(Te(G), Te(H))
is surjective.

3. Lie is essentially surjective.

Proof. To prove 1, notice that for φ : G→ H, the differential dφ : TeG→ TeH
determines the φ on exp(TeG) ⊂ G. Since G◦ is the subgroup of G generated by
exp(TeG), we get that dφ determines φ on G◦, which is G in case G is connected.

We omit the proof of 2.
We omit the proof of 3, since it is not important for us.

7.13 Faithful representations, complexification

Claim 7.26. Let G be a compact Lie group. Then G is isomorphic to a Lie
subgroup of GL(n,C), for some n.

Proof. We first notice that a compact Lie group satisfies the descending chain
condition w.r.t. Lie subgroups (i.e. any descending chain of Lie subgroups
must stabilize). This is because a Lie subgroup must either have a smaller
dimension, or a fewer connected components. Now, given that we constructed a
representation with kernel K, choosing some e 6= g ∈ K, we consider the direct
sum of the current representation with a representation on which g acts non-
trivially, and obtain a representation with kernel smaller than K. Proceeding
like that, by the descending chain condition we will eventually get a faithful
representation.

In other words, the theorem says that compact Lie groups are linear. A stan-
dard example of a non-linear Lie group (i.e. a Lie group with is not isomorphic
to any closed subgorup of GL(n,C), for no n) is the universal cover of SL(2,R).

To calculate π1(SL(2,R)), we use the action of SL(2,R) on R2 − {0}. This
action is transitive, with a stabilizer of some point being U ⊂ SL(2,R), the
subgroup of upper-triangular unipotent matrices. Thus, SL(2,R) is the total
space of a fibration over R2−{0} with contractible fiber U , hence π1(SL2(R)) ∼=
π1(R2 − {0}) ∼= Z. Notice that analogously π1(SL(2,C)) ∼= π1(C2 − {0}) = 1.
We consider now G - the universal cover of SL(2,R), and the composition
α : G→ SL(2,R)→ SL(2,C) (where the later map is the standard embedding).
The corresponding Lie algebra map is the copmlexification g → C ⊗R g. Now,
let G → H be a morphism, where TeH has a complex structure. Then we
can break TeG → TeH via TeG → Te(SL(2,C)) → TeH (by the universal
property of complexification). By simple-conectedness we can lift those to maps
G → SL(2,C) → H, and the composition must be the original G → H by
conectedness. Hence, we deduce that G → H can not be injective (because
G → SL(2,C) isn’t). This implies that G has no embedding into a matrix
algebra GL(n,C).
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8 Maximal tori

8.1 Connected abelian Lie groups

Let G be a connected abelian Lie group.

Claim 8.1. exp : (g,+)→ (G, ·) is an epimorphism with discrete kernel.

Claim 8.2. Let V be a finite-dimensional vector space over R, and Γ ⊂ V
a discrete subgroup. Then there exists a basis e1, . . . , en of V and an integer
0 ≤ k ≤ n such that Γ = Ze1 + . . .+ Zek. We have k = n if and only if V/Γ is
compact.

Corollary 8.3. G is isomorphic to (R/Z)k × Rn−k for some 0 ≤ k ≤ n.

Definition 8.4. A torus is a compact connected abelian Lie group.

We saw that any torus is isomorphic to (R/Z)k for some k ∈ Z≥0.

Definition 8.5. Let G be a Lie group. We say that an element g ∈ G is
a topological generator if the subset gZ ⊂ G is dense. We say that G is
monogenic if it admits a topological generator.

Claim 8.6. A torus is monogenic.

Proof. Let G be a torus and let us present G ∼= (R/Z)k. We claim that any
g = (a1, . . . , ak) for which 1, a1, . . . , ak are linearly independent over Q, is a
topological generator. This property implies that χ(g) 6= 1 for any non-trivial
character χ : T → C×. We claim now that the following holds (I think this is
Weyl’s theorem): ∫

G

f · dµ = limn→∞

∑n
i=1 f(gn)

n

for any f ∈ C(G). Indeed, by the Peter-Weyl theorem it is immediate to reduce
this to f = χ a character. For χ = 1, this is clear. Thus, we are left to show
that for a non-trivial character χ we have

limn→∞

∑n
i=1 f(gn)

n
= 0.

But we have (recalling that χ(g) 6= 0)∑n
i=1 f(gn)

n
=
χ(g) · (χ(g)n − 1)

(χ(g)− 1)n
,

so clearly the desired limit equality holds.
Now, we claim that from this result the density of gZ ⊂ G follows. Indeed,

would it be not dense, we could find a positive non-zero continuous function f
vanishing on gZ. Then we get a contradiction examining the equlity above for
such an f .
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Lemma 8.7 (Rigidity of tori). Let G be a torus, and Φ : M ×G→ G a smooth
map, such that Φm(g) := Φ(m, g) is an automorphism of G as a Lie group, for
every m ∈M . Then if M is connected, the automorphism Φm does not depend
on m.

Proof. Fix a torsion element g ∈ G. For every character χ of G, the image of
m 7→ χ(Φm(g)) lies in the discrete set of roots of unity of order o(g); Hence
m 7→ χ(Φm(g)) is constant. Since the values of all the characters determine the
element of g, we get that m 7→ Φm(g) is constant. Since the subgroup of torsion
element is dense in G, we get that m 7→ Φm is constant.

8.2 Maximal tori and the root decomposition

Let G be a compact connected Lie group.

Definition 8.8. A maximal torus T ⊂ G is a closed subgroup, which is a torus,
and which is not contained in any closed subgorup which a torus, except itself.

Obviously, maximal tori exist.
The main theorem on maximal tori, which we will prove later, is:

Theorem 8.9 (Main theorem on maximal tori). Let T ⊂ G be a maximal torus.
Then any element of G is conjugate to an element in T .

Lemma 8.10. Let T be a closed connected subgroup of G. Then T is a maximal
torus in G if and only if Lie(T ) is a maximal abelian subalgebra in Lie(G).

Proof. Assume first that T is a maximal torus. Suppose that X ∈ Lie(G)
commutes with all the elements in Lie(T ). Consider S, the identity component
of the closure of the subgroup generated by T ∪ exp(RX). Then S is torus,
hence S = T . But Lie(T ) + RX ⊂ Lie(S), so that we get X ∈ Lie(T ).

Assume now that Lie(T ) is a maximal abelian subalgebra in Lie(G). Then
if T were contained in a bigger torus S, we would have a strict containment of
Lie(T ) in Lie(S), and thus Lie(T ) would not be a maximal abelian subalgebra
in Lie(G).

Definition 8.11. Let T ⊂ G be a maximal torus. The Weyl group W (G,T ) is
defined as NG(T )/T .

Remark 8.12. A bit more correct would be to define the Weyl group as
NG(T )/ZG(T ). However, the former definition is more convenient for us now,
and later we will see that in fact ZG(T ) = T holds.

Lemma 8.13. The Weyl group W (G,T ) is finite.

Proof. Considering the map NG(T )×T → T , given by (g, t) 7→ gtg−1, we get by
rigidity of tori that NG(T )◦ ⊂ CG(T ). Thus CG(T ) is of finite index in NG(T ).
Moreover, T is of finite index in CG(T ), because Lie(CG(T )) = Lie(CG(t)) =
Cg(t), so Lie(CG(T )) = t by t being a maximal abelian subalgebra of g.
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We fix a maximal torus T ⊂ G, and consider the adjoint representation of
T on g. We have t = gT,1 (the subspace on which T acts trivially), basically
by the above lemma. We thus have an isotypical decomposition g = t ⊕ gT, 6=1.
To work with gT, 6=1, it is not necessary, but is convenient for us, to pass to
complexification gC. Then we get

gC = tC ⊕
⊕

χ∈R(G,T )

gT,χC ,

where R(G,T ) (the set of roots) is the set of non-trivial characters χ of T for

which gT,χC 6= 0. We notice that since gC is the complexification of g, the set

R(G,T ) is closed under taking inverse and we have dim gT,χC = dim gT,χ
−1

C for

all χ. We will later see that dim gT,χC = 1 for every χ ∈ R(G,T ).

8.3 The map c : G/T × T → G, and a proof of the main
theorem on maximal tori

To prove the theorem that every element of G is conjugate to an element of T ,
we study the map c : G/T × T → G given by c([g], t) = gtg−1. Notice that
the theorem is equivalent to the statement that c is surjective. We will use the
following statement from differential topology, the theorem on mapping degrees:

Theorem 8.14. Let M,N be compact connected oriented manifolds of the same
dimension n. Let φ : M → N be a morphism of manifolds. Then there exists an
integer deg(f), the mapping degree of f , such that for every form ω ∈ Ωn(N)
one has ∫

M

φ∗ω = deg(f) ·
∫
N

ω.

Moreover, for an regular value n ∈ N of φ, the number deg(φ) equals the number
of preimages of n at which φ preserves orientation, minus the number of per-
images of n at which φ reverses orientation. In particular, deg(φ) 6= 0 implies
that φ is surjective.

A manifold is oriented if we choose an orientation of each tangent space
to the manifold, in a continuous fashion. On an oriented manifold we have a
canonical integration of continuous, compactly supported top-forms. Given a
morphism φ : M → N between oriented manifolds, at each regular point m ∈M
(i.e. such that dmφ is surjective, and hence an isomorphism), we have that dmφ
is preserves or reverses orientation.

We fix orientations for g and t. Then g/t gets an induced orientation. By
using translation on the left, we obtain from those orientations of G,T,G/T .
For the last one, one needs to notice that the adjoint action of T on g/t preserves
orientation. Indeed, this follows from T being connected.

Now, the idea is to find a regular value of c, using which it will be easy to
calculate the degree deg(c).
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Proposition 8.15. Let t be a generator of T . Then c−1(t) is in bijection, via
projecting on the first factor, with W (G,T ), and c preserves orientation at each
point of c−1(t). In particular, deg(c) = |W (G,T )| and c is thus surjective.

Proof. If ([g], s) ∈ c−1(t), then t ∈ g−1Tg so, since t is a generator of T , we
have T ⊂ g−1Tg, so T = g−1Tg, i.e. g ∈ NG(T ). From this we see that c−1(t)
is in bijection, via projecting on the first factor, with NG(T )/T .

Let us now calculate the differential of c at some point ([g0], t0).
For this, let us calculate the differential of c̃ : G× T → G given by c̃(g, t) =

gtg−1, at some point (g0, t0). We identify tangent spaces to G and T at various
points with the tangents space at identity, via the left-invariance. So, the dif-
ferential at (g0, t0) is modeled by the map g⊕ t→ g given by the differential at
(e, e) of

G× T (g0·,t0·)−−−−−→ G× T c̃−→ G
(g0t0g

−1
0 )−1·

−−−−−−−−→ G.

This map is calculated to be the same as

G× T
([t−1

0 ,pr1],c̃)
−−−−−−−−→ G×G mult−−−→ G

g0·(·)·g−1
0−−−−−−→ G.

Its differential at (e, e) is

g⊕ t
((Ad(t−1

0 )−id)◦pr1,inctg)
−−−−−−−−−−−−−−−−→ g⊕ g

add−−→ g
Ad(g0)−−−−→ g

(where inctg is the inclusion). To summarize, we obtain that the differential of
c̃ at the point (g0, t0) is modeled by the map g⊕ t→ g given by

(X,H) 7→ Ad(g0)[Ad(t−1
0 )X −X +H].

Now, to model the differential of c at ([g0], t0), we identify T[g0](G/T ) with
T[e](G/T ) via left multiplication by g0. Then we get that the differential of c at
([g0], t0) is modeled by g/t⊕ t→ g given by

(X + t, H) 7→ Ad(g0)[Ad(t−1
0 )X −X +H].

Since G is connected, it is clear that Ad(g0) is an orientation-preserving
automorphism of g. Also, we identify g/t with gT, 6=1. We see that it is enough
for us to study the determinant of the map g→ g given by

X 7→ Ad(t−1
0 )X −X

for X ∈ gT, 6=1 and
X 7→ X

for X ∈ t. We can pass to the complexification. Then we get that the determi-
nant is ∏

χ∈R
(χ(t0)−1 − 1)dim gT,χ =

∏
χ∈R/±

|χ(t0)−1 − 1|2 dim gT,χ .

So, if t0 is a generator of T , so that χ(t0) 6= 1 for every χ 6= 1, we obtain
that c is orientation-preserving at all points of c−1(t0).
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8.3.1 Weyl’s integration formula

Let us establish Wey’s integration formula. We denote by ωG (ωT , ωG/T ) a left
G-invariant (T -invariant, G-invariant) non-vanishing top form on G (T , G/T ).
Then the calculations above show that

c∗(ωG) = K ·
∏
χ∈R

(χ(t)−1 − 1)dim gT,χC · (ωG/T � ωT ),

where K is a non-zero constant. Let us denote ∆(t) :=
∏
χ∈R(χ(t)−1−1)dim gT,χC .

We thus obtain, for a function f ∈ C(G):∫
G

fdµG =

∫
G

fωG =
K

|W |

∫
G/T×T

f(gtg−1)·∆(t)·ωG/T�ωT =
K

|W |

∫
T

∆(t)

(∫
G/T

f(gtg−1)dµG/T

)
dµT ,

where µG, µT , µG/T are invairant measures and K is some non-zero constant.
We can rewrite this as∫

G

fdµG =
K

|W |

∫
T

∆(t)

(∫
G

f(gtg−1)dµG

)
dµT ,

where again K is some non-zero constant, and the Haar measures are normalized
such that the total mass of G and T is 1.

Claim 8.16. In the last formula (with the normalization
∫
T
µT =

∫
G
µG = 1),

we have K = 1.

Proof. complete

Finally, let us summarize, giving Weyl’s integration formula:

Corollary 8.17. Let µG, µT be Haar measures on G,T , normalized so that the
total mass is 1. Then for every f ∈ C(G), we have:∫

G

fdµG =
1

|W |

∫
T

∆(t)

(∫
G

f(gtg−1)dµG

)
dµT .

In particular, for a central function f ∈ Cc(G), we have:∫
G

fdµG =
1

|W |

∫
T

∆(t)f(t)dµT .

8.4 A second proof of the main theorem on maximal tori

This subsection is with errors, need dmα− id instead of dmα!!
We fix an element g ∈ G. We consider the morphism αg : G/T → G/T

given by xT 7→ gxT . We notice that the possibility of conjugating g into T is
equivalent to αg having a fixed point.

To count fixed points, we will use the Lefshcetz fixed point theorem (weak
form):
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Theorem 8.18 (Lefschetz fixed point theorem). Let M be a compact manifold,
and α : M → M an endomorphism. If α has a finite number of fixed points,
then the Lefschetz number

Λα :=
∑
i≥0

(−1)iTr(α,Hi(M,Q))

is equal to

Fα :=
∑

m∈Fix(α)

iα(m),

where iα(m) is ±1, according to the sign of the determinant of dmα.
In particular, if Λα 6= 0, then α has at least one fixed point.

Now the idea is that the Lefschetz number depends only on the homotopy
class of α. Notice that in our case, since G is connected, all the maps αg are
homotopic. Hence, it is enough to show that Λαg 6= 0 for some one comfortable
g! We again take g = t0 to be a generator of T . Then we see that Fix(αt0) =
NG(T )/T . It is a finite set, and so it is enough to show that iαt0 (g) = 1
for every g ∈ NG(T )/T . By using left translation, we model dgTαt0 as the
differential at eT of G/T → G/T given by xT 7→ g−1t0gxT , which is the same
as xT 7→ g−1t0gx(g−1t0g)−1T . Thus, our model map is g/t→ g/t given by

X + t 7→ Ad(g−1t0g)X + t.

Similarly to before, the determinant of this map is∏
χ∈R(G,T )/±1

|χ(g−1t0g)|2 dim gT,χC ,

which is positive.
To summarize, we see that the Lefschetz number Λαg is equal to |W | for

every g ∈ G. In particular, the Euler characteristic Λid = |W |.

8.5 Corollaries of the main theorem

Corollary 8.19. Any element of G is contained in a maximal torus.

Proof. Clear, since if hgh−1 ∈ T , then g ∈ h−1Th, and clearly h−1Th is a
maximal torus in G.

Corollary 8.20. Any maximal torus S ⊂ G is conjugate to T .

Proof. As we saw before, S is monogenic; i.e. there exists s ∈ S such that
sZ = S. Now, if hsh−1 ∈ T for some h ∈ G, then we see that hSh−1 ⊂ T . Since
hSh−1 is a maximal torus, we get hSh−1 = T .

Definition 8.21. The rank of G is the dimension of a maximal torus in G.

Corollary 8.22. The map exp : TeG→ G is surjective.
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Proof. G is the union of maximal tori, and the exponential map of a torus is
surjective.

Corollary 8.23. Let S ⊂ G be a subtorus. Then ZG(S) is equal to the union
of maximal tori containing S. In particular, ZG(T ) = T .

Proof. Let g ∈ ZG(S). Let S1 be the closure of the subgroup generated by
S∪{g}. We claim that S1 is monogenic. If so, S1 is contained in some maximal
torus (since its generator does), and we get what we want. To see that S1 is
monogenic, notice that S ⊂ S◦1 , and hence g generates S1/S

◦
1 , which is a finite

group. Hence S1/S
◦
1 is a cyclic finite group.Denote m := |S/S◦1 |. Since S◦1 is

a torus, we can find a generator s of S◦1 . We want to find s1 ∈ S such that

(gs1)m = s. If this is done, than (gs1)Z contains sZ = S◦1 , but also contains
gS◦1 , so must be the whole of S1. The equation is equivalent to sm1 = sg−m.
Sicne sg−m ∈ S◦1 and S◦1 is divisble, the equation is solvable.

Corollary 8.24. Let S ⊂ G be a subtorus. Then ZG(S) is connected.

Proof. This is clear, since ZG(S) is the union of connected subgroups by the
previous corollary.

Corollary 8.25. Let X ∈ Lie(G). Then ZG(X) is connected.

Proof. Notice that ZG(X) = ZG(exp(RX)), and exp(RX) is a torus.

Corollary 8.26. The center ZG(G) equals the intersection of all maximal tori.

Proof. ZG(G) ⊂ ∩TZG(T ) = ∩TT . On the other hand, ∩TT = ∩TZG(T ) =
ZG(∪TT ) = ZG(G).

Corollary 8.27. If t1, t2 ∈ T are conjugate in G, then they are also conjugate
in NG(T ).

Proof. Let gt1g
−1 = t2. Then T, gTg−1 are maximal tori in the connected

compact Lie group Z(t2)◦. Hence by the main theorem, T, gTg−1 are conjugate
in Z(t2)◦. So let h ∈ Z(t2)◦ be such that hgT (hg)−1 = T . Then hg ∈ NG(T ),
and (hg)t1(hg)−1 = t2.

Corollary 8.28. Restriction gives a well-defined bijection C(G)cent → C(T )W

(of central continuous functions on G and W -invariant continuous functions on
T ).

Proof. By the previous corollary and the main theorem, we have clearly a bijec-
tion on the level of functions (not neccesarily continuous). Thus what we need
to show is that given a function f ∈ C(G)cent such that f |T is continuous, also
f is continuous.

Indeed, notice that c−1f = pr∗2f |T , where c : G/T × T → G is the map we
studied, and pr2 : G/T × T → T is the projection on the second factor. Now, c
is a surjective map between compact spaces, and hence a quotient map. Thus,
since c−1f is continuous, so is f .
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8.6 More about the map c : G/T × T → G

Lemma 8.29. Let φ : M → N be a proper map between manifolds of the
same dimension. Then the set of regular values Nφ−reg is open in N , and
φ : φ−1(Nφ−reg)→ Nφ−reg is a covering map.

Let us notice that our map c : G/T × T → G has the following equivariant
structure. We let G act on G/T ×T by acting on the first factor by left regular
action. We let G act on G by conjugation. Then c is a G-morphism. Moreover,
we let W (G,T ) act on G/T × T by w([g], t) := ([gw−1], wtw−1) and on G
trivially. Then c is also a W (G,T )-morphism. Also, recall that we saw that the
differential of c at a point ([g0], t0) is an isomorphism if and only if χ(t0) 6= 1
for every χ ∈ R(G,T ).

Let us denote by Greg ⊂ G the set of regular values of the map c. Also,
denote T reg = Greg ∩ T .

Claim 8.30. The subset Greg ⊂ G is open, with complement of measure zero,
and stable under conjugation in G. We have c−1(Greg) = G/T × T reg.

Proof. That Greg is open follows from the lemma above. That its complement
is of measure zero is given by Sard’s lemma. It is clear that Greg is stable under
conjugation in G, because c is G-equivariant as above. From this stability under
conjugation, the last claim is also clear.

Claim 8.31. For g ∈ G, TFAE:

1. g ∈ Greg.

2. For some maximal torus S containing g, we have χ(g) 6= 1 for every
χ ∈ R(G,S).

3. dimZG(g) = rkG.

4. ZG(g)◦ is a maximal torus.

5. g is contained in a unique maximal torus.

6. For some maximal torus S containing g, we have ZG(g) ⊂ NG(S).

Proof. (1) ⇔ (2): By conjugating, we may assume S = T (and so g = t ∈ T ).
Then elements in c−1(t) have second coordinate conjugate in G to t, and hence
conjugate in W to t. Thus, χ(t) 6= 1 for all χ ∈ R(G,T ) if and only if χ(t′) 6= 1
for all χ ∈ R(G,T ) and all t′ - second coordinates of elements in c−1(t). By the
calculation when is the differential of c an isomorphism - we are done.

(2) ⇔ (3): The condition of (2) is equivalent to Zg(g) = Lie(S), which is
equivalent to dimZg(g) = rkG, and thus equivalent to (3) because dimZG(g) =
dimZg(g).

(3) ⇒ (4): If S is a maximal torus containing g, we have S ⊂ ZG(g)◦, and
by comparing dimensions we get equality.
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(4) ⇒ (5): If S is a maximal torus containing g, we have S ⊂ ZG(g)◦, and
since ZG(g)◦ is a torus we get equality.

(5)⇒ (6): Let S be the maximal torus containing g. We must have ZG(g) ⊂
NG(S), because otherwise, if we take h ∈ ZG(g)−NG(S), we obtain a maximal
torus hSh−1 containing g and different from S.

(6) ⇒ (3): We get dimZG(g) ≤ rkG, and so dimZG(g) = rkG (because
the centralizer of an element always contains a maximal torus, hence always of
dimension at leas rkG).

Claim 8.32. c−1(Greg)→ Greg is a W (G,T )-covering map.

Proof. We notice that W (G,T ) acts freely on G/T , and hence on G/T × T .
Hence, we only need to show that W (G,T ) acts transitively on the fibers. Let
g ∈ Greg, and ([h], t), ([k], s) ∈ c−1(g). It is enough to show that k−1h ∈
W (G,T ). We denote conjugation by ∗. We have k−1h ∗ t = s, so t and s
are conjugate in G, and hence in NG(T ). So let w ∈ NG(T ) be such that
w ∗ t = s. Then w−1k−1h ∗ t = t, i.e. w−1k−1h ∈ ZG(t). So by the previous
claim w−1k−1h ∈ NG(T ), and thus k−1h ∈ NG(T ).

For θ ∈ R(G,T ), let us denote Uθ := Ker(θ) ⊂ T . Then Uθ is of dimension
dimT − 1. We have T reg = T − ∪θ∈R(G,T )Uθ.

Claim 8.33. Greg is the complement of a subset of codimension ≥ 3, i.e. a
subset which lies in the image of a smooth map from a compact manifold of
dimension ≤ dimG− 3.

Proof. We consider the maps G/ZG(Uθ) × Uθ → G given by ([g], t) 7→ gtg−1.
Then their images cover G − Greg. Notice that dimZG(Uθ) = dimZg(Uθ) ≥
dim(tC ⊕ gT,θC ⊕ gT,θ

−1

C ) = dimT + 2.

Corollary 8.34. The map πi(G
reg) → πi(G) (via the inclusion Greg → G) is

an isomorphism for i = 0, 1 and a surjection for i = 2.

Proof. This is some general property of complements to subsets of codimension
≥ 3.

Claim 8.35. We have π2(G) = 0.

Proof. Consider the commutative diagram

G/T × T reg //

��

G/T × T

c

��

Greg // G

.

The bottom arrow is surjective on π2 as we metioned. The left arrow is surjective
on π2 since it is a covering map (more precisely, we mean that the map from
any connected component of the upper space gives a surjection on π2). Thus,
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it is enough to show that the map c is zero on π2. Notice that π2(T ) = 0,
and thus π2(G/T × {e}) → π2(G/T × T ) is surjective. But the composition
G/T × {e} → G/T × T → G is trivial, and we are done.

Claim 8.36. We have π1(G/T ) = 0, and so π1(T )→ π1(G) is surjective.

Proof. That π1(T )→ π1(G) is surjective follows from π1(G/T ) = 0 by the long
exact sequence of homotopy groups of the fibration G→ G/T .

Consider the maps fp : G/T
id×p−−−→ G/T × T

c−→ G where p ∈ T . Notice
that all these maps are homotopical. Since π1(G) is abelian and fp are all
homotopical, π1(fp) are all ”the same”. Thus, to show that π1(G/T ) is trivial,
it is enough to show that π1(fp) is trivial for some p, and injective for some
other p.

For p = e, we have fp ≡ e.
For p ∈ T reg, we get a factorization

π1(fp) : π1(G/T, e)
id×p−−−→ π1(G/T × T reg, (e, p)) c−→ π1(Greg, p)→ π1(G, p);

Notice that all the maps here are injective (the second since c is a covering map
over Greg).

8.7 The case of U(n)

We fix G = U(n) and T - the diagonal matrices in U(n). We denote by e =
(e1, . . . , en) the standard basis for Cn. We recall that NG(T ) consists of matrices
permuting the lines Sp{ei}. We then have W (G,T ) ∼= Sn.

Notice that we can think of a matrix in T as an ordered list of n numbers
(eigenvalues). We then think of T//W (G,T ) as multiset of n numbers, or
equivalently as a monic polynomial of degree n (whose roots are the multiset
of numbers). The equality of classes G//G ∼= T//W (G,T ) is interpreted as
sending a matrix to its characteristic polynomial (or multiset of eigenvalues).

We define a flag in Cn to be a list F = (V0, V1, . . . , Vn) of subspaces of Cn,
such that dimVi = i and Vi ⊂ Vi+1 for every 0 ≤ i ≤ n − 1. Given a basis
f = (f1, . . . , fn) of Cn, we get a flag Ff for which Vi = Sp{f1, . . . , fi} (and
every flag is of this form for some basis, defined uniquely up to a triangular
change-of-basis matrix). We have the standard flag Fe.

The group G acts on the space of flags. The stabilizer of Fe consists of the
unitary upper-triangular matrices, hence is T . Moreover, the action is transitive;
This is the Gram-Schmidt algorithm. Thus, we identify G/T with the space of
flags.

We now can think of the map c : G/T×T → G as sending a pair (F , (t1, . . . , tn))
to the unique unitary matrix g which preserves the flag and such that g acts
on Vi/Vi−1 by ti. Or, we can think of the subset S ⊂ G/T × G consisting of
pairs ([g], h) such that g−1hg ∈ T ; then c is isomorphic to the projection onto
the second factor S → G. In other words, elements of S are pairs, consisting of
a matrix g and a flag it preserves.
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The set Greg ⊂ G consists of the matrices with n distinct eigenvalues. In-
deed, T reg is given by the condition tit

−1
j 6= 1 for all i < j. A matrix with n

distinct eigenvalues has exactly n! flags which it preserves.

8.8 Some examples of maximal tori

In SU(n), the subgroup of diagonal matrices is a maximal torus. More generally,
the subgroup of matrices which are diagonal in some orthonormal basis is a
maximal torus, and any maximal torus is of that shape. So, the rank of SU(n)
is n.

Let’s consider SO(n) now. If n is even, consider the subgroup diag(SO(2), SO(2), . . . , SO(2)).
It is a maximal torus, so the rank of SO(n) is n/2. If n is odd, we consider the
subgroup diag(SO(2), SO(2), . . . , SO(2), 1), which is a maximal torus, and so
the rank of SO(n) is (n− 1)/2 in this case.

Let us find the root space decomposition for G = U(n) (and T - the diagonal
matrices). The Lie algebra Lie(G) has a basis iEjj , and Ejk −Ekj and iEjk +
iEjk (for k > j). Thus Lie(T ) = ⊕j{r · Ejj}r∈R and Vjk := {zEjk − zEkj}z∈C
and we have

Lie(G) = Lie(T )⊕
⊕
k>j

Vjk.

We compute Ad(diag(tl))Ejk = tjt
−1
k Ejk, and so diag(tl) acts on Vjk by

multiplying the parameter z by tjt
−1
k .

Thus, the above decomposition is the isotypical decomposition of Lie(G) as
a real T -representation. To decopmose the copmlexification, we write (Vjk)C =
Ujk ⊕ Ukj where Ujk := Sp{Ejk+}

As an example, let us consider the Weyl group W (G,T ) where G = U(n) and
T is the subgroup of diagonal matrices. A matrix normalizing T must permute
the eigenspaces of the operators in T , and thus must be a ”permutation matrix
up to scalars” (i.e. a matrix, every row of which has exactly one non-zero entry).
Thus, W (G,T ) = NG(T )/T = Sn.

9 The reflections in the Weyl group

9.1 Connected compact Lie groups of rank 1

Claim 9.1. Suppose that rk(G) = 1, and G 6= T . Then |W (G,T )| = 2 and
dimG = 3.

Proof. We first show that |W (G,T )| = 2. Notice that the torus T admits two
automorphisms - id and −id, so all we need to show is that W (G,T ) 6= 1.
We fix a G-invariant inner product on g, and consider a unit vector H ∈ t ⊂ g.
Denoting by S(g) the sphere of unit vectors in g, we consider the map φ : G/T →
S(g) given by gT 7→ Ad(g)H. This map φ is continuous and injective, hence
by the invariance of domain theorem, since G/T and S(g) are both manifolds
of dimension dim(G)− 1, the map φ has open image. Since G/T is compact, φ
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also has closed image. Hence, since S(g) is connected, φ must be surjective (in
fact, we see that φ is a homeomorphism, and even a diffeomorphism). Hence,
in particular, there exists g ∈ G satisfying Ad(g)H = −H. Clearly such g
represents a non-trivial element of NT (G)/T .

To show that dimG = 3, we consider the fibration G → G/T with fiber
T , and obtain an exact sequence of homotopy groups π2(G/T ) → π1(T ) →
π1(G). Now, take a loop γ : [0, 1] → T (based at e). Also, take an element
g ∈ NG(T )−T . Then gγg−1 = γ−1, but on the other hand gγg−1 is homotopic
to γ, since G is connected (and thus g connectable to e). Thus we obtain that
γ = γ−1 in π1(G), so 2π1(T ) sits in the kernel of the map π1(T ) → π1(G).
Hence, we obtain π2(G/T ) 6= 0. But as φ : G/T ∼= S(g), we must have then
dim g = 3 (because S2 is the only sphere with non-trivial π2).

Claim 9.2. Suppose that rk(G) = 1, and G 6= T . Then G is isomorphic to
SO(3) or SU(2).

Proof. Considering a G-invariant inner product on Lie(G), we get a morphism
G → O(3). Since G is connected, we get G → SO(3). The kernel of this
morphism is the center of G. The center of G is contained in T , and can
not be equal to T , since ZG(T ) = T . Thus the center of G is finite. So
G/ZG(G) → SO(3) is an injective map of manifolds of the same dimension,
hence is an open map. Thus the image is an open subgorup, hence also closed,
hence all of SO(3). We thus obtain an isomorphism G/ZG(G) ∼= SO(3). So G
is a covering group of SO(3), and thus isomorphic to SO(3) or SU(2).

9.2 The reflections

Claim 9.3. For θ ∈ R(G,T ), there is a unique element 1 6= sθ ∈ W (G,T )
which is trivial on Uθ := Ker(θ).

Proof. To show the uniqueness of such an element we observe that if we choose
a G-invariant inner product on g, then Ad(sθ) : t → t is an orthogonal trans-
formation fixing the hyperplane Ker(dθ), so can only be identity or orthogonal
reflection through this hyperplane.

To show existence, denote Gθ := CG(Uθ)
◦.

Notice that T is a maximal torus in Gθ, and Uθ lies in the center of Gθ.
We have an embedding W (Gθ, T ) → W (G,T ), whose image consists only of
elements which are trivial on Uθ. Thus, it is enough to show that |W (Gθ, T )| =
2.

Next, consider G′θ := Gθ/Uθ. Then T/Uθ is a maximal torus in G′θ, and
we have an isomorphism W (G′θ, T/Uθ)

∼= W (Gθ, T ). Thus, we are reduced to
showing that |W (G′θ, T/Uθ)| = 2. Notice that G′θ 6= T/Uθ, because Gθ 6= T
(this follows from θ being a root). Thus, the claim follows from the previous
claim.

As an example, let us consdier G = U(n) and T = diag. For the root
θjk(t) = tjt

−1
k , we have Ker(θjk) = {diag(t1, . . . , tn) | tj = tk}. Obviously, the

permutation (jk) ∈ Sn is the sought for sθjk .
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Claim 9.4. For θ ∈ R(G,T ) we have θ−1 ∈ R(G,T ) and, moreover, θ, θ−1 are

the only elements of R(G,T ) which are trivial on U◦θ . One has dim gT,θC = 1.

Proof. The fact that θ−1 ∈ R(G,T ) follows by noticing that complex conjuga-
tion on gC takes one root space to the other.

Denoting by Rθ ⊂ R(G,T ) the subset of roots θ′ which are trivial on U◦θ ,
we notice that

Zg(U◦θ ) = tC ⊕
⊕
θ′∈Rθ

gT,θ
′

C ,

and thus dimZG(U◦θ ) = dimT +
∑
θ′∈Rθ dim gT,θ

′

C . From this we see that

dimZG(U◦θ )◦/U◦θ = 1 +
∑
θ′∈Rθ

dim gT,θ
′

C .

So the group ZG(U◦θ )◦/U◦θ has rank 1 and dimension at least 3, so by the claim
we had, it must have dimension 3. Thus |Rθ| = 2, i.e. Rθ = {θ, θ−1}, and

dim gT,θC = 1.

Notice that in the example of SU(2), indeed we have Uθ12 = {±1}, so that
Uθ’s can be not connected.

10 The real root system

10.1 Weights

Let T be a torus. The map exp : t→ T is a surjective homomorphism. Denote
the kernel of exp by tZ. The subgroup tZ is a lattice in t (the coweight lattice).
Denote by t∗Z ⊂ t∗ the dual lattice to tZ (the weight lattice).

For λ ∈ t∗, we denote by e(λ) the homomorphism t→ C×1 given by e(λ)(H) :=
e2πiλ(H). Then e(λ) is trivial on tZ if and only if λ ∈ t∗Z. On the other hand,
elements of X∗(T ), that is homomorphisms T → C×1 , are identified with homo-
morphisms t→ C×1 trivial on tZ. We obtain an isomorphism t∗Z

∼= X∗(T ), given
by sending λ ∈ t∗Z to the unique χ ∈ X∗(T ) satisfying χ ◦ exp = e(λ).

10.2 Roots

Denote
R = {α ∈ t∗Z | e(α) ∈ R(G,T )}

(we might call those ”real roots” to distinguish from the roots in R(G,T )).

Remark 10.1. R is a finite set of non-zero vectors, and R = −R.

Claim 10.2 (”the root system is reduced”). Given α ∈ R, one has Rα ∩ R =
{α,−α}.

Proof. Rα ∩R coincides with the set of real roots β for which e(β) is trivial on
U◦e(α), and we saw that e(β) and e(−β) are the only roots trivial on U◦θ .
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10.3 The Weyl group

The group W = W (G,T ) acts on t via the adjoint action. We have also the
corresponding action on t∗.

Remark 10.3. W sends R into R.

It is convenient to introduce an auxiliary W -invariant inner product κ(·, ·)
on t. Then the elements of W are all orthogonal transformations w.r.t. κ(·, ·).
We denote also by κ(·, ·) the induced inner product on t∗. The elements of W
act on t∗ by orthogonal transformations as well.

Recall the elements sα := se(α) ∈ W for α ∈ R. Since sα 6= e and sα fixes
tα := Ker(α), we see that sα is the orthogonal reflection through tα.

We denote treg := t− ∪α∈Rtα.

Lemma 10.4. Let H ∈ t. Then H ∈ treg if and only if StabW (H) = {e}.

Proof. If H ∈ tα, then sα ∈ StabW (H). If H ∈ treg, then Zg(H) = t, so ZG(H),
being connected (we saw that the centralizer of any element in the Lie algebra
is connected), is equal to T , meaning StabW (H) = {e}.

Remark 10.5. We can contrast the above lemma with the situation with W
acting on T . There we also had T reg = T −∪α∈RKer(e(α)), but there might be
elements in T reg with non-trivial stabilizer in W . For example, take G = SO(3)
and T = diag(SO(2), 1). Then diag(−1,−1, 1) ∈ T is regular, but the element

diag(

(
0 1
1 0

)
,−1) (which is a representative of the non-trivial element in the

Weyl group) stabilizes it. The centralizer of diag(−1,−1,−1) is NG(T ).

Lemma 10.6. For w ∈W and α ∈ R, we have wsαw
−1 = swα.

Proof. The element wsαw
−1 is an orthogonal reflection fixing twα, hence equal

to swα.

10.4 Weyl chambers

Denote tα := Ker(α), and define a Weyl chamber in t to be a connected
component of treg := t − ∪α∈Rtα. The Weyl chambers are open, convex and
conical, and are just the non-empty subsets of the form

U = {H ∈ t | εα〈H,α〉 > 0 ∀α ∈ R}

for various combinations of εα = ±1.

Claim 10.7. .

1. W acts freely on the set of Weyl chambers.

2. The subgroup of W generated by {sα}α∈R acts transitively on the set of
Weyl chambers.
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3. W is generated by {sα}α∈R.

Proof. Part 3 follows formally from parts 1 and 2. Part 1: Suppose that
w ∈ W fixes some Weyl chamber U . Take any H ∈ U and consider H ′ =

1
o(w)

∑
0≤i<o(w) w

iH (here o(w) denoted the order of w as element of the group

W ). Then H ′ ∈ U (because U is convex), and wH ′ = H ′. Thus w = e by the
above lemma. Part 2: Let H,H ′ sit in two Weyl chambers. We want to show
that there exists w ∈ 〈sα〉α∈R such that wH ′ sits in the same Weyl chamber as
H. Let w ∈ 〈sα〉α∈R be such that the distance between wH ′ and H is minimal.
If wH ′ and H sit in different Weyl chambers, then κ(α,wH ′) and κ(α,H) have
a different sign for some α ∈ R. But then sα(wH ′) is closer to H than wH ′,
contradicting the choice of w.

10.5 Coroots

Since sα is a reflection of t, it is also a reflection of t∗. Thus, we have a unique
α∨ ∈ t satisfying

sα(λ) = λ− 〈α∨, λ〉α

for all λ ∈ t∗. Notice that we have 〈α∨, α〉 = 2. The elements α∨ ∈ t∗ are called
coroots.

Claim 10.8. For any α ∈ R we have α∨ ∈ tZ.

Proof. Denote H := α∨/2. We have 〈H,α〉 = 1. Thus e(α)(exp(H)) =
e2πiα(H) = 1. In other words, exp(H) ∈ Ue(α) and hence sα(exp(H)) = exp(H).
But on the other hand sα(exp(H)) = exp(sα(H)) = exp(−H). Hence we obtain
exp(H) = exp(−H) and so exp(α∨) = exp(2H) = 1, i.e. α∨ ∈ tZ.

Corollary 10.9. For any α, β ∈ R we have 〈α∨, β〉 ∈ Z, and so sα(β)−β ∈ Z·α.

Using the form κ(·, ·), we have

sα(λ) = λ− 2κ(α, λ)

κ(α, α)
α,

and we deduce that

〈α∨, λ〉 =
2κ(α, λ)

κ(α, α)

for all λ ∈ t∗, i.e. α∨ corresponds to 2
κ(α,α)α under the isomorphism t ∼= t∗ given

by κ.

10.6 Positive and simple roots

Fix a Weyl chamber U in t, which we call the fundamental Weyl chamber.
Say that α ∈ R is a positive root if α satisfies 〈H,α〉 > 0 for all H ∈ U
(equivalently, for some H ∈ U). Denote by R+ ⊂ R the subset of positive roots.
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Notice that R = R+ ∪ −R+ (any root is either a positive root or the minus of
a positive root). Notice that

U = {H ∈ t | 〈H,α〉 > 0 ∀α ∈ R+}.

Say that α ∈ R+ is a simple root, if α can not be written as a sum of two
positive roots. Denote by S ⊂ R+ the subset of simple roots.

Lemma 10.10. Let α, β ∈ S be different simple roots. Then κ(α, β) ≤ 0.

Proof. Write sα(β) = β−nα and sβ(α) = α−mβ, where n = 〈α∨, β〉 = 2κ(α,β)
κ(α,α)

and m = 〈β∨, α〉 = 2κ(β,α)
κ(β,β) . We saw that n,m ∈ Z, and we see by Cauchy-

Schwartz that |nm| < 4 (this is a strict inequality since α, β are not propotional).
Assuming by contradiction that κ(α, β) > 1 (so n,m 6= 0) we obtain 1 ∈ {n,m}.
Then either α− β or β−α is a root, in which case we obtain that either α or β
can be written as a sum of two positive roots - in contradiction to them being
simple roots.

Corollary 10.11. The set of simple roots is linearly independent.

Proof. This is a general fact - a set of non-zero vectors in a real inner product
space lying on one side of a hyperplane and forming obtuse angles (i.e. the inner
products are nonpositive) is linearly independent.

Claim 10.12. Any root can be written as a sum of simple roots, either with all
non-negative integer coefficients, or with all non-positive integer coefficients.

Proof. Given a positive root, start decomposing it into sums of positive roots.
The process must end because 〈H, ·〉 decreases. At the end, we obtain a decom-
position of our positive root into a sum of simple roots.

Notice that
U = {H ∈ t | 〈H,α〉 > 0 ∀α ∈ S}.

Claim 10.13. The set {sα}α∈S generates W .

Proof. The proof is the same as for R+ instead of S: We show that 〈sα〉α∈S acts
transitively on the set of Weyl chambers. The same proof is possible, thanks to
the formula for U above.

10.7 The length function

Define ` : W → Z≥0, by setting `(w) to be the minimal possible length of an
expression of w as a product of simple reflections sα, α ∈ S.

Lemma 10.14. For α ∈ S and β ∈ R+ such that α 6= β, we have sα(β) ∈ R+.
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Proof. Write β =
∑
γ∈S nγγ (where nγ ∈ Z≥0). Notice that since α 6= β, there

must be α 6= γ′ ∈ S with nγ′ 6= 0.
We have

sα(β) = β − 〈α∨, β〉α = (nα − 〈α∨, β〉)α+
∑

α 6=γ∈S

nγγ.

Thus, since γ′ appears in sα(β) with a positive coefficient, all simple roots must
appear with a positive coefficient, and sα(β) ∈ R+.

Remark 10.15. In the special case when β ∈ S, we obtain 〈α∨, β〉 < 0. Indeed,
sα(β) = β − 〈α∨, β〉α, and again we use the fact that a root is either a positive
integral combination of simple roots, or a negative integral combination of simple
roots.

So, for the so-called Cartan matrix S × S → Z given by (α, β) 7→ 〈α∨, β〉,
the diagonal entries are −2, and the off-diagonal entries are negative.

Claim 10.16. For w ∈W , we have

`(w) = |{β ∈ R+ | w(β) ∈ −R+}|.

Proof. For w = e the claim is true, and for w a simple reflection the claim is
true by the above lemma. Assume by induction that the claim is true for w of
length l−1, and let w be of length l. Write w = sαv where `(v) = l−1. We want
to show that α ∈ vR+, then the claim becomes quite clear. Let us suppose that
α ∈ −vR+, and denote β := −v−1(α) (so β ∈ R+ and vβ = −α ∈ −R+). Then
we can break the decomposition of v into l − 1 simple reflections as v = gsγh,
where sγh is the first sub-word to send β into a negative root. Then this
means that hβ = γ. We get gγ = α. But this means gsγg

−1 = sα, so that
v = gsγh = sαgh and hence w = sαv = gh, and we get a contradiction to
`(w) = l.

Claim 10.17. Let U be a Weyl chamber. Then every W -orbit in t intersects
Cl(U) at a unique point (here Cl(·) denotes the closure in the topology).

Proof. Let H ∈ t∗. That WH intersects Cl(U) is shown as in the proof of part
2 of claim ...; Namely, we take arbitrary H ′ ∈ U and consider w ∈W for which
the distance between wH and H ′ is minimal. Then wH ∈ Cl(U).

To show uniqueness, Assume that H,H ′ ∈ Cl(U) and H ′ = wH for some
w ∈ W . We want to show that H ′ = H. We do it by induction on `(w) (the
case `(w) = 0 is obvious). Assume that `(w) > 0. Then for some α ∈ S, we have
wα ∈ −R+. Then 〈H,α〉 = 〈H ′, wα〉 is both non-negative and non-positive. So
〈H,α〉 = 0, i.e. H ∈ tα. Thus H ′ = (wsα)H. Notice that `(wsα) = `(w)− 1, so
that we are done by induction.

Remark 10.18. In other words, we see that the closure of a Weyl chamber is
a fundamental domain for the action of W on t.
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Claim 10.19. There is a unique element w0 ∈W satisfying w0R
+ = −R+ (or,

equivalently, `(w0) = |R+|.

Proof. Uniqueness: Given two such elements w0, w
′
0, we have w−1

0 w′0R
+ = R+,

so `(w−1
0 w′0 = 0 and so w−1

0 w′0 = e, i.e. w0 = w′0.
Existence: Given an element w ∈ W of length l < |R+|, notice that −S is

not contained in wR+, because otherwise also −R+ would be contained in wR+

(since positive roots are sums of simple roots), meaning that l = |R+|. Thus,
picking α ∈ S satisfying w−1α ∈ R+, we have `(sαw) = `(w) + 1. Continuing
in this way, we will eventually obtain an element of length |R+|.

The element w0 is called ”the longest element in the Weyl group”.

Claim 10.20. We have w2
0 = 1, and `(w0w) = `(w0)− `(w) for every w ∈W .

Proof. w2
0R

+ = R+, so `(w2
0) = 0, so w2

0 = e. The claim about lengths is
clear.

10.8 The center and the fundamental group

In t∗, we have the weight lattice t∗Z, and the root lattice ZR - the Z-span of
R. In t, we have the coweight lattice tZ, and the coroot lattice ZR∨ - the
Z-span of the set R∨ of coroots. Notice that ZR ⊂ t∗Z and ZR∨ ⊂ tZ.

Claim 10.21. One has a canonical isomorphism Z(G) ∼= (ZR)dual/tZ. In
particular, Z(G) is finite if and only if R spans t∗, and in that case Z(G) ∼=
Hom(t∗Z/ZR,µ) (where µ ⊂ C×1 is the subgroup of roots of unity).

Proof. We have T ∼= t/tZ via the exponential map. Also, we have Z(G) ⊂ T and
Z(G) = ∩α∈RKer(e(α)), and those are represented by elements in t on which
the α’s takes integral values, i.e. (ZR)dual.

Claim 10.22. One has a canonical isomorphism π1(G) ∼= tZ/ZR∨.

Proof. Let us start by constructing a homomorphism tZ → π1(G). Namely, the
fiber sequence tZ → t → T shows that π1(T ) ∼= tZ, and we use π1(T ) → π1(G)
(induced by the embedding).

This homomorphism is surjective, as shown before.
Let us show that ZR∨ is in the kernel of the homomorphism. Given α∨ ∈ R∨,

consider the path t 7→ exp(tα∨) (t ∈ [0, 1]). We need to show that this path is
homotopic to the trivial path in G. Indeed, recall that exp( 1

2α
∨) ∈ Ue(α), i.e.

sαexp(
1
2α
∨)s−1

α = exp( 1
2α
∨). On the other hand, sαexp(tα

∨)s−1
α = exp(−tα∨)

for all t ∈ R. Thus, we obtain sαexp((
1
2 + t)α∨)s−1

α = exp(( 1
2 − t)α

∨). Since G
is connected, the left hand side of the previous eqation, as a path [1

2 , 1] → G,
is homotopic, with end points fixed, to the path exp(( 1

2 + t)α∨). We get that
our original path performs at [ 1

2 , 1] a way homotopic to the reverse of the way
it performs at [0, 1

2 ]. Thus, our path is homotopic to the trivial path.
We are left to show that the kernel of the homomorphism is contained in

ZR∨. We skip this for now.
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Corollary 10.23. The group Z(G) is finite if and only if the group π1(G) is
finite.

10.8.1 Semisimplicity

Claim 10.24. Let G be a connected compact Lie group. TFAE:

1. G has no non-trivial abelian connected normal subgroups.

2. Z(G) is finite.

3. Z(g) = 0.

4. π1(G) is finite.

5. The universal cover of G is compact.

6. The Killing form B(X,Y ) := Tr(ad(X)◦ad(Y )) on g is negative-definite.

7. The Killing form B(X,Y ) := Tr(ad(X) ◦ ad(Y )) on g is non-degenerate.

Proof. To show the equivalence of (1) and (2), it is enough to show that every
abelian connected normal subgroup lies in the center. Indeed, such a (closed)
subgorup is torus, which is contained in every maximal torus (since for every
maximal torus, some conjugate of the torus is contained in it), and hence con-
tained in the center (which we saw is the intersection of all maximal tori).

Since Lie(Z(G)) = Z(g), the equivalence of (2) and (3) is clear.
We already stated the equivalence of (2) and (4).
The equivalence of (4) and (5) is clear by covering theory.
We note now that the Killing form B(X,Y ) is negative-semidefinite. Indeed,

let us fix a G-invariant inner product on g. Then ad(X) are skew-Hermitian
w.r.t. that inner product. Thus we see in a diagonal basis that Tr(ad(X)2) ≤ 0
(as a sum of squares of purely imaginary numbers).

Thus, the equivalence of (6) and (7) is clear.
We also have X ∈ Z(g) i.f.f. ad(X) = 0 i.f.f. B(X,X) = Tr(ad(X)2) = 0,

so Z(g) = Ker(B), and thus the equivalence of (3) and (6) is clear.

Remark 10.25. A connected compact Lie group is called semi-simple if it
satisfies the equivalent conditions of the above claim.

Remark 10.26. It is also true that if G is a connected Lie group, such that its
Killing form is negative-definite, then G is compact (with finite center).
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10.9 The root datum

The data of (t∗Z, tZ, R,R
∨), together with the duality between t∗Z and tZ, and

the bijection between R and R∨, is called a root datum. When defined ax-
iomatically, it should satisfy some axioms, of course (more or less, one should
have 〈α∨, α〉 = 2, the map λ 7→ λ − 〈α∨, λ〉α should preserve R and the map
H 7→ H − 〈H,α〉α∨ should preserve R∨).

It is a theorem (I think!) that the association to a compact connected Lie
group of its root datum gives a bijection on isomorphism classes.

Notice that on the root datum side, there is a natural ”involution” - one can
swap t∗Z and tZ, and R and R∨. Thus, one gets an ”involution” on the isomor-
phism classes of compact connected Lie groups! This is called the ”Langlands
dual group”. Notice how indirect this is.

10.10 Examples

10.10.1 SU(2)

Consider G = SU(2) (and T the usual diagonal subgroup). Then t = Sp{H},
where H = diag(i,−i). We have tZ = Z · 2πH. Elements λ ∈ t∗ are determined
by the value λ(H). We have λ ∈ t∗Z if and only if λ(H) ∈ 1

2πZ. The Weyl group
is W = {e, w0}, where w0(H) = −H. Taking into account[(

i 0
0 −i

)
,

(
0 z
−z 0

)]
=

(
0 2iz
−2iz 0

)
,

and recalling that [H,X] = 2πiα(H)X for X ∈ g
T,e(α)
C , we have two roots α,−α,

where α(H) = 1
π . The condition 〈α∨, α〉 = 2 implies α∨ = 2πH.

Notice that |t∗Z/Zα| = 2 and indeed |Z(G)| = 2. Notice that |tZ/Zα∨| = 1
and indeed |π1(G)| = 1 (i.e. G is simply-connected).

10.10.2 SO(3)

Consider G = SO(3) (and T = diag(SO(2), 1)). Actually, let us think of G as

G̃/± 1, and of T as T̃ /± 1, where G̃ = SU(2) and T̃ is the diagonal subgroup

in G̃.
Thus, we have the same t as before, the same roots, and in fact the same

W . What changes is the integral lattices. Notice that tZ = 1
2 t̃Z. Thus, t∗Z =

2t̃∗Z. Thus, the situation ”reverses”; Now |t∗Z/Zα| = 1 and |Z(G)| = 1, while
|tZ/Zα∨| = 2, and |π1(G)| = 2.

Indeed, SU(2) and SO(3) are ”Langlands dual” to each other.

10.10.3 U(n) and SU(n)

Consider G = U(n) (and T the usual diagonal subgroup). Then t consists
of diagonal matrices with purely imaginary components - we identify Rn ∼= t
by (x1, . . . , xn) 7→ diag(ix1, . . . , ixn). The Weyl group W = Sn acts on t by
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permuting components. As a W -invariant inner product, one may take the
standard inner product on Rn. From the formula

[diag(ix1, . . . , ixn), zEjk − zEkj ] = i(xj − xk)zEjk − i(xj − xk)zEkj ,

we see that the roots are αjk(x1, . . . , xn) =
xj−xk

2π .
For SU(n) the situation is similar, except that t is identified with {(x1, . . . , xn) ∈

Rn | x1 + . . .+ xn = 0}.

10.10.4 SU(3)

Let us consider SU(3) as an example of the previous subsection. Then an
orthonormal basis (up to scalar) for t∗ is

e1 = (1,−1, 0), e2 = (
1√
3
,

1√
3
,
−2√

3
),

and in terms of this basis (up to scalar) we have

α12 = e1, α23 = −1

2
e1 +

√
3

2
e2.

Thus, one imagines
α12, α13, α23, α21, α31, α32

sitting on the unit circle as the 6-th roots of unity.
We declare α12, α23, α13 to be the positive roots (and thus α12, α23 the simple

roots). The Weyl group, which is isomorphic to S3, is generated by two simple
reflections s12, s23.

For example, notice that s13 sends

α12 7→ −α23, α23 7→ −α12, α13 7→ −α13.

Thus, `(s13) = 3, and thus s13 is the longest element in the Weyl group.

10.11 Dominant, regular, integral weights

Define
U∨ = {λ ∈ t∗ | 〈α∨, λ〉 > 0 ∀α ∈ S}.

Using the identification κ(·, ·), which identifies U and U∨ (or more abstractly
by realizing that R∨ is a root system by itself...), we see that every W -orbit in
t∗ intersects Cl(U∨) at a unique point.

We will call elements λ ∈ t∗ weights. We will say that a weight λ is: dom-
inant if λ ∈ Cl(U∨), regular if 〈α∨, λ〉 6= 0 for every α ∈ S (or, equivalently,
α ∈ R+ or even α ∈ R), and integral if λ ∈ t∗Z.

Let us remark that some define a weight to be what we call an integral
weight, because only those are relevant for finite-dimensional representations of
compact groups. Also, some define a dominant weight to be a weight λ satisfying
〈α∨, λ〉 /∈ Z≤−1 for every α ∈ R (instead of our 〈α∨, λ〉 ≥ 0), which makes more
sense in some contexts (anyhow, for integral weights those coincide).
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11 Weight theory

11.1 Representation of the Lie algebra

Let g be a (real/complex) Lie algebra. A representation of g on a com-
plex vector space V is an R-linear/C-linear map π : g → EndC(V ) satisfying
π([X,Y ]) = π(X)π(Y )− π(Y )π(X) for all X,Y ∈ g.

Let G be a Lie group, and (V, π) ∈ Repfd(G). Then we get an induced
representation of g := Lie(G) on V by differentiating π : G → Aut(V ), thus
obtaining dπ : g → End(V ). For example, from the adjoint representation
Ad of G on g we obtain the adjoint representation ad of g on g, given by
π(X)(Y ) = [X,Y ].

Thus, we can think that we have a functorRepfd(G)→ Repfd(g) ∼= Repfd(gC).
This functor is trivially faithful. If G is connected, it is full. If G is simply-
connected, it is essentially surjective. Also, if G is connected, given a represen-
tation V ∈ Repfd(G), a subspace W ⊂ V is a G-submodule if and only if it is
a g-submodule.

11.2 PBW theorem, Casimir element

11.2.1 The PBW theorem

Let X1, . . . , Xn be a basis for the Lie algebra g. Let V be a representation of
g, and v ∈ V . Then we claim that W , the span of the vectors of the form
Xmn
n . . . Xm1

1 v, where m1, . . . ,mn ∈ Z≥0, is a g-submodule of V (so, in fact, the
g-submodule generated by v).

We need to show that XaX
mn
n . . . Xm1

1 v ∈ W for every 1 ≤ a ≤ n. We do
this by induction on m1 + . . .+mn and then reverse induction on a.

Looking at the maximal 1 ≤ b ≤ n for which mb 6= 0, if b ≤ a then clearly
we have the desired. Otherwise, we have

XaX
mb
b . . . Xm1

1 v = XbXaX
mb−1
b . . . Xm1

1 v + [Xa, Xb]X
mb−1
b . . . Xm1

1 v.

Then the first expression on the right is in W by the reverse induction on a, and
the second expression on the right is in W by the induction on m1 + . . .+mn.

maybe some slight mistake with induction here

11.2.2 The universal enveloping algebra

One can be more precise than as above. One has the universal enveloping
algebra U(g), which is an associative algebra (with unit), with a map of Lie
algebras i : g → U(g), universal (complete...). The PBW theorem says that
given a basis X1, . . . , Xn of g, the elements i(X1)m1 . . . (Xn)mn form a basis for
U(g), where (m1, . . . ,mn) ∈ Zn≥0 (here, we abuse notation and write X instead
of i(X)).

In a more canonical way, the PBW theorem says the following. Let us denote
by U(g)≤i the subspace of U(g) spanned by elements of the form Y1 . . . Yi.
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Thus, U(g)≤0 = C · 1, and it is easy to see using the universal property that
∪iU(g)≤i = U(g). Also, U(g)≤i · U(g)≤j ⊂ U(g)≤i+j . Thus, we can form
the associated graded algebra grU(g). This is a commutative algebra. Indeed,
notice that Y1 . . . YkYk+1 . . . Yi ∈ Y1 . . . Yk+1Yk . . . Yi + U(g)≤i−1... Hence, the
linear map g→ gr1U(g) induces a map of commutative algebras S(g)→ grU(g).
The PBW theorem states that this is an isomorphism.

11.2.3

Notice that from the definition of U(g), one has an equivalence, between repre-
sentations of g and modules over U(g).

11.2.4 The Casimir element

The Casimir element is an interesting element C in the center of U(g). As such,
it acts by scalar on every irreducible representation of G, by Schur’s lemma.
This gives sometimes an easy way to see that two irreducible representations
are not isomorphic - simply C acts by different scalars on them.

Notice that G acts on U(g), by extending the adjoint action on g. One sees
that an element Z of U(g) lies in the center, i.f.f. [X,Z] = 0 for all X ∈ g, if
and only if (given G connected) gZ = Z for all g ∈ G.

We consider a non-degenerate G-invariant form B on g. This form gives a
G-equivaraint identification g ∼= g∗. Then we can consider

id ∈ End(g) ∼= g∗ ⊗ g ∼= g⊗ g→ U(g),

where all maps are G-equivariant, and id is G-invariant. Thus, the image of id
under this chain of maps, which we call C (or maybe more precisely CB) is a
G-invariant element of U(g), so an element in the center of U(g).

If G is semisimple, we can take B to be the Killing form.
Let us calculate C for SU(2) (taking B to be the Killing form). We have

the basis H =

(
i 0
0 −i

)
, X =

(
0 1
−1 0

)
, Y =

(
0 i
i 0

)
for Lie(SU(2)) =

su(2), and the relations are

[H,X] = 2Y, [H,Y ] = −2X, [X,Y ] = 2H.

Thus the Killing form B is given, in the H,X, Y basis, by the matrix −8 0 0
0 −8 0
0 0 −8

 .

It follows that the dual basis to H,X, Y is H,X, Y up to scalar. Thus C (up to
scalar) is given by H2 +X2 + Y 2.

Let us consider the basis H0, X0, Y0 for the complexification of su(2), given
by

H0 = iH,X0 =
1

2
(iX − Y ), Y0 =

1

2
(iX + Y ).
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Then we have

[H0, X0] = 2X0, [H0, Y0] = −2Y0, [X0, Y0] = H0.

The Casimir has then form (up to scalar; The previous one is minus this one)
H2

0 + 2X0Y0 + 2Y0X0 = H2
0 + 2H0 + 4Y0X0. When we later talk about highest

weight, one can mention the general idea - we see that C = H2
0 + 2H0 + 4Y0X0

acts on a highest weight vector of weight λ via (2πiλ(H0))2 + 2(2πiλ(H0)) =
c2+2c where we write c = 2πiλ(H0). Thus, representations with highest weights
c1, c2 can be isomorphic only if c2 = c1 or c2 = −2 − c1 = −(c1 + 1) − 1.
Actually, this is quite useless for dominant highest weights, so only is valuable
if we consider non-finite-dimensional representations

11.3 Weights

Let V ∈ Repfd(G).

Definition 11.1. .

1. A weight vector v ∈ V is a non-zero eigenvector for T (equivalently, a
non-zero eigenvector of t).

2. The weight of a weight vector v ∈ V is the element λ ∈ t∗Z such that T
acts on v via e(λ) (equivalently, t acts on v via 2πiλ).

3. The weight space of weight λ is the subspace V λ ⊂ V consisting of
weight vectors of weight λ and 0.

We have V = ⊕λ∈t∗ZV
λ.

Let us denote by fcV the formal sum
∑
λ∈t∗Z

dimV λ · e(λ) ∈ Z[e(t∗Z)] (here,

Z[e(t∗Z)] is the group algebra of t∗Z, where we write e(λ) instead of λ to become
multiplicative...).

Notice that the information of fcV is equivalent to the information of χV |T ,
which in its turn is equivalent to the information of χV . In other words, two
representations with the same fc are isomorphic.

Also, notice that fcV is W -invariant, since application of w sets an isomor-
phism between V λ and V wλ.

11.4 The subalgebras n, n−

Lemma 11.2. One has [gθ1C , g
θ2
C ] ⊂ gθ1·θ2C .

Proof. If X ∈ gθ1C and Y ∈ gθ2C , we have

Ad(t)([X,Y ]) = [Ad(t)(X), Ad(t)(Y )] = [θ1(t)X, θ2(t)Y ] = θ1(t)θ2(t)[X,Y ].
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Write n := ⊕α∈R+g
e(α)
C and n− = ⊕α∈R+g

e(−α)
C . Then

gC = n− ⊕ tC ⊕ n

and n, n− are nilpotent Lie subalgebras of gC.

Lemma 11.3. Let V ∈ Repfd(G). Then g
e(α)
C V λ ⊂ V λ+α.

Proof. Let X ∈ g
e(α)
C and v ∈ V λ. Then

tXv = Ad(t)(X)tv = e(λ)(t)e(α)(t)Xv.

11.5 Highest weight vectors

Let V ∈ Repfd(G).

Definition 11.4. A highest weight vector v ∈ V is a weight vector satisfying
nv = 0.

Lemma 11.5. Let 0 6= V ∈ Repfd(G). Then V admits a highest weight vector.

Proof. The set of weights of V is finite, and application of elements of the various
gαC, for α ∈ R+, increases 〈H, ·〉, where H is an element of the fundamental Weyl
chamber.

Lemma 11.6. Let V ∈ Repfd(G), and let v ∈ V be a highest weight vector with
highest weight λ. Then the submodule W generated by v is spanned by vectors
of the form Y1 . . . Ymv, where Y1, . . . , Ym ∈ n−. The weights appearing in W lie
in λ− Z≥0R

+. The weight λ appears in W with multiplicity 1.

Proof. We take a basis for gC such that first comes n, then tC, then n−. By the
PBW theorem we readily see the desired.

Lemma 11.7. Let V ∈ Repfd(G) be irreducible. Then V admits a unique up
to scalar highest weight vector.

Proof. Let v be a highest weight vector in V . Then V is generated by v since V
is irreducible. If w is another highest weight vector of V , then V is generated
also by w. From the previous lemma we get that wt(v) = wt(w)− Z≥0R

+ and
wt(w) = wt(v)−Z≥0R

+. This implies wt(v) = wt(w), and by the above lemma
v, w are proportional.

Definition 11.8. Let V ∈ Repfd(G) be irreducible. The weight of the highest
weight vector in V is called the highest weight of V .

Lemma 11.9. Let V,W ∈ Repfd(G) be irreducible and non-isomorphic. Then
their highest weights are different.
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Proof. Suppose that the highest weights of V,W are equal (call them λ). Let
v ∈ V,w ∈ W be highest weight vectors. Consider (v, w) ∈ V ⊕W . This is a
highest weight vector in V ⊕W . Let E ⊂ V ⊕W be the submodule generated
by (v, w). Consider the projection p : E → V . Since p(v, w) = v 6= 0 and V is
irreducible, we get that p is surjective. Consider the kernel Ker(p) ⊂W . Then
w /∈ Ker(p), because E contains only (v, w) as a vector of weight λ, up to scalar
(and (0, w) is not proportional to (v, w)). Thus, since W is irreducible, we get
Ker(p) = 0. Hence p : E → V is an isomorphism. Similarly we get that E is
isomorphic to W , and hence V and W are isomorphic.

Claim 11.10. Let V ∈ Repfd(G) be irreducible. Then its highest weight λ ∈ t∗Z
is dominant, i.e. 〈α∨, λ〉 ≥ 0 for all α ∈ R+.

Proof. We note two things about the set of weights of V : It is W -invariant, and
lies in λ−Z≥0 ·R+. If λ is not dominant, then 〈α∨, λ〉 ∈ Z≤−1 for some α ∈ R+.
Then we obtain that sα(λ) = λ+ Z≥1 · α lies in λ− Z≥0 · R+, which is clearly
impossible.

To sum up, associating to an irreducible representation its highest weight
gives an injection of the set of isomorphism classes of irreducible representations
into the set of dominant integral weights. Our goal is to show that this is in
fact a surjection, and to give more concrete information about the character of
an irreducible representation with a given highest weight.

11.6 Another description

An aesthetic drawback of the highest weight parametrization of irreducible rep-
resentations is that it depends on a choice of a fundamental Weyl chamber.

11.6.1 Some partial orders

Fix a fundamental Weyl chamber U in t again. We have the corresponding dual
cone U∗ in t∗ defined by

U∗ = {λ ∈ t∗ | 〈U, λ〉 > 0}.

It is easy to see that
U∗ = R>0S,

and thus
Cl(U∗) = R≥0S = R≥0R

+.

Let us define the partial order on t∗, by declaring λ ≤ µ if µ− λ ∈ Cl(U∗).
Let us define another partial order on t∗, be declaring λ ≤′ µ if µ− λ ∈ ZR+.

Since Cl(U∗) = R≥0R
+, we have λ ≤′ µ =⇒ λ ≤ µ.

Let us define a partial order on the set of W -orbits in t∗, by declaring Wλ �
Wµ if Wλ ⊂ Conv(Wµ), where Conv(S) denotes the convex hull of S.

To see that this is indeed a partial order, assume that Wλ �Wµ �Wλ (we
want to see that Wλ = Wµ). We will use a W -invariant inner product κ(·, ·),
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and the resulting norm ||·||. From the above relations we have ||λ|| ≤ ||µ|| ≤ ||λ||,
and hence ||λ|| = ||µ||. Since Conv(Wλ) ∩ {ω | ||ω|| = ||λ||} = Wλ, we obtain
µ ∈Wλ, i.e. Wµ = Wλ as desired.

11.6.2 ”Highest orbit”

Lemma 11.11. Let λ ∈ t∗. Then λ is dominant if and only if wλ ≤ λ for all
w ∈W .

Proof. Assume wλ ≤ λ for all w ∈W . Then in particular, for α ∈ R+, we have
sαλ ≤ λ, and recalling sαλ = λ− 〈α∨, λ〉α, we deduce 〈α∨, λ〉 ≥ 0.

Conversely, assume that 〈α∨, λ〉 ≥ 0 for all α ∈ R+. Let w ∈ W , and use
induction on `(w) to show that wλ ≤ λ. For `(w) = 0 the statement is clear,
while for `(w) = 1 it is clear from the condition.

If now `(sαw) > `(w), we have w−1α ∈ R+. Thus, for every H ∈ U :

〈H, sαwλ− λ〉 = 〈H,wλ− λ〉 − 〈α∨, wλ〉〈H,α〉 ≤ 〈H,wλ− λ〉 ≤ 0

because 〈α∨, wλ〉 = 〈(w−1α)∨, λ〉.

Although we don’t need it in the following, it is in general also important to
know:

Lemma 11.12. Let λ ∈ t∗. Then 〈α∨, λ〉 /∈ Z≤−1 for all α ∈ S if and only if
wλ ≯′ λ for all w ∈W .

Proof.

Lemma 11.13. Let λ, µ ∈ t∗ be dominant. Then µ ≤ λ if and only if Wµ �
Wλ.

Proof. Suppose that Wµ �Wλ. Then µ =
∑
cwwλ for some cw ≥ 0, such that∑

cw = 1. Then µ =
∑
cwwλ ≤

∑
cwλ = λ.

Assume now that Wµ � Wλ. Then there exists H ∈ t such that 〈H,µ〉 >
〈H,wλ〉 for all w ∈W (because disjoint compact convex sets ({µ} and Conv(Wλ))
can always be separated by an affine hyperplane)). Taking w ∈ W such that
w−1H ∈ Cl(U), we obtain 〈w−1H,w−1µ〉 > 〈w−1H,λ〉. Slightly moving H,
we might assume that actually w−1H ∈ U . Thus, we obtain w−1µ � λ. Thus
µ � λ (because w−1µ ≤ µ by the previous lemma).

Claim 11.14. Let V ∈ Repfd(G) be irreducible. Then there exists exactly one
W -orbit O ⊂ supp(fcV ), such that supp(fcV ) ⊂ Conv(O). For µ ∈ O, e(µ)
appears with multiplicity 1 in fcV .

Proof. Let λ ∈ t∗Z be the (dominant integral) highest weight of V . We claim
that O := Wλ is the desired W -orbit.

Let µ ∈ supp(fcV ). We want to show that Wµ �Wλ. Indeed, by replacing
µ by an element in its W -orbit, we can assume that µ is dominant. From
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lemma 11.6, we have µ ≤′ λ. Hence µ ≤ λ, and hence by the previous lemma
Wµ �Wλ.

The uniqueness of O follows immediately from � being a partial order.

Claim 11.15. Let V,W ∈ Repfd(G) be irreducible. Then if OV = OW (the
orbits as in the previous claim), V ∼= W .

Proof. Notice that the highest weight of V is recoverable as the unique dominant
element in OV . Hence this claim follows from the claim that the highest weight
determine the irreducible representation.

To sum up, associating to an irreducible representation its ”highest orbit”
gives an injection of the set of isomorphism classes of irreducible representations
into the set of W -orbits in t∗Z. Again, we will show that this is in fact a surjection.

12 Weyl’s character formula

12.1 The representation rings

Let us consider the group algebras R̃(T ) := Z[(e(λ))λ∈t∗ ] and it’s subgroup
algebra R(T ) := Z[(e(λ))λ∈t∗Z ]. Thus, we defined for every V ∈ Repfd(G) the
formal character fcV ∈ R(T ).

Notice that we have a natural homomorphism C⊗Z R̃(T )→ C(t). We claim
that it is an injection. In other words, the functions (e(λ))λ∈t∗ in C(t) are
linearly independent. This is routine to check, by induction on the dimension
of t. As a result, it is easy to check that if a function in C⊗ R̃ is invariant under
translation by tZ (i.e. descends to a function in C(T )), then it in fact lies in
C⊗Z R(T ).

Notice that C ⊗Z R(T ), identified with a subalgebra of C(T ), is exactly
C(T )fin.

The standard inner product on C(T ) gives us an inner product on R(T ),
given by 〈e(λ1), e(λ2)〉 = δλ1,λ2

for λ1, λ2 ∈ t∗Z. We extend this inner product

to R̃(T ), by the same formula (but this time λ1, λ2 ∈ t∗).
We also have:

Lemma 12.1. The ring R̃(T ) is an integral domain (and hence also R(T )).

Proof. More generally, we prove that the group algebra of a finite-dimensional
vector space V , A[V ], is an integral domain, if the ring of coefficients A is an
integral domain. This we do by induction on the dimension of V . If dimV = 1,
this is easy by considering ”highest coefficients”. To perform induction, break
V = V1 ⊕ V2, and then A[V ] ∼= A[V1][V2], so we can perform induction.
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12.2 Antisymmetrization

We have the sign homomorphism sgn : W → {±1} - the unique homomorphism
sending simple reflections sα to −1. One can construct it as sgn(w) := (−1)`(w);
or, as sgn(w) = det(w; t∗) (the determinant of w acting on t∗).

In a representation E of W we have the vectors e ∈ E satisfying wv = v for
all w ∈ W , which for our current purposes we will call symmetric vectors (and
denote by Esym the subspace of such), and the vectors e ∈ E satisfying wv =
sgn(w)v for all w ∈W , which we will call antisymmetric vectors (and denote by
Easym the subspace of such). We also have, given e ∈ E, the antisymmetrization

Λ(e) :=
∑
w∈W

sgn(w) · we ∈ Easym.

12.3 The functions Λ(λ)

For λ ∈ t∗Z, we have

Λ(λ) :=
∑
w∈W

sgn(w) · we(λ) ∈ R(T )asym.

Claim 12.2. .

1. The elements Λ(λ) form a Z-basis for R(T )asym, as λ runs over dominant
regular elements of t∗Z.

2. For λ1, λ2 ∈ t∗Z one has

〈Λ(λ1),Λ(λ2)〉 = |W | · δλ1,λ2
.

Proof. .

1. Obviously all Λ(λ), as λ runs over dominant regular elements of t∗Z are
linearly independent, since for a regular dominant λ, wλ are not regular
dominant for every w 6= e. So, we only need to show that every f ∈
R(T )asym can be written as an integral linear combination of our elements.

Write f =
∑
λ∈t∗Z

nλ · e(λ) (a finite sum with integer coefficients). The

antisymmetry gives nwλ = sgn(w)nλ for all w ∈W,λ ∈ t∗Z. We claim that
nλ = 0 for singular λ. Indeed, if λ is singular, then sαλ = λ for some
α ∈ R, but then sαf = −f gives nλ = −nλ so nλ = 0.

We can now write

f =
∑
λ∈t∗Z

nλ · e(λ) =
∑

λ∈t∗Z dom reg

∑
w∈W

nwλ · e(wλ) =

=
∑

λ∈t∗Z dom reg

nλ
∑
w∈W

sgn(w) · e(wλ) =
∑

λ∈t∗Z dom reg

nλ · Λ(λ).

2. This is clear.
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12.4 The function δ

Recall the element ∆ ∈ R(T )sym from Weyl’s integration formula, given by

∆ =
∏
α∈R

(e(α)− 1).

We describe an element δ ∈ R̃(T )asym, which satisfies δ · δ = ∆ (here · is
the linear map sending e(λ) to e(−λ)). Sometimes δ ∈ R(T ), so represents an
actual function on T , and sometimes not.

For this, set

ρ :=
1

2

∑
α∈R+

α ∈ t∗,

and then

δ := e(ρ)
∏
α∈R+

(1−e(−α)) = e(−ρ)
∏
α∈R+

(e(α)−1) =
∏
α∈R+

(e(α/2)−e(−α/2)) ∈ R̃(T ).

Clearly δ · δ = ∆, and we claim δ ∈ R(T )asym. Indeed, we want to check
sαδ = −δ for α ∈ S (this is enough since 〈sα〉α∈S = W ). For this, we recall
that sα(α) = −α and sα(β) ∈ R+ for α 6= β ∈ R+.

12.5 Weyl’s character formula

Theorem 12.3. Let V ∈ Repfd(G) be an irreducible representation with highest

weight λ ∈ t∗Z. Then fcV = Λ(λ+ρ)
δ .

Proof. Notice that fcV · δ ∈ R̃(T )asym. Thus, we can write

fcV · δ =
∑

µ∈t∗Z dom reg

nµΛ(µ)

(a finite sum with integer coefficients).
Weyl’s integration formula gives

1 = 〈χV , χV 〉 = ... =
1

|W |
〈fcV · δ, fcV · δ〉 =

∑
µ∈t∗Z dom reg

n2
µ.

Thus, nµ is non-zero for exactly one µ, and for this µ we have nµ = ±1. To
find µ and the sign, recall that

fcV = e(λ) + smaller,

where ”smaller” means a linear combination with integer coefficients of e(λ′)’s,
where λ′ ∈ λ− ZR+, λ′ 6= λ. Thus, from observing the definition of δ, we get

fcV · δ = e(λ+ ρ) + smaller.

From this we see that µ = λ+ ρ and nµ = 1.
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12.6 The main existence theorem

Theorem 12.4. Let λ ∈ t∗Z be dominant. Then there exists an irreducible
representation V ∈ Repfd(G) with highest weight λ.

The theorem will follow from the following proposition:

Proposition 12.5. Let λ ∈ t∗Z. Then Λ(λ+ρ)
δ exists in C(T ), in the sense that

it exists in C(t) and is invariant under translation by tZ, so descends to T .

Proof of theorem 12.4 given proposition 12.5. Let λ be dominant, and let f ∈
C(T ) be the function as in the statement of the proposition. Notice that

f ∈ C(T )sym, and thus there exists a continuous function f̃ ∈ C(G)cent which
restricts to f . For an irreducible V ∈ Repfd(G) with highest weight µ 6= λ we
have

〈χV , f̃〉G =
1

|W |

∫
T

Λ(µ+ ρ)

δ

Λ(λ+ ρ)

δ
∆ =

1

|W |

∫
T

Λ(µ+ρ)Λ(λ+ ρ) =
1

|W |
〈Λ(µ+ρ),Λ(λ+ρ)〉 = 0.

Now, since f̃ 6= 0, it can not be orthogonal to all characters by the Peter-
Weyl theorem, and thus there must be an irreducible representation with highest
weight λ.

In order to prove proposition 12.5, we have some lemmas:

Lemma 12.6. .

1. Let f be an analytic function on t, vanishing on the vanishing locus of
e(λ)− 1, for some 0 6= λ ∈ t∗. Then f

e(λ)−1 exists as an analytic function
on t.

2. Let f be an analytic function on t, vanishing on the vanishing loci of
e(α)−1, for all α ∈ R+. Then f∏

α∈R+ (e(α)−1) exists as an analytic function

on t.

3. Let λ ∈ t∗ be such that 〈α∨, λ〉 ∈ Z for all α ∈ R. Then Λ(λ) vanishes on
the vanishing loci of e(α)− 1, for all α ∈ R+.

4. Let λ ∈ t∗Z. Then the function Λ(λ+ρ)
δ is invariant under translation by tZ.

Proof. .

1. This is standard, by developing into Taylor series.

2. We get this by applying recursively the previous item, while noticing that
the complement of the union of vanishing loci of e(β) − 1, for β 6= α, is
dense in the vanishing locus of e(α)− 1.
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3. Llet H ∈ t such that e(α) − 1 vanishes on H for some α ∈ R+. One has
Λ(λ)(wH) = sgn(w) · Λ(λ)(H). Hence, if

Λ(λ)(H) = −Λ(λ)(sαH) = −Λ(λ)(H − 〈H,α〉α∨) = −Λ(λ)(H).

The reason for the last equality is that e(wλ)(−〈H,α〉α∨) = 1. This is
since 〈H,α〉 ∈ Z (because e(α) − 1 is zero on H), and (wλ)(α∨) ∈ Z (by
the given on λ). Thus, we get Λ(λ)(H) = 0.

4. Up to the factor
∏
α∈R+(e(α)−1), which is invariant under tZ, our function

is ∑
w∈W

sgn(w) · e(w(λ+ ρ) + ρ).

Thus, it is enough to show that wρ+ ρ ∈ t∗Z for all w ∈W . Since 2ρ ∈ t∗Z,
it is enough to show that wρ − ρ ∈ t∗Z for all w ∈ W . Notice that if we
know this for w1, w2, then from w1w2ρ− ρ = w1(w2ρ− ρ) + (w1ρ− ρ) we
know this also for w1w2. Hence, it is enough to check for w = sα , α ∈ S.
Then sαρ− ρ = −α ∈ t∗Z.

12.7 Some formulas

If we consider the trivial representation V 0 ∈ Repfd(G), then Weyl’s character
formula yields Weyl’s denominator formula

δ = Λ(ρ) =
∑
w∈W

sgn(w) · e(wρ).

So we can rewrite Weyl’s character formula, for an irreducible representation
V ∈ Repfd(G), as:

fcV =
Λ(λ+ ρ)

Λ(λ)
=

∑
w∈W sgn(w) · e(w(λ+ ρ))∑

w∈W sgn(w) · e(wρ)
.

We have Weyl’s dimension formula:

dimV λ =

∏
α∈R+〈α∨, λ+ ρ〉∏
α∈R+〈α∨, ρ〉

=

∏
α∈R+ κ(λ+ ρ, α)∏
α∈R+ κ(ρ, α)

.

To show this, denoting by κ̃ : t∗ ∼= t the isomorphism induced by the inner
product κ, we have:

Λ(λ+ ρ)(t · κ̃(ρ)) =
∑
w∈W

sgn(w) · e2πi·κ(tρ,w(λ+ρ)) = Λ(ρ)(t · κ̃(λ+ ρ)),

and using Weyl’s denominator formula we continue:

= e2πiκ(t(λ+ρ),ρ)
∏
α∈R+

(1− e−2πiκ(t(λ+ρ),α)),
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and developing into a power series in t we continue:

= (2πi)|R
+|

[ ∏
α∈R+

κ(λ+ ρ, α)

]
· t|R

+| +O(t|R
+|+1).

From this the formula clearly follows.

12.8 Example

Let us consider G = SU(3). We have simple roots α1 := (
√

2, 0), α2 :=
(
√

2cos(2π/3),
√

2sin(2π/3)) and another positive root γ := α1 + α2. Since
SU(3) is simply connected, the integral weights are those satisfying κ(α1, λ), κ(α2, λ) ∈
Z. Dominant weights are those satisfying κ(α1, λ), κ(α2, λ) ≥ 0. We have ρ = γ.
We have κ(αi, αi) = 2 and κ(α1, α2) = −1. We have the two fundamental
weights ω1, ω2 given by κ(αi, ωj) = δij . Those are dominant and integral, and
in fact freely generate the monoid of dominant and integral weights. We can
now calcaulte dimV n1ω1+n2ω2 . We obtain

dimV n1ω1+n2ω2 = (1 + n)(1 +m)(1 +
n+m

2
).
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