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Chapter 1

Introduction

These notes are unpolished, might contain errors, imprecisions, etc.
My motivating end-point will be establishing the Langlands classification.

Probably I’ll give wrong credits, or no credits (should put better references).
Insert names of Harish-Chandra, Gelfand, Langlands, Milicic, Casselman, and
others...
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Chapter 2

Basics

2.1 Basic topological representation theory

In this section, G is a Lie group, and K ⊂ G is a compact subgroup, intersecting
each connected component of G. We denote by

∫
G
,
∫
K

the corresponding Haar
integrals (assume that G is unimodular for simplicity).

2.1.1 The definition of a representation

Definition 2.1.1.

1. A representation of G is a Frechet space V, equipped with a continuous
action map G×V → V. We usually write π : G→ GL(V) for the resulting
homomorphism.

2. A unitary representation of G is a Hilbert space, which is also a rep-
resentation of G, and such that each π(g) is unitary.

Claim 2.1.2.

An action G × V → V is continuous if and only if the following two properties
are satisfied:

1. The map G× V → V is continuous in the first variable.

2. For every compact Ω ⊂ G and continuous seminorm σ on V, there exists
a continuous seminorm τ on V such that σ(gv) ≤ τ(v) for every g ∈ Ω
and v ∈ V (this is continuity in the second variable, locally uniform w.r.t.
the first variable).

Proof. easy (write down?)

Claim 2.1.3. Suppose that V is Banachable. Then an action G × V → V is
continuous if and only if the map G × V → V is continuous in each variable
separately.
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Proof. This follows from the previous claim, using the uniform boundeness prin-
ciple.

Claim 2.1.4. Suppose that V is Hilbertable. Then an action G × V → V is
continuous if and only if the following properties are satisfied:

1. The map G×V → V is weakly continuous in the first variable, in the sense
that the map G → C given by g 7→ α(gv) is continuous, for every v ∈ V
and α ∈ V∗.

2. For every compact Ω ⊂ G one has sup||π(g)|| <∞ (in particular, the map
G× V → V is continuous in the second variable).

Proof. We need to verify the continuity of G×V → V in the first variable. Let
V0 ⊂ V denote the subset of vectors v for which g 7→ gv is continuous.

First, notice that V0 is closed in V; Indeed, if vn → v and vn ∈ V0, then we
can write

gv − g0v = g(v − vn) + (gvn − g0vn) + g0(vn − v),

and use condition 3.
Next, we will show that V0 is dense in V w.r.t. the weak topology. We will

consider V∗ with the operator norm. For f ∈ Cc(G), let us consider

bf (v, α) =

∫
G

f(g)α(gv),

where v ∈ V and α ∈ V∗. Notice that

|bf (v, α)| ≤ C · ||f ||L1 · ||α|| · ||v||,

where C is a constant that depends only on supp(f). In particular, α 7→ bf (v, α)
is continuous, and so defines a vector ”π(f)v” ∈ V (here we use the Hilberta-
bility). We now notice that for an approximation of identity fn, we will have
”π(fn)v”→ v w.r.t. the weak topology. Indeed, given α ∈ V∗, we have

|α(”π(fn)”v − v)| = |
∫
G

fn(g)α(gv − v)| ≤ supg∈supp(fn)||α(gv)− α(v)||,

which tends to 0 as n→∞.
Since V0 is closed in V and also dense in V w.r.t. the weak topology, we

obtain V0 = V (by the Hahn-Banach theorem).

Corollary 2.1.5. Let V be a Hilbertable representaiton of G. Then V∗, equipped
with the operator norm and the standard G-action on the dual, is also a G-
representaiton.

Remark 2.1.6. For a Banachable representation the corollary is flase; This can
be remedied by passing to continuous vectors in the dual (those, for which the
orbit maps are continuous).

6



2.1.2 Smooth vectors

Definition 2.1.7. Let v ∈ V. Then v is called smooth if the map G → V
given by g 7→ gv is smooth.

We denote by V∞ ⊂ V the subspace of smooth vectors. Given v ∈ V∞,
we have a linear map g → V, which we denote by X 7→ Xv, characterized
by eXv − v = Xv + o(||X||). More individualistically in X, we have Xv =

limt→0
etXv−v

t . In this way, we obtain an action of the Lie algebra g on V∞ (and
so an action of the algebra U(g)).

We equip V∞ with the locally convex topology given by seminorms of the
form σU (v) := σ(Uv), where σ is a continuous seminorm on V and U ∈ U(g).

Lemma 2.1.8. The subspace V∞ is itself (with the locally convex topology de-
fined above) a G-representation; In other words, it is complete and the action
map G× V∞ → V∞ is continuous.

Proof. We consider the map V∞ → C∞(G;V) given by v 7→ (g 7→ gv). One
checks quite easily that it is a closed embedding intertwining the G-action.
Hence, V∞ is a Frechet representation since C∞(G;V) is.

Lemma 2.1.9. One has π(C∞c (G))) · V ⊂ V∞.

Proof. For f ∈ C∞c (G) and v ∈ V, It is not hard to check that π(f)v has a
derivative given by X(π(f)v) = π(LXf)v. complete?

Corollary 2.1.10. V = Cl(V∞).

Proof. We use the previous lemma, using a smooth approximation of identity.

2.1.3 K-finite vectors

Definition 2.1.11. Let v ∈ V. Then v is called:

1. K-finite, if Kv spans a finite-dimensional subspace of V.

2. weakly analytic, if for every α ∈ V∗, the function G → C given by
g 7→ α(gv) is analytic.

Let us denote by V [K]/Vω the subspaces of V consisting of K-finite/weakly
analytic vectors. Also, for α ∈ K∨, let us denote by V [K,α] the α-isotypical part
of V [K].

Definition 2.1.12. We say that V is admissible, if Hom(E,V [K]) is finite-
dimensional for every finite-dimensional representation E of K. Equivalently, if
V [K,α] is finite-dimensional for every α ∈ K∨.

Lemma 2.1.13. One has π(C(K)[K]) · V ⊂ V [K].

Proof. Clear.
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Lemma 2.1.14. V = Cl(V [K]).

Proof. Taking into account the previous lemma, we use a continuous approxima-
tion of identity on K, and then a K-finite approximation of it (for the supremum
norm).

Remark 2.1.15. To contrast the previous lemma, notice that one can also
pose a stronger question, whether for a given v ∈ V, one has a convergence of∑
α∈S prαv to v, where S ⊂ K̂ is a finite subset, and prα denotes the projection

onto V [K,α] given by
∫
K
χ−1
α (k)π(k). An even stronger thing would be to have

absolute convergence, meaning that in addition
∑
α∈S σ(prαv) is convergent for

every continuous seminorm σ on V. One can show that this is so for v ∈ V∞
(but, of course, not for arbitrary v ∈ V). (add this?)

Lemma 2.1.16. V [K,α] = Cl(V [K,α],∞).

Proof. We denote by prα : V → V the projection operator given by
∫
K
χ−1
α (k)π(k).

Its image is V [K,α]. Furthermore, prα(V∞) ⊂ V∞, since the integral involved
can be interpreted as an integral inside V∞ (with its own topology).

Let v ∈ V [K,α] and let vn → v with vn ∈ V∞. Then

v = prαv = lim prαvn

and we are done.

Corollary 2.1.17. If V∞ is admissible (in particular, if V is admissible), then
V [K] ⊂ V∞.

Proof. Since V [K,α],∞ is finite-dimensional, it is closed, and hence the previous
lemma forces V [K,α] = V [K,α],∞.

Remark 2.1.18. If V is not admissible, the conclusion of the previous corollary
does not necessarily hold, even if K is ”big” in G. For example, we can consider
the action of G on C(G) by left translations (where C(G) has the Frechet
topology of uniform convergence on compacts). Then one has plenty of K-
invariant vectors, which are not smooth (simply continuous but non-smooth
functions on K\G).

Claim 2.1.19. Let v ∈ V [K],∞. Suppose that U(g)K acts finitely on v. Then
v ∈ Vω.

Proof. Let α ∈ V∗. Then Set f(g) := α(gv). We want to show that f is analytic.
We will exhibit an element D ∈ U(g)K for which RD is an elliptic differential

operator on G. We have p(D)v = 0 for some monic polynomial p by the as-
sumption of finiteness, and hence Rp(D)f = 0. Since p(D) is elliptic, by elliptic
regularity we obtain that f is analytic.

To exhibit such D, let us find a Ad(K)-invariant inner product 〈·, ·〉 on g,
fix an orthonormal basis X1, . . . , Xn of g w.r.t. 〈·, ·〉. Then D := X2

1 + . . . +
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X2
n ∈ U(g)K . Indeed, it can be interpreted as the image of Idg under the

K-equivariant map

End(g) ∼= g⊗ g∗
via〈·,·〉∼= g⊗ g

mult.−−−→ U(g).

Clearly, RD is an elliptic differential operator on G.

Corollary 2.1.20. Suppose that V is admissible. Then V [K] ⊂ Vω.

Proof. This is clear, since U(g)K preserves the K-types, hence acts finitely on
K-finite vectors if V is admissible.

Lemma 2.1.21. Let U ⊂ Vω ∩ V∞ be a subspace stable under U(g). Then
Cl(U) is stable under G◦.

Proof. Let v ∈ U . By standard arguments, it is enough to see that eXv ∈ Cl(U)
for every X ∈ g. Fix α ∈ V∗ which vanishes on U . The function g→ C given by
X 7→ α(eXv) is analytic. Moreover, its partial derivatives at 0 are of the form
α(Zv) for Z ∈ U(g), hence vanish. Thus, our function is zero. We get that for
a given X ∈ g, eXv is annihilated by all α ∈ V∗ which annihilate U . By the
Hahn-Banach theorem we get eXv ∈ Cl(U).

Claim 2.1.22. Suppose that V is admissible. Then one has an isomorphism of
partial orders, between closed subspaces U ⊂ V stable under G, and subspaces
U ⊂ V [K] stable under K and g, given by the correspondence U 7→ U [K] and
U 7→ Cl(U).

Proof. The subspace Cl(U) ⊂ V is closed under G◦ by lemmas above. Since
it is also closed under K, it is closed under KG◦ = G. Let us show now that
U = Cl(U)[K]. For v ∈ Cl(U)[K,α], we take vn → v with vn ∈ U . By replacing
vn with prαvn, we can assume vn ∈ U [K,α]. Since U [K,α] is finite-dimensional,
we obtain v ∈ U [K,α].

2.1.4 (g, K)-modules

Definition 2.1.23. An algebraic representation of K is a locally finite repre-
sentation V of K, such that for every finite-dimensional K-invariant subspace
W ⊂ V , the action of K on W is continuous (thus smooth).

For an algebraic representation V of K, we have the isotypical components
V [α], and V = ⊕α∈K̂V [α].

Definition 2.1.24. A (g,K)-module is a vector space V equipped with an
action of g (denote πg : U(g)→ End(V )) and an algebraic action of K (denote
πK : K → GL(V )), such that:

1. πK(k) ◦ πg(U) ◦ πK(k−1) = πg(Ad(k)U) for k ∈ K,U ∈ U(g).
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2. dπK = πg|k.

We have an obvious notion of a morphism of (g,K)-modules, and (g,K)-
modules form an abelian category M(g,K).

Example 2.1.25. Let V be an admissible G-representation. Then V [K] is a
(g,K)-module (the underlying (g,K)-module). Two admissible G-representations
are said to be infinitesimally equivalent, if their underlying (g,K)-modules
are isomorphic.

Example 2.1.26. In the usual example of G = SL2(R) acting on M = P(R2),
the representations L2(M) and C(M) are infinitesimally equivalent.

Lemma 2.1.27. Assume that the inclusion K → G induces an isomorphism of
fundamental groupoids. Then forgetful functor

{f.d. G-rep.} → {f.d. (g,K)-mod.}

is an equivalence of categories.

Proof. The functor is clearly faithful, and easily seen to be full. Let us show
that it is essentially surjective. So, let V be a f.d. (g,K)-module. Denote
H = GL(V ), α : g→ h, β : K → H. We want to show that there exists G→ H
whose derivative is α and whose restriction to K is β.

Since KG◦ = G and G◦ is normal in G, it is enough to show that there
exists γ : G◦ → H, whose derivative is α. Indeed, then we will have:

1. γ|K∩G◦ = β (because, by assumption, K∩G◦ is connected, and γ|K∩G◦ , β
have the same derivative by the second (g,K)-module axiom).

2. γ(kgk−1) = β(k)γ(g)β(k)−1 for k ∈ K, g ∈ G◦ (by the second (g,K)-
module axiom).

Combining the two, by simple group theory there will be a unique γ̃ : G→ H
such that γ̃|G◦ = γ and γ̃|K = β.

Consider the universal cover π : G′ → G◦. We have γ′ : G′ → H whose
derivative is α. It is enough to show that γ′ is trivial on π−1(e).

Let K ′ ⊂ G′ be the inverse image of K ∩ G◦ under π. Notice that γ′|(K′)◦
has derivative α|k, and thus by the first (g,K)-module axiom its derivative is
the derivative of β, implying that γ′|(K′)◦ factors through π : (K ′)◦ → K. In
particular, γ′ is trivial on π−1(e)∩(K ′)◦. It is thus left to show that π−1(e) ⊂ K ′
sits in the trivial connected component. Indeed, this follows from K → G being
an isomorphism on π1(·; e).

Thus, it is starting to seem that (g,K)-modules are a good tool to capture
the algebraic properties of topological representations.
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2.1.5 Examples

Let G act transitively on a manifold M , and let µ be a G-invariant Radon
measure on M .

We have the G-representation C(M) of continuous functions on M , with the
Frechet topology of uniform convergence on compacts. We also have the unitary
G-representation L2(M).

One has C(M)∞ = C∞(M), the space of smooth functions on M , with the
Frechet topology of uniform convergence of all iterated derivatives on compacts.

Assume that M is compact. Then L2(M)∞ = C∞(M) (as Frechet repre-
sentations). This is basically a case of Sobolev’s embedding theorem.

Examples for SL2(R)

Let us consider G = SL2(R),K = SO2(R). We have an action of G on M :=
P(R2), and hence on functions on this space. We think of M as the unit circle
modulo ±1. The standard measure dθ on M is G-invariant (because it is K-
invariant). The space L2(M)[K] is the span of φ2n := ei·2n·θ, n ∈ Z.

More generally, let us fix λ ∈ C, ε ∈ {0, 1} and consider the space Pλ,ε of
smooth functions f : R2 − {0} → C satisfying f(cv) = sgn(c)ε|c|−λ−1f(v) for
c ∈ R×, v ∈ R2−{0}. This is a Frechet G-representation; The topology is given
by uniform convergence of iterated derivatives on compacts, and the G-action
is via the natural G-action on R2 − {0}. This is called the principal series of
representations. One can give an infinitesimally equivalent Hilbertable variant,
by considering on Pλ,ε the inner product (f1, f2) 7→

∫
S
f1 · f̄2dθ and taking

completion w.r.t. it (here S ⊂ R2 − {0} is the unit circle).
Let us write very explicitly the (g,K)-module underlying Pλ,ε. Let us denote

by eλn ∈ Pλ,ε the element which on the unit circle is given by

(
c
s

)
7→ (c+ is)n.

For ε = 0 (resp. ε = 1), the module P [K]
λ,ε has basis eλn with n ∈ 2Z (resp.

n ∈ 1 + 2Z).
We have the following basis of gC:

Hc =

(
0 −i
i 0

)
, Xc =

1

2

(
−i 1
1 i

)
, Yc =

1

2

(
i 1
1 −i

)
.

Notice that iHc is a basis element for k, and we have

[Hc, Xc] = 2Xc, [Hc, Yc] = −2Yc, [Xc, Yc] = Hc

(i.e. Hc, Xc, Yc is an sl2-triple).
Then, one has:

Hce
λ
n = neλn, Xce

λ
n =

1

2
i(−(λ+ 1)− n)eλn+2, Yce

λ
n =

1

2
i(λ+ 1− n)eλn−2.

For example, for P−1,0, one notices that P [K]
−1,0/Ce

−1
0 admits a direct sum-

mand consisting of the span of e−1
2 , e−1

4 , . . .. Let us describe a representation
which this summand underlies in independent terms.
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In analogy with the principal series, we can consider a complex variant.
Thus, something like smooth functions f : C2 − {0} → C, satisfying f(cv) =
c−nf(v) for c ∈ C×, v ∈ C2 − {0}. Clearly G acts on those, but there are too
many of them, so we restrict ourselves to holomorphic f ’s. Then there are too
few of them, so we pass to an orbit of G, and consider f defined on the subspace

of

(
z1

z2

)
for which =( z1z2 ) > 0. Those, up to homothety, can be identified with

the upper half plane H = {z ∈ C | =(z) > 0)}.
Then, for each n, we obtain a representation ofG on the space of holomorphic

functions on H, induced by the usual action of G on H:(
a b
c d

)
· z =

az + b

cz + d

but with an automorphy factor:

(

(
a b
c d

)
f)(z) = (−cz + a)−nf(

(
d −b
−c a

)
z).

Let us find K-finite vectors in this representation. For this, it is convenient

to use the Cayley transform C =

(
1 −i
1 i

)
, which identifies H with D =

{w ∈ C | |w| < 1}. The inverse transform is C−1 = 1
2

(
1 1
i −i

)
. Let us

denote γ = a+ ic, δ = d− ib. Then one computes:

C

(
a b
c d

)
C−1 =

1

2

(
γ + δ γ − δ
γ − δ γ + δ

)
.

Hence, the action of G on functions on D corresponding to its action on functions
on H is:

(

(
a b
c d

)
h)(w) = h(

1

2

(
(δ + γ)w + δ − γ
(δ − γ)w + δ + γ

)
) =

(
1

2
(δ − γ)w +

1

2
δ + γ

)−n
h(

(δ + γ)w + δ − γ
(δ − γ)w + δ + γ

).

In particular, if for γ = c+is of absolute value 1 we denote Tγ =

(
c −s
s c

)
(thus identifying K with the complex numbers of absolute value 1) we obtain:

(Tγh)(w) = γnh(γ2w);

a very nice expression, indicating that he Cayley transform is ”good for K”.
So, the K-finite vectors of type γ 7→ γm are identified now with holomorphic

solutions on D of the following equation:

h(γ2w) = γm−nh(w).

We assume n > 0. The solutions are easily found; There exists a non-zero
solution if m ∈ n + 2Z≥0, in which case the solution is unique up to scalar,
given by hm(w) = w(m−n)/2 (so, simply 1, w, w2, . . .).

12



We see that the underlying (g,K)-module of the representation Dn described
has a basis en, en+2, . . ., where Tγek = γkek.

Going back to the principal series notice that consider, for example, P [K]
−1,0.

One sees from the formulas above that as a K-module it is the same as D[K]
2 .

One can also calculate that these are in fact isomorphic as (g,K)-modules.
Moreover, one observes that the same (g,K)-module appears as a submodule

in P [K]
1,0 .

We thus described the discrete series, and observed that it embeds into
principal series.

2.2 Structure of real reductive algebraic groups

2.2.1 Compact real forms

By Galois descent, real forms of a complex affine algebraic group G are in
bijection with anti-algebraic involutions σ : G(C)→ G(C), so by real forms we
will simply mean such σ’s. Note that G(C)σ (which is the set of R-points of
G, equipped with the real form corresponding to σ) is a Lie group with finitely
many connected components.

Definition 2.2.1. Let G be a complex affine algebraic group.

1. A compact real form of G is a real form σ such that G(C)σ is compact
and intersects each connected component of G(C).

2. A geometric compact real form of G is a compact Lie subgroup K̃ ⊂
G(C) such that Lie(K̃) is a real form of Lie(G(C)) and such that K̃
intersects each connected component of G(C).

Theorem 2.2.2. Let G be a complex affine algebraic group. Then G admits
a compact real form if and only if G is reductive (meaning that its neutral
component is reductive).

Proof. Is there a good reference?

Hypothesis: From now on, through all the text, G denotes a complex
reductive algebraic group.

Claim 2.2.3. Any holomorphic (anti-holomorphic) homomorphism between con-
nected reductive complex algebraic groups is algebraic (anti-algebraic).

Proof. See [4, Proposition D.2.1] or [1, Lemma 3.1].

Claim 2.2.4. Associating to a compact real form σ the geometric compact real
form K̃ := G(C)σ gives a bijection between compact real forms and geometric
compact real forms.

13



Proof. Clearly, given a compact real form σ, the subgroup K̃ = G(C)σ is a
geometric compact real form. This correspondence is injective, since if for two
compact real forms σ1, σ2 we have K̃ = G(C)σ1 = G(C)σ2 , then σ1, σ2 induce

the same map on Lie(G(C)) (specifically, the map which acts as 1 on Lie(K̃) and

as −1 on i ·Lie(K̃)), hence are equal on G(C)◦, and hence on G(C) = G(C)◦K̃.
Later (corollary 2.2.8) we will see that this correspondence is in fact bijective,
i.e. that every geometric compact real form comes from a compact real form.

2.2.2 Cartan decomposition for the complex group

Let K̃ ⊂ G(C) be a geometric compact real form. Denote s̃ := ĩk (so gC = k̃⊕ s̃).

Theorem 2.2.5 (Cartan decomposition). The map K̃ × s̃ → G(C) given by
(k,X) 7→ k · exp(X) is a diffeomorphism.

Proof. We assume that we know this theorem for GLn with its standard geo-

metric compact real form arising from the compact real form σ0(M) := (M
t
)−1.

In other words, U(n)× iu(n)→ GLn(C) given by (k,X) 7→ k · exp(X) is a dif-
feomorphism. We embed G into GLn algebraically, and by the unitary trick
(finding an invariant inner product for K̃), we can assume that K̃ embeds into

U(n). Thus, our map factors via K̃ × s̃ → U(n) × iu(n) → GLn(C). Thus,
our map is an injective immersion, and its image is closed. Since the domain
and codomain have the same dimension, we deduce that our map is the embed-
ding of a union of connected components. Since K̃ intersects each connected
component of G(C), we deduce that our map is a diffeomorphism.

Corollary 2.2.6. The inclusion K̃ → G(C) is a homotopy equivalence, and K̃
is a maximal compact subgroup of G(C).

Proof. If a subgroup L contains K̃ properly, then it contains some element
exp(X) for X ∈ s̃, and hence contains the non-compact closed subset exp(X)Z =
exp(Z ·X).

Corollary 2.2.7. Fix an algebraic embedding G ⊂ GLn such that K̃ ⊂ U(n).

Then G is stable under M 7→ (M
t
)−1, and for the resulting real form σc of G

we have K̃ = U(n) ∩G(C) = G(C)σc .

Proof. This follows from K̃ being maximal compact in G(C).

Corollary 2.2.8. Any geometric compact real form comes from a compact real
form.

2.2.3 Real forms and Cartan involutions

The following theorem is a main tool:

Theorem 2.2.9. Let σ be a real form of G.

14



1. There exists a compact real form σc of G, such that σ ◦ σc = σc ◦ σ.

2. Given two compact real forms σ1
c , σ

2
c of G commuting with σ, there exists

g ∈ G(C)σ such that σ2
c = i−1

g ◦ σ1
c ◦ ig, where ig : G(C)→ G(C) is given

by ig(h) := ghg−1.

3. Suppose given a compact real form σc of G commuting with σ. Suppose
furthermore given a reductive algebraic group G′, a real form σ′ of G′, and
an embedding G → G′ intertwining the two real forms σ and σ′. Then
there exists a compact real form σ′c of G′ commuting with σ′, such that σ′c
preserves G and is equal to σc when restricted to G.

Proof. See [1].

Given a compact real form σc commuting with the real form σ, we denote
θ := σc ◦ σ (the Cartan involution). Then θ is an algebraic involution of G,
which commutes with σ and with σc.

From now on, we assume that G is a complex reductive algebraic group, σ is a
real form of G, and σc is a compact real form of G commuting with σ. We denote
G := G(R) := G(C)σ, K̃ := G(C)σc , K := G(R) ∩ K̃ = G(R)σc = G(R)θ. We

write g := Lie(G(R)) and gC := Lie(G(C)). We have k := g ∩ k̃ = gσc = gθ.

Also, denote s̃ := i · k̃, , s := g ∩ s̃ = gσc,−1 = gθ,−1. We have gC = k̃ ⊕ s̃ and
g = k⊕ s.

One can imagine gC breaking into:
σc \ σ 1 −1
1 k is
−1 s ik

Notice that k⊕ s is the Lie algebra of the real form G = G(C)σ, k⊕ is is the

Lie algebra of the compact real form K̃ = G(C)σc , and k⊕ ık is the Lie algebra
of the complexification of K, which is KC = G(C)θ.

2.2.4 Cartan decomposition

Theorem 2.2.10 (Cartan decomposition). The map K × s → G given by
(k,X) 7→ k · exp(X) is a diffeomorphism.

Proof. This is clear by using the diffeomorphism K̃ × s̃ → G(C) and taking
σ-invariants of everything.

Corollary 2.2.11. The inclusion K → G is a homotopy equivalence (in par-
ticular, K intersects each component of G), and K is maximal compact in G.

Claim 2.2.12. There exist algebraic embeddings G ⊂ GLn such that σ is the
restriction to G(C) of M 7→ M and σc is the restriction to G(C) of M 7→
(M

t
)−1.
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Proof. Choose first a real embedding of (G, σ) into (GLn,M 7→M) (so σ is the
restriction of M 7→M). By item 3 of theorem 2.2.9 we can find a compact real
form σ′c of GLn which preserves G and is equal to σc when restricted to G. By
item 2 of theorem 2.2.9, we can find g ∈ GLn(R) such that σ′c = i−1

g ◦ τ ◦ ig
where τ(M) = (M

t
)−1. This exactly means that after changing coordinates via

g, we will get the desired.

Hypothesis: From now on,through all the text, we assume that G is con-
nected (but still, G might be not connected).

2.2.5 Invariant bilinear forms

Claim 2.2.13. The Lie algebra gC admits a G(C)-invariant non-degenerate
symmetric bilinear form B(·, ·), which is real negative-definite on k, real positive-
definite on p, and for which k and p are orthogonal.

Proof. By averaging, we find a negative-definite form on k̃, invariant w.r.t. K̃.
We then consider the extension by C-bilinearity of this form to gC, call it B̃.
It is invariant w.r.t. K̃ and thus w.r.t. k̃. Thus, it is clearly invariant w.r.t.
gC = C ⊗R k̃. Restricting to g and taking the real part, we obtain a real form
which is g-invariant, negative-definite on k, positive-definite on p, and for which
k and p are orthogonal. Extending this form by C-bilinearity to gC, we obtain
a form B which gC-invariant, and hence G(C)-invariant, since G(C) is assumed
connected. This form B is as desired.

Claim 2.2.14. The Lie algebra g admits a G-invariant non-degenerate real
symmetric bilinear form B(·, ·), which is negative-definite on k and positive-
definite on s, and for which k and s are orthogonal. The form B(·, θ·) is positive-
definite and K-invariant. The operators ad(X) = [X, ·] are skew-symmetric for
X ∈ k and symmetric for X ∈ s (w.r.t. B(·, θ·)).

Proof. We consider the restriction of B from claim 2.2.13 to g.

2.2.6 Iwasawa decomposition

Maximal abelian subspaces

Let a ⊂ s be a maximal abelian subspace. Since ad(X) are symmetric w.r.t.
the form B(·, θ·) for X ∈ s, the operators ad(X) for X ∈ a are mutually diag-
nolizable. Thus, we can write

g = ga,0 ⊕
⊕
α∈R

ga,α

where
ga,α = {Y ∈ g | [X,Y ] = α(X)Y ∀X ∈ a}
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and R ⊂ a∗ is the subset of restricted roots (by definition, α ∈ a∗ which are
non-zero and for which ga,α 6= 0). We further have g∅ := ga,0 = a ⊕ k∅ where
k∅ := Ck(a).

Notice that we have isomorphisms θ : ga,α → ga,−α; In particular, −R = R.
Let us denote areg := a− ∪α∈RKer(α).

Lemma 2.2.15. For H ′ ∈ areg one has Cg(H ′) = Cg(a) (= ga,0) (in particular,
Cs(H

′) = a).

Proof. Clear.

Lemma 2.2.16. Let H1, H2 ∈ s. Then there exists k ∈ K◦ such that [Ad(k)H1, H2] =
0.

Proof. Consider the function f : K◦ → R given by f(g) = B(Ad(g)H1, H2).
Let k0 be a minimum point for f . Then for every Y ∈ k we have

0 =
d

dt
|t=0B(Ad(exp(tY )k0)H1, H2) = B([Y,Ad(k0)H1], H2) = B(Y, [Ad(k0)H1, H2])

and thus [Ad(k0)H1, H2] = 0 (since B is non-degenerate on k).

Claim 2.2.17. Let a1, a2 ⊂ s be two maximal abelian subspaces. Then there
exists k ∈ K◦ such that Ad(k)a1 = a2.

Proof. Let Hi ∈ aregi , and find k ∈ K◦ such that Ad(k)H1 = H2. Then
Ad(k)a1 = Ad(k)Cs(H1) = Cs(Ad(k)H1) = Cs(H2) = a2.

Iwasawa decomposition

We choose H ′ ∈ areg. We denote R+ = {α ∈ R | α(H ′) > 0}, and similarly R−,
so that R− = −R+ and R = R+ ∪R−. We define n = ⊕α∈R+ga,α and similarly
n− (so n− = θ(n)). Thus, we have

g = a⊕ k∅ ⊕ n⊕ n−.

Notice that n and n− are nilpotent Lie subalgebras of g.

Lemma 2.2.18. We have
g = k⊕ a⊕ n.

Proof. To show independence, assume X+Y +Z = 0 with X ∈ k, Y ∈ a, Z ∈ n.
Then applying θ we obtain X − Y + θ(Z) = 0 and substracting we obtain
2Y + (Z − θ(Z)) = 0. From here we get (by seperating w.r.t. the a-action)
Y = 0, Z = 0.

To show that g = k + a + n, it is enough to show that n− ⊂ k + a + n. But
clearly, by writing X = −θ(X) + (X + θ(X)), we see that n− ⊂ n + k.
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Lemma 2.2.19. The embedding of 2.2.12 can be made such that all the ele-
ments of a are diagonal matrices, and all the elements of n are nilpotent upper-
triangular matrices.

Proof. Since a is a space of commuting symmetric matrices, they can be simul-
taneously diagnolized. Choose H ′ ∈ areg, and reorder the current basis such
that the eigenvalues of H ′ do not increase. Then for X ∈ ga,α ⊂ n, from the
relation [H ′, X] = α(H ′)X, since α(H ′) > 0, we easily see that X is nilpotent
upper-triangular.

Lemma 2.2.20. There exist closed connected subgroup A,N ⊂ G(R) such that
Lie(A) = a and Lie(N) = n. The map exp : a→ A is a Lie group isomorphism,
while exp : n→ N is a manifold isomorphism.

Proof. We will embed G ⊂ GLn as in the previous lemma.
Then a is a sub Lie algebra of the diagonal, and the claim follows from the

corresponding one for the diagonal. Similarly, n is a sub Lie algebra of the
unipotent upper triangular matrices, and the claim follows from the structure
of subgroups of connected unipotent groups.

Theorem 2.2.21. The map K ×A×N → G(R) given by (k, a, n) 7→ kan is a
diffeomorphism.

Proof. Let us show that K × A × N → G(R) is a local isomorphism. By
translation, it is enough to prove it at points (1, a, 1). At those points, the
differential is the map k ⊕ a ⊕ n → g given by (X,Y, Z) 7→ Ad(a−1)X + Y +
Z = Ad(a−1)(X + Y + Ad(a)Z), which is an isomorphism by the Iwasawa
decomposition on the Lie algebra level.

Let us show that K ×A×N → G(R) is injective. We will think in terms of
the embedding into matrices as in lemmas 2.2.12 and 2.2.19. If kan = k1a1n1,
then k−1

1 k = a1n1n
−1a−1 is an upper-triangular orthogonal matrix with positive

diagonal entries, hence equal to e. Thus k = k1. We are left with an = a1n1,
which clearly implies a = a1 and finally n = n1.

We will finally want to show that the image of K × A × N → G(R) is
closed. Then we will get that this map is an embedding of a union of connected
components. But since K intersects each connected component of G(R), we will
get that our map is a diffeomorphism as desired. Since K is compact, it is easy
to see that it is enough to show that the image of A × N → G(R) is closed.
Thinking in terms of the matrix embedding, this is an easy exercise.

2.2.7 The root system

The coroots

Let α ∈ R, and 0 6= Xα ∈ ga,α. Set Yα := θXα and Hα := [Xα, Yα]. Notice that
Hα ∈ s ∩ ga,0 = a. Also, notice that

B(H,Hα) = α(H)B(Xα, Yα)
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for H ∈ a. Plugging in H = Hα, we see that α(Hα) > 0. We can thus normalize
the initial choice of Xα, so that α(Hα) = 2. The triple (Xα, Yα, Hα) becomes an
sl2-triple. Notice that the formula above also shows that Hα does not depend
on the choice of Xα, because it can be described as the unique element lying in
the one-dimensional space of a corresponding to Sp{α} under the form B, and
normalized by the condition α(Hα) = 2. The element Hα is called the coroot
corresponding to the root α.

We denote acent := a ∩ z(g) = ∩α∈RKer(α), and ass := a ∩ [g, g].

Lemma 2.2.22. One has ass = Sp{Hα}α∈R+ .

Proof. We have

g∅ ∩ [g, g] = [k∅, k∅]⊕
⊕
α∈R+

[ga,α, ga,−α].

From the formula
B(H, [X,Y ]) = α(H)B(X,Y )

for X ∈ ga,α and Y ∈ ga,−α, we see that the a-component of [X,Y ] w.r.t.
g∅ = k∅ ⊕ a lies in Sp{Hα}. From this the claim is clear.

Corollary 2.2.23 (of the proof of the lemma). Denoting by p : g∅ → a the
projection corresponding to g∅ = k∅ ⊕ a, one has p([g, g] ∩ g∅) = ass.

Lemma 2.2.24. One has a = acent ⊕ ass.

Proof. Since g is reductive, we have g = z(g) ⊕ [g, g]. Since z(g) ⊂ g∅, we get
g∅ = z(g)⊕ [g, g]∩ g∅. Now the claim follows from z(g) = z(g)∩ k∅⊕ z(g)∩ a and
the corollary above.

The Weyl group

Denote W := NK(a)/CK(a). Notice that W acts faithfully on a by orthogonal
automorphisms.

Lemma 2.2.25. The Lie algebra of both NK(a) and CK(a) is k∅.

Corollary 2.2.26. The group W is finite.

Lemma 2.2.27. Let H ′ ∈ areg. Then CK(a) = CK(H ′).

Proof. It is enough to show that CK̃(H ′) = CK̃(a). Notice that both have
Lie algebra k∅ ⊕ is. Thus, it is enough to show that CK̃(H ′) is connected.

But CK̃(H ′) = CK̃(iH ′) where iH ′ ∈ k̃, hence the connectedness follows from
the fact that in a compact connected Lie group C, the centralizer of a vector
X ∈ Lie(C) is connected (here we use the assumption that G(C) is connected!).
This follows from the fact that the centralizer of X is equal to the centralizer
of {exp(tX)}t∈R, which is a torus, and the classical result that the centralizer
of a torus in a connected compact Lie group is connected.
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The elements sα

Thinking of W as a subgroup of the group of orthogonal automorphisms of a,
we would like to show that sα, the orthogonal reflection through Ker(α), lies
in W , and in fact in the subgroup corresponding to NK◦(a) ⊂ NK(a) (we will
see in a bit that this subgroup is in fact the whole W ).

Take 0 6= Xα ∈ ga,α. Set Yα := θ(Xα) and Hα := [Xα, Yα]. Notice that

B(H,Hα) = α(H)B(Xα, θ(Xα)),

so in particular, plugging in H = Hα, we deduce that α(Hα) > 0. Thus, by
normalizing the initial choice of Xα appropriately, we can assume that α(Hα) =
2. Thus, we get an embedding sl2(R)→ g by mapping the standard H,X, Y to
Hα, Xα, Yα. This integrates to a morphism iα : SL2(R)→ G(R) (this is due to
a general fact - a morphism from a covering group of SL2(R) to a matrix group
always factors via SL2(R)). One now notices that the standard θ of SL2(R) is
compatible with our θ, and one deduces that iα(SO2(R)) ⊂ K◦. Now one easily

checks that

(
0 −1
1 0

)
∈ SO2(R) is mapped to the desired sα.

Weyl chambers

The connected components of areg are called Weyl chambers. Those are convex
open cones, given by the non-empty intersections ∩α∈R α−1(εαR>0) where εα =
±1.

Claim 2.2.28. The action of W on the set of Weyl chambers is free.

Proof. Suppose that g ∈ NK(a) sends a Weyl chamber to itself. By averaging
an arbitrary element of the Weyl chamber w.r.t. powers of g, we obtain an
element in the Weyl chamber fixed by g. By lemma 2.2.27, we get g ∈ CK(a),
as desired.

Claim 2.2.29. The action of the subgroup W ′ := 〈sα〉α∈R ⊂ W on the set of
Weyl chambers is transitive.

Proof. Let H1, H2 ∈ areg. Let w ∈ W ′ be such that wH2 is closest to H1 as
possible. We claim that w(H2) is then in the same Weyl chamber as H1. Indeed,
if not, then α(H1) > 0 and α(w(H2)) < 0 for some α ∈ R. But then clearly
sα(w(H2)) is closer to H1 than wH2, in cotradiction to the choice of w.

Corollary 2.2.30 (of the two claims). The group W is generated by the subset
{sα}α∈R, and it acts simply transitively on the set of Weyl chambers (in partic-
ular, we also deduce that NK◦(a)→ W is surjective, since the sα were realized
as element in NK◦(a)).

The simple roots

complete
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2.2.8 The polar decomposition

Let us fix, once and for all, a Weyl chamber a−− ⊂ a, and denote by a− the
closure of a−− in a. We take the H ′ ∈ areg to determine the positive roots lying
in a++ := −a−−, so R+ ⊂ R is given by {α | α(H) < 0 ∀H ∈ a−−}. We denote
by A−−, A− ⊂ A the corresponding subsets of A (under exp).

Recall the notation K∅ = CK(a). Denote by

m : K/K∅ ×A×K → G(R)

the map given by m([k1], a, k2) := k1ak
−1
1 k2. Denote by m−, m−− the restric-

tions of m to the domains where we replace A by A−, A−−.

Lemma 2.2.31. The map m− is surjective.

Proof. By the Cartan decomposition, G(R) = exp(s) · K. Since any element
of s is conjugate via an element of K◦ to an element of a, we have G(R) =
K◦ · exp(a) ·K = K◦AK. Since every element of A can be moved to A− by an
element of W , we get G(R) = K◦A−K.

Claim 2.2.32. The map m−− is an open embedding with dense image.

Proof. Since m− is surjective and A−− is dense in A−, it is clear that m−− has
dense image.

Let us show that m−− is injective. Indeed, if k1ak
−1
1 k2 = k′1a

′(k′1)−1k′2, then
by the Cartan decomposition with get k1ak

−1
1 = k′1a

′(k′1)−1 and k2 = k′2. Then
we obtain (k′1)−1k1 sends log(a) ∈ areg into areg, hence sends Cs(log(a)) = a
into the centralizer of an element in areg, i.e. into a. In other words, (k′1)−1k1 ∈
NK(a). Now, as an element of the Weyl group, (k′1)−1k1 preserves a Weyl
chamber, hence is trivial in the Weyl group, i.e. belongs to K∅. From this, we
also deduce that a = a′.

It is easy to calaculate that the dimensions of the domain and codomain
of m−− are equal. Hence, we are left to show that m−− is a submersion.
For this, it is enough to show that the map m1 : K × A × K → G given
by (k1, a, k2) 7→ k1ak2 is a submersion at all points of K × Areg × K. We
calculate that the differential of m1 at a point (k1, a, k2) is modeled by the map
g ⊕ a ⊕ k → g given by (X,Y, Z) 7→ Ad(k−1

2 )Ad(a−1)(X + Y ) + Z, so it is
surjective if and only if the map (X,Y, Z) 7→ Ad(a−1)X + Y + Z is surjective.
In other words, we want to show that Ad(a−1)k + a + k = g for a ∈ Areg. By
the Iwasawa decomposition, it is enough to show that ga,α ⊂ Ad(a−1)k + k for
α ∈ R+. But given 0 6= X ∈ ga,α, Ad(a−1) acts on X and on θ(X) with different
eigenvalues, hence X+θ(X) and Ad(a−1)(X+θ(X)) are not linearly dependent.
Thus Sp(X, θ(X)) = Sp(X+θ(X), Ad(a−1)(X+θ(X)), and thus we can express
X as a linear combination of X+θ(X) ∈ k and Ad(a−1)(X+θ(X)) ∈ Ad(a−1)k,
as desired.
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2.2.9 Parabolics, Levis

The Levis GI

Fix a set of simple roots I ⊂ Rs. Denote acent,I := ∩α∈IKer(α), and set
GI := ZG(acent,I).

Notice that GI is an algebraic subgroup of G, stable under σ and σc. We
claim that GI(C)σc intersects each connected component of GI(C) (so that the
restriction σc is a compact form of GI). Indeed, via the nice embedding of G
into matrices, GI can be described as G intersected with a particular block-
diagonal subgroup. Using that, we see that the Cartan decomposition of an
element in GI consists of elements in GI ; Hence, we deduce that GI has its
own Cartan decomposition, so that the inclusion of GI(C)σc into GI(C) is an
homotopy equivalence.

Hence, GI has ”the same status” as G. We have the maximal compact
KI = GI(R) ∩K = GI(R)σc . We have sI = s ∩ gI = gσc,−1

I . Since a ⊂ sI ⊂ s
and a is already maximal abelian in s, we can take a as a maximal abelian
subspace in sI , so G and GI have ”the same a”.

RI = R ∩
∑
β∈I Rβ is the root system of (GI , σ). One has

gI = k∅ ⊕ a⊕
⊕
α∈RI

ga,α.

Notice that acent,I = a ∩ z(gI), i.e. the notation is compatible. The coroots
are compatible, i.e. for α ∈ RI , the coroots Hα for G and GI are the same. We
have ass,I = a ∩ [gI , gI ] = Spα∈R+

I
{Hα} and a = acent,I ⊕ ass,I .

One has nI =
⊕

α∈R+
I
ga,α (where R+

I = R+ ∩ RI). One has NI - the

connected subgroup of GI(R) whose Lie algebra is nI . Similarly, one has n−I
and N−I .

The parabolics

One has a Lie subalgebra n(I) ⊂ n, defined by n(I) =
⊕

α∈R+−R+
I
ga,α. One

has the corresponding connected subgroup of G(R) whose Lie algebra is n(I).

Similarly, one has n−(I) and N−(I).

The subgroup GI(R) normalizes N(I), and the product P(I) := GI(R)·N(I) is
a standard parabolic subgroup. Its Lie algebra is p(I) = gI⊕n(I). Similarly,

one has P−(I) (which is a semi standard parabolic subgroup) and p−(I).

Philosophy of cusp forms

One should study (representations of) G inductively, by relating to the GI ’s;
But not via GI → G directly; rather, via GI ←− P(I) → G.
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2.3 Scale and moderate growth

2.3.1 Scale

Let E be a faithful algebraic representation of G(C), and fix a K̃-invariant inner

product on E. We define as usual ||g||E := supv∈E−{0}
||gv||
||v|| . We define

s(g) := 1 + log max{||g||E , ||g−1||E}

(a ”scale function”).
Then s(g) is a continuous function on g with values in R≥1, s(e) = 1,

s(k1gk2) = s(g) for k1, k2 ∈ K, and s(g1g2) ≤ s(g1) + s(g2). Also, s(eH) ∼
1 + ||H|| (H ∈ a), where ||H|| is any norm on a; Similarly, s(eY ) ∼ 1 + log(1 +
||Y ||) (Y ∈ n−), where ||Y || is any norm on n−.

For different E’s, the resulting scale functions are equivalent.

Lemma 2.3.1. One has

s(`I(g)) ≤ s(g) (g ∈ G).

Proof. In some orthonormal coordinates on E, `I(g) is block diagonal, while
n(I)(g) block unipotent upper triangular. Then s(`I(g)) ≤ s(`I(g)n(I)(g)) =
s(g).

Notice that sI , a scale function for GI , can be taken to be just the restriction
of s; Hence we will only use the notation s.

2.3.2 Moderate growth

Definition 2.3.2. Let V be a Frechet representation of G. We say that V is
of moderate growth, if for every continuous seminorm σ on V there exists a
continuous seminorm σ′ on V and d ∈ Z≥0 such that

σ(gv) � eds(g)σ′(v), g ∈ G, v ∈ V.

Claim 2.3.3. Suppose that V is a Banachable representation of G. Then V is
of moderate growth.

Proof. Let Ω ⊂ G be a compact subset such that G = ∪n≥1Ωn. By continuity,
there exists C > 0 such that

||gv|| ≤ C||v||

for all g ∈ Ω, v ∈ V . Iterating, we obtain ||gv|| ≤ Cc(g)||v|| for all g ∈ G, v ∈ V ,
where c(g) denotes the first n ≥ 1 for which g ∈ Ωn. Clearly it is enough now
to show that for some choice of Ω, we have

c(g) � s(g), g ∈ G.
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And indeed, let us choose

Ω = {g ∈ G | s(g) ≤ 2}.

Then Ω is compact. Moreover, Ω is closed under inversion, contains K and
contains an open neighborhood of e ∈ G – hence G = ∪n≥1Ωn. Now, given
g ∈ G, present g = kexp(X) with k ∈ K,X ∈ s. Then we have g = kexp(X/n)n

for every n, and since s(exp(X/n)) ∼ s(exp(X))/n = s(g)/n we get c(g) �
s(g).

2.4 (g, K)-modules continued

2.4.1 About Z(g)

Let us recall that Z(g) is ”quite big”. Namely, gr(Z(g)) ⊂ gr(U(g)) is identified
with S(g)G ⊂ S(g). Furthermore, by using the form B, S(g)G ⊂ S(g) is identi-
fied with Pol(g)G ⊂ Pol(g). Fixing a Cartan subalgebra h ⊂ gC (i.e. a maximal
ad-semisimple abelian subalgebra), Pol(g)G is identified, via restriction, with
Pol(h)W (h,gC) (where W (h, gC) is a suitable Weyl group).

Decomposing g = n(I) ⊕ gI ⊕ n−(I), we obtain Z(g) ⊂ Z(gI) ⊕ (n(I)U(g) ∩
U(g)n−(I)). Projecting, we obtain an algebra homomorphism

hc′I : Z(g)→ Z(gI).

The ()′ stands for it being not normalized. This morphism hc′I is gr-finite, and
in particular finite.

2.4.2 Various finiteness

Definition 2.4.1. A (g,K)-module V is:

1. finitely generated, if it is finitely generated as a U(g)-module.

2. Z-finite, if there exists an ideal of finite codimension I ⊂ Z(g) such that
IV = 0.

3. admissible, if dimV [α] <∞ for all α ∈ K̂.

Lemma 2.4.2 (”Schur’s lemma”). Let V be an irreducible (g,K)-module. Then
Endg,K(V ) = C · Id.

Proof. Notice that V , being irreducible, is finitely generated, and hence of at
most countable dimension. Hence, a well-known lemma insures that for any
linear operator T : V → V , there exists c ∈ C such that T − c · Id is not
invertible (i.e. has a non-trivial kernel or cokernel), and the rest is as in the
”usual” Schur’s lemma.

Corollary 2.4.3. Let V be an irreducible (g,K)-module. Then Z(g) acts on V
via a character (in particular, V is Z-finite).
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Lemma 2.4.4. The morphism of algebras p : S(g)G → S(s)K corresponding to
the decomposition g = k⊕ s is finite.

Proof. Using the form B, we can identify this map with the map Pol(s)G →
Pol(s)K given by restriction, so we need to show that this map is finite.

By ..., the restriction map Pol(s)K → Pol(a)W is injective (in fact bijec-
tive, by Chevalley’s restriction theorem which we will mention later on). Since
PolC(a)W → Pol(a) is injective as well, it is enough to see that the restriction
map Pol(g)G → Pol(a) is finite.

Embedding aC ⊂ h for some Cartan subalgebra h ⊂ gC, it is enough to
see that the restriction map Pol(g)G → Pol(h) is finite. This follows from the
complex Chevalley restriction theorem.

Theorem 2.4.5 (Harish-Chandra). Let V be a finitely generated (g,K)-module.
Then for every α ∈ K̂, V [α] is a finitely generated Z(g)-module.

Proof. Let us fix a finite-dimensional K-invariant subspace V0 ⊂ V such that
V = U(g)V0. Let us consider the filtration Vn = U(g)≤nV0. Then Vn are
K-invariant, and we have Vn+1 = Vn + sVn.

To show that V [α] is a finitely generated Z(g)-module, it is enough to show
that gr(V )[α] is a finitely generated gr(Z(g)) ∼= S(g)G-module. Notice that
S(g)G acts on gr(V ) via p : S(g)G → S(s)K from the lemma above. Since
by the lemma above p is finite, it is enough to show that gr(V )[α] is a finitely
generated S(s)K-module.

It is sufficient to see that HomK(Eα, gr(V )) is a finitely generated S(s)K-
module (because we have a surjective S(s)K-morphism Eα⊗HomK(Eα, gr(V ))→
gr(V )[α] given by sending e⊗ φ 7→ φ(e)).

Denote F := Hom(Eα, gr(V )). Then F admits a K-action and a compatible
S(s)-action (in the sense that Ad(k)X acts the same as k ◦X ◦ k−1). One has
FK = HomK(Eα, gr(V )). Since F is a finitely generated S(s)-module, and
since S(s) is Noetherian, we can find a finite dimensional subspace F0 ⊂ FK

such that FK ⊂ S(s)F0. Applying the projector p on K-invariants, we obtain

FK ⊂ S(s)KF0.

Claim 2.4.6. One has the following implications for (g,K)-modules:

finite length ⇒ f.g. + adm. ⇔ f.g. + Z-fin. ⇒ adm. + Z-fin.

Proof. Suppose that V is finitely generated and admissible, and let us show that
V is Z-finite. Since V is finitely generated, we can find a finite sum of K-types
V0 ⊂ V which generates V . Since V is admissible, V0 is finite dimensional. Since
Z(g) preserves V0, it acts via a finite quotient on V0, and hence on V = U(g)V0.

Suppose that V is finitely generated and Z-finite, and let us show that V
is admissible. Let α ∈ K̂. Since V is finitely generated, by 2.4.5 we have that
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V [α] is a finitely generated Z(g)-module. Since V is Z-finite, this implies that
V [α] is a finite dimensional space. Thus, V is admissible.

Finally, if V has finite length, then it is finitely generated and admissible - we
reduce immediately to the case when V is irreducible, in which we finite genera-
tion is clear, and from corollary 2.4.3 Z-finiteness is known, hence admissibility
by an implication we already have shown.

Remark 2.4.7. Suppose that we know that there are only finitely many irre-
ducible (g,K)-modules with a given infinitesimal character. Then, we claim
an admissible and Z-finite (g,K)-module V has finite length. Indeed, one
reduces to the case when Z(g) acts on V by a character χ. Then, one can
choose a big enough finite subset S ⊂ K̂ such that every irreducible (g,K)-
module with infinitesimal character χ has a K-type from S. Then, the functor
M(g,K)adm

χ → V ect given by W 7→ ⊕α∈SW [α] is exact and faithful, which

implies that modules in M(g,K)adm
χ have finite length.

Later, we will be able to show that the are finitely many irreducible (g,K)-
modules with a given infinitesimal character, and thus all the four conditions in
the claim above will turn out to be equivalent.

Definition 2.4.8. A finitely generated and Z-finite (g,K)-module is called an
Harish-Chandra module (”Harish-Chandra” to be abbreviated ”HC”).

2.4.3 Matrix coefficients and globalization

Definition 2.4.9. Let V be a (g,K)-module. We denote by Ṽ the subspace
of V ∗ consisting of K-finite functionals. It is a (g,K)-module. One can write
V ∗ = ⊕α∈K̂(V [α])∗.

Remark 2.4.10. The contravariant functor V 7→ Ṽ clearly preserves Z-finiteness
and admissability. Moreover, it is easy to see that a (g,K)-module V is of finite

length if and only if V and Ṽ are HC modules. Indeed, if Ṽ is HC, then it is
Noetherian, and hence V is Artinian.

Definition 2.4.11. Let V be a (g,K)-module. A matrix coefficients map for

V is a (g⊕ g,K ×K)-morphism m : Ṽ ⊗ V → C∞(G) satisfying m(ṽ⊗ v)(e) =
〈ṽ, v〉.

Lemma 2.4.12. Let V be an admissible (g,K)-module, and let m : Ṽ ⊗ V →
C∞(V ) be a matrix coefficient map. Then all the functions in Im(m) are ana-
lytic.

Proof. Let us consider C∞(G) as a G-representation for the right G-action. The
vector m(ṽ⊗ v) lies in the admissible (g,K)-submodule m(ṽ⊗V ) ⊂ C∞(G)[K].
Hence it is weakly analytic. Considering the continuous functional α(f) := f(e),
we obtain that α(Rgm(ṽ ⊗ v)) = m(ṽ ⊗ v) is analytic.
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Claim 2.4.13. Let V be an admissible (g,K)-module. Then there exists at most
one matrix coefficients map for V .

Proof. Given a matrix coefficients map m, notice that (RUm(ṽ ⊗ v))(k) =
〈ṽ, kUv〉 (where U ∈ U(g), k ∈ K). Hence, given two matrix coefficients maps
m1,m2, we see that m1 −m2 has a vanishing Taylor series at all points of K,
and hence it must be zero, since it is analytic and K intersects each connected
component of G.

Definition 2.4.14. Let V be an admissible (g,K)-module. A Globalization of
V is an admissible G-representaiton V together with an isomorphism of (g,K)-
modules V ∼= V [K].

Lemma 2.4.15. Let V be an admissible (g,K)-module and let V be a glob-
alization of V . Then the restriction map V∗ → V ∗ is injective, and contains
Ṽ .

Proof. The map is injective since V is dense in V. Given ξ ∈ Ṽ , we can assume
that ξ ∈ Ṽ [α∨] for some α ∈ K̂. Then ξ ◦ prα ∈ V∗ restricts to ξ on V .

Lemma 2.4.16. Let V be an admissible (g,K)-module. Suppose that V admits
a globalization. Then V admits a matrix coefficients map.

Proof. Embedding V in a globalization V, and thus by the previous lemma
embedding Ṽ in V∗, we define m(ṽ ⊗ v) := ṽ(gv) and check that it is indeed a
matrix coefficients map.

Lemma 2.4.17. Let V be a (g,K)-module of finite length. Suppose that V
admits a matrix coefficients map. Then V admits a globalization.

Proof. Choose generators ξ1, . . . , ξd of Ṽ as a U(g)-module. Consider the map
ι : V → C∞(G)d given by v 7→ (m(ξ1 ⊗ v), . . . ,m(ξd ⊗ v). Then one easily sees
that ι is a (g,K)-module embedding. Thus, the closure of the image of ι is a
globalization of V .

Theorem 2.4.18. Let V be an admissible (g,K)-module. Then there exists a
matrix coefficients map for V .

Proof. We omit the proof.

Remark 2.4.19. This theorem is crucial for us. We use the existence of matrix
coefficients to establish asymptotics of matrix coefficients and then Casselman’s
submodule theorem.

If we would have established Casselman’s submodule theorem independently,
we would deduce that Harish-Chandra modules admit (Hilbertable) globaliza-
tions, and hence matrix coefficients maps (then the existence of matrix coeffi-
cients maps for admissible modules follows).

To establish Casselman’s submodule theorem independently, one approach is
to first establish the subquotient theorem, deducing that irreducible modules ad-
mit (Hilbertable) globalization. From this one deduces that irreducible modules
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admit matrix coefficients maps, and then one is able to establish Casselman’s
submodule theorem as we do.

Another approach would be to establish Casselman’s submodule theorem
algebraically (there are proofs by Gabber, Beilinson-Bernstein).

2.5 Unitary representations

Lemma 2.5.1. Let V be a G-representation. Let v ∈ V [K],∞ be Z(g)-finite.
Then v ∈ Vω.

Proof. The proof is similar to the one when we merely assumed that v is U(g)K-
finite. Namely, it is enough to find D ∈ U(k)Z(g) such that RD is an elliptic
differential operator on G.

Namely, we fix an orthonormal basis (Xi) of k w.r.t. −B, and an orthonormal
basis (Yj) of s w.r.t. B. Then the dual basis of the concatenation (Xi, Yj)
w.r.t. B is (−Xi, Yj). Hence, arguing as before, we see that C := −

∑
X2
i +∑

Y 2
j ∈ Z(g) (the Casimir element). Hence, D :=

∑
X2
i +

∑
Y 2
j satisfies

D ∈ U(k) + Z(g) ⊂ U(k)Z(g) and RD is elliptic.

Claim 2.5.2. Let V be an irreducible G-representation. If Z(g) acts on V [K],∞

via a finite quotient (in particular, if it acts via scalars), then V is admissible.

Proof. V [K],∞ is non-zero (since it is dense in V by the results above). Let
E ⊂ V [K],∞ be a non-zero finite-dimensional K-invariant subspace. By the
above, E ⊂ Vω and so E := Cl(U(g)E) is G◦-invariant. Since it is also K-
invariant, it is G-invariant. Hence, since V is irreducible, we obtain E = V.

Since U(g)E is finitely generated and Z-finite, it is admissible. Hence, V [K] =
U(g)E. Indeed, given v ∈ V [K,α], we have vn ∈ U(g)E such that vn → v. Then,
replacing vn by prαvn, we can assume that vn ∈ (U(g)E)[α]. Since the latter is
finite-dimensinoal, we must have v ∈ (U(g)E)[α].

Lemma 2.5.3 (Schur’s lemma). Let V be an irreducible unitary representation
of G. Let T ∈ EndG(V) (so, a continuous endomorphism commuting with
π(g)’s). Then T ∈ C · IdV .

Proof. Notice that EndG(V) ⊂ End(V) is a C∗-subalgebra. It is easy, by reduc-
ing to a commutative subalgebra and using the Gelfand theorem, to see that if
a C∗-algebra A is not C, then there exist two non-zero self-adjoint commuting
T, S ∈ A such that TS = 0. If T, S ∈ EndG(V) are such, then clearly Ker(T )
is a non-trivial subrepresentation.

We have also a strengthening:

Lemma 2.5.4 (Strengthening of Schur’s lemma). Let V be an irreducible uni-
tary representation of G. Let V0 ⊂ V be a dense subspace closed under the
π(g)’s. Let T, S : V0 → V be operators, such that

(Tv,w) = (v, Sw) ∀v, w ∈ V0
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(notice that S is determined by T , if exists). If T commutes with all the π(g)’s,
then T ∈ C · IdV .

Proof. Recall von Neumann’s bicommutant theorem, which says that for a sub-
algebra A ⊂ End(V) closed under adjoints, the closure in the strong operator
topology of A is the double commutant EndEndA(V)(V).

Let us take A ⊂ End(V) to be the subspace spanned by the π(g)’s. Then
By Schur’s lemma above, we obtain that the double commutant of A is End(V).
Hence, the closure of A in the strong operator topology is End(V).

Assume now that for some v ∈ V0, the vectors v, Tv are linearly independent
(we will obtain a contradiction). We can find R ∈ End(V) such that R(v) =
R(Tv) = v. By the above, we can find a sequence Ri ∈ A such that ||Ri(v) −
R(v)|| → 0 and ||Ri(Tv)−R(Tv)|| → 0. Then, for all w ∈ V0:

(Tv,w) = (v, Sw) = lim(Riv, Sw) = lim(TRiv, w) = lim(RiTv,w) = (RTv,w) = (v, w).

Since V0 is dense in V, we obtain Tv = v, a contradiction.
Thus, Tv ∈ C·v for all v ∈ V0. It easy to see that this implies T ∈ C·IdV .

Claim 2.5.5. Let V be an irreducible unitary representation of G. Then ele-
ments of Z(g) act on V∞ by scalars.

Proof. Let U ∈ Z(g). We apply the above strengthening of Schur’s lemma to
V0 := V∞ and T := π(U). Notice that indeed T has an adjoint S as in the
lemma; It is given by π(U t), where (·)t : U(g) → U(g) is the anti-involution
given by X 7→ −X for X ∈ g.

Corollary 2.5.6 (Harish-Chandra). Let V be an irreducible unitary represen-
tation of G. Then V is admissible.

Remark 2.5.7. By the previous corollary, we obtain a well-defined map, from
the set of isomorphism classes of irreducible unitary G-representations, to the
set of isomorphism classes of irreducible (g,K)-modules admitting a (g,K)-
invariant inner product. One can see that this is a bijection. Hence, (g,K)-
modules are adequate in this sense as well.

Remark 2.5.8. To contrast the previous corollary, one should note that there
exist irreducible Banachable G-representations which are not admissible (see
[8]). This is based on the fact that there exist bounded endomorphisms of
Banach spaces of dimension bigger than 1, which have no non-trivial invariant
subspaces.

2.6 Parabolic induction

2.6.1 Representations

Let W be a GI -representation. We define a G-representation pindI(W) as
follows. As a space, it is the space of continuous functions f : G→W satisfying
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f(gmn) = ∆(I)(m)−1/2m−1f(g) for g ∈ G,m ∈ GI , n ∈ N(I). Notice that
pindI(W) is a closed subspace of C(G;W), and we endow it with the induced
topology.

Lemma 2.6.1. If W is an admissible GI-representation, then pindI(W) is an
admissible G-representation.

Let us denote by C(G//P(I)) the space of continuous functions φ : G → C
satisfying φ(gmn) = ∆(I)(m)−1φ(g) for g ∈ G,m ∈ GI , n ∈ N(I). Then we have
a G-invariant functional

∫
G//P(I)

: C(G//P(I))→ C.

Claim 2.6.2. Let W be an admissible Hilbertable representation of GI . Then
one has a natural isomorphism

˜pindI(W)[K] ∼= pindI(W∗)[K].

Proof. Let us remark that we assume that W is Hilbertable since we have then
a nice dual representation W∗ (in fact, for Banachable representations one can
do this similarly).

For f ∈ pindI(W), h ∈ pindI(W∗), notice that the function φ : G→ C given
by φ(g) = 〈h(g), f(g)〉 lies in C(G//P(I)).

We can thus define a G-invariant pairing

pindI(W∗)⊗ pindI(W)→ C

by

(h, f) 7→
∫
G//P∅

〈h(g), f(g)〉.

Restricting to K-finite vectors, we obtain a (g,K)-invariant pairing

pindI(W∗)[K] ⊗ pindI(W)[K] → C.

This pairing is non-degenerate; Indeed, given a non-zero K-finite vector, it is
enough to show that it pairs non-trivially with some continuous vector (because
we can then average); To find such a continuous vector, we construct a suitable
bump function add details?). Hence, it is easy to infer from admissability that
the resulting comparison map

pindI(W∗)[K] → ˜pindI(W)[K]

is an isomorphism of (g,K)-modules.

2.6.2 (g, K)-modules

Let us consider the functor

M(gI ,KI)←−M(g,K) : presI
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given by
C−ρ(I) ⊗ (V/n(I)V )← [ V.

We denote by
pindI :M(gI ,KI)→M(g,K)

the right adjoint of presI . It exists, since presI commutes with small colimits
and the categories of (g,K)-modules are locally presentable.

Lemma 2.6.3. The functor presI preserves finite generation and Z-finiteness.
The functor pindI preserves admissability and Z-finiteness.

Proof. The functor presI preserves finite generation, since we have g = n(I) ⊕
gI ⊕ k (it is also clear that the twist preserves finite generation).

The functor pindI preserves admissability: For a K-module E, we have the
(g,K)-module VE := U(g)⊗U(k)E. Given an admissible (gI ,KI)-module W , we
haveHomK(E, pindI(W )) = Homg,K(VE , pindI(W )) = HomgI ,KI (presI(VE),W ).
Since VE is finitely generated, by what we just showed also presI(VE) is finitely
generated. Thus, since presI(VE) is finitely generated and W is admissible, it is
clear that the latterHom space is finite dimensional. HenceHomK(E, pindI(W ))
is finite dimensional, as desired.

The functor presI preserves Z-finiteness: Recall the morphism hc′I : Z(g)→
Z(gI). It is clear that for U ∈ Z(g) and v ∈ V , one has Uv − hc′I(U)v ∈ n(I)V .
Hence, it is clear that if V is Z(g)-finite, then V/n(I)V is Z(gI)-finite (it is also
clear that the twist preserves Z-finiteness).

The functor pindI preserves Z-finiteness: Let W be a Z-finite (gI ,KI)-
module. It is enough to see that there exists a finite-dimensional quotient of
Z(g), by which Z(g) acts on HomgI ,KI (V, pindI(W )) for every (g,K)-module
V . Here, the action of Z(g) is via its action on pindI(W ). But, we can also
interpret the action of Z(g) via its action on V . Now, Homg,K(V, pindI(W )) ∼=
HomgI ,KI (presI(V ),W ), and we can interpret the action of Z(g), via this iden-
tification, as where z acts by α(z) acting on presI(V ), where α : Z(g)→ Z(gI)
is the above-mentioned finite morphism. Finally, we may interpret this as the
action where z acts by α(z) on W . Since W is Z-finite, this action factors via a
finite-dimensional quotient of Z(gI) and hence, via α, via a finite-dimensional
quotient of Z(g).

2.6.3 Relation

Claim 2.6.4. Let W be an admissible representation of GI . Then one has a
natural isomorphism of (g,K)-modules

pindI(W)[K] ∼= pindI(W [KI ]).

Proof. Given a map of (g,K)-modules Φ : V → pindI(W)[K], define a map
φ : V →W [KI ] by v 7→ Φ(v)(e). Then one verifies that φ(`v) = `φ(v) for ` ∈ KI ,
that φ(Xv) = 0 forX ∈ n(I), and that φ(Xv) = Xφ(v)+ρ(I)(X)φ(v) forX ∈ gI .

This means that φ induces a map of (gI ,KI)-modules φ : presI(V )→W [KI ].
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Conversely, given a map of (gI ,KI)-modules φ : presI(V ) → W [KI ], define
a map of (g,K)-modules Φ : V → pindI(W)[K] as follows. Notice that restric-
tion to K gives an identification of functions f ∈ pindI(W)[K] and continuous
functions f1 : K → W which are K-finite and satisfying f1(k`) = `−1f1(k) for
k ∈ K, ` ∈ KI . Let us define Φ(v)(k) = φ([k−1v]). Then one easily verifies that
this gives rise to a well defined Φ(v) ∈ pindI(W)[K] by the above. One then
checks that this Φ is a (g,K)-module morphism.

Finally, one checks that the above assignments are mutually inverse.

Claim 2.6.5. Let W be an admisisble (gI ,KI)-module, admitting a Hilbertable
globalization. Then one has an isomorphism of (g,K)-modules

˜pindI(W ) ∼= pindI(W̃ ).

Proof. Let W be a Hilbertable globalization of W . We have:

˜pindI(W ) ∼= ˜pindI(W)[K] ∼= pindI(W∗)[K] ∼= pindI(W̃ ).

Remark 2.6.6. After we will establish Casselman’s submodule theorem, we
will know that every HC (g,K)-module admits a Hilbertable globalization.

Remark 2.6.7. It is interesting to note that the duality of the previous claim
is not clear at all on the algebraic level, i.e. it is not clear how to define it if we
don’t use globalizations.
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Chapter 3

K-finite Matrix coefficients

3.1 K-bifinite functions

Let V be an admissible (g,K)-module. Then the functions in Im(mV ) are
analytic, left K-finite, right K-finite, and Z(g)-finite. We would like to study
the growth of functions in Im(mV ) at infinity. Since G = KA−K and A− is
much simpler than G, we would like to restrict functions to A− and study their
growth. To facilitate this, let us notice:

Lemma 3.1.1. Let f ∈ C∞(G) be a K-bifinite and Z(g)-finite function. Then
there exists a HC (g,K)-module V such that f ∈ Im(mV ).

Lemma 3.1.2. Let V be a HC (g,K)-module, and let v ∈ V, ṽ ∈ Ṽ . Then there
exists a finite-dimensional (K×K)-representation (E, τ = τ1× τ2), and a func-
tion f ∈ C∞(G;E) which is K-biequivariant (i.e. f(k1gk2) = τ(k1, k

−1
2 )f(g))

and Z(g)-finite, and such that mV (ṽ⊗ v) is obtained by composing f with some
functional in E∗.

3.2 Radial coordinates

3.2.1 The map Πτ

Recall the polar decomposition, which gives an open dense embedding K/K∅×
A−− ×K → G (given by ([k1], a, k2) 7→ k1ak

−1
1 k2); Denote by Greg the image

of this embedding.

Lemma 3.2.1. Let X ∈ ga,α and a ∈ A such that α(a) 6= 0. Then

X =
1

a−α − aα
· a
−1

(X + θX)− aα

a−α − aα
· (X + θX).

Lemma 3.2.2. Let a ∈ Areg. Then the map

g←− a⊕ (k⊕ k)/k∅
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given by

H + a−1

W1 +W2 ←[ (H,W1,W2)

is an isomorphism (here, k∅ is embedded in k⊕ k anti-diagonally).

Proof. The previous lemma shows that this map is surjective, and one calcaultes
that the dimensions are the same.

Let us denote by

Πa : U(g) � U(a)⊗ U(k)⊗U(k∅) U(k) : Γa

the isomorphism given by

a−1

V1 · U · V2 ←[ U ⊗ V1 ⊗ V2,

which is indeed an isomorphism by the PBW theorem and the above lemma.
Let us denote by R ⊂ C∞(Areg) the subalgebra generated by 1

a−α−aα and
aα

a−α−aα , where α ∈ R+.

Lemma 3.2.3. There exists a unique linear map

Π : U(g)→ R⊗ U(a)⊗ U(k)⊗U(k∅) U(k)

such that Π(U)(a) = Πa(U) for all a ∈ Areg.

Proof. Uniqueness is clear.
Let us show the existence of Π(U) for U ∈ U(g). If U ∈ U(a)U(k), this is

clear. By the PBW theorem applied to g = n ⊕ a ⊕ k, we can assume that the
existence of Π(U ′) is shown for all U ′ ∈ U(g)≤n−1, and assume that U = XV
for X ∈ n and V ∈ U(g)≤n−1. We can assume that X ∈ ga,α for α ∈ R+.

We have

U = XV =
1

a−α − aα
a−1

(X + θX)V − aα

a−α − aα
(V (X + θX) + [X + θX, V ]),

from which the existence of Π(U) is clear (notice that V, [X+θX, V ] ∈ U(g)≤n−1).

Now, fix a finite-dimensional (K ×K)-representation (E, τ = τ1 × τ2), and
consider the space C∞τ (G;E) of smooth functions from G to E, which are (K×
K)-equivariant (i.e. f(k1ak2) = τ(k1, k

−1
2 )f(a)). Notice that by the polar

decomposition we have an identification

Res : C∞τ (Greg;E) � C∞(A−−;EK∅) : Ext,

where the map Res is simply restricting to A−−.
Let us denote, for two subspaces E1, E2 ⊂ E,

DE1,E2
:= R⊗Hom(E1, E2)⊗ U(a).
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We consider DE1,E2 as a subspace of the space of differential operators on A,
from E1 to E2. If E1 = E2, then this is a subalgebra (a calculation shows that
R is closed under differentiation along invariant vector fields).

Let us denote by
Π̃τ : U(g)→ DEK∅ ,E

the composition

U(g)
Π−→ R⊗ U(a)⊗ U(k)⊗U(k∅) U(k) −→ R⊗Hom(EK∅ , E)⊗ U(a),

where the second map is

f ⊗ U ⊗ V1 ⊗ V2 7→ f ⊗ τ1(V1)τ2(V t2 )⊗ U.

Claim 3.2.4. Let f ∈ C∞τ (G;E) and U ∈ U(g). Then (RUf)|Areg = Π̃τ (U)(f |Areg ).

Proof. Let us write Π(U) =
∑
φi ⊗ U i1 ⊗ V i1 ⊗ V i2 .

Then

(RUf)(a) =
∑

φi(a)·(L(V i1 )tRUi1RV i2 f)(a) =
∑

φi(a)τ1(V i1 )τ2(V i2 )t(RUi1f)(a) = (Π̃τ (U)f |Areg )(a).

Notice that we have an embedding map DEK∅ ,EK∅ → DEK∅ ,E .

Lemma 3.2.5. The image of

U(g)K → U(g)
Π̃τ−−→ DEK∅ ,E

sits in DEK∅ ,EK∅ . Moreover, the resulting map

Πτ : U(g)K → DEK∅ ,EK∅

is an algebra homomorphism.

Proof. Let U ∈ U(g)K and f ∈ C∞(Areg;EK∅). Then by the previous claim

we have Π̃τ (U)f = (RUExt(f))|Areg . Since RUExt(f) ∈ C∞τ (Greg;E), we have
(RUExt(f))|Areg ∈ C∞(Areg;EK∅).

The map Πτ is an algebra homomorphism, since (for f ∈ C∞(Areg;EK∅)):

Πτ (U1U2)f = Res(RU1U2
Ext(f)) = Res(RU1

RU2
Ext(f)) =

= Πτ (U1)Res(RU2
Ext(f)) = Πτ (U1)Πτ (U2)f.

We denote D := DEK∅ ,EK∅ .
Let us summarize. We have an identification

Res : C∞τ (Greg;E) � C∞(A−−;EK∅) : Ext.
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We have actions by differential operators, of U(g)K on the left space, and of D
on the right space. The ”polar parts” homomorphism

Πτ : U(g)K → D

that we constructed satisfies:

Res(RUf) = Πτ (U)Res(f).

Example (SL2(R), of course)

We have the usual basis H,X, Y of g, and the Casimir element C = H2 +

2H + 4Y X. Let us also consider the element W =

(
0 −1
1 0

)
. Let us denote

Wt := e−tHW . One has

X =
1

1− e−4t
(e−2t ·Wt −W ), Y =

1

e4t − 1
(e2t ·Wt −W ).

One computes
[W,Wt] = (e−2t − e2t) ·H.

Let us compute ΠetH (C):

C = H2+2H+4Y X = H2+2H− 4

(1− e−4t)(1− e4t)
(W 2

t +W 2−e−2tWtW−e2tWWt)

H2 − 2
1 + e−4t

1− e−4t
H − 4

(1− e−4t)(1− e4t)
(W 2

t +W 2 − (e2t + e−2t)WtW )

Thus,

ΠetH (C) = (H2−2
1 + e−4t

1− e−4t
H)⊗1⊗1− 4

(1− e−4t)(1− e4t)
(1⊗W 2⊗1+1⊗1⊗W 2−(e2t+e−2t)1⊗W⊗W ).

Thus,

Πsph(C) = H2 − 2
1 + e−4t

1− e−4t
H.

3.2.2 Finiteness and the resulting PDE

Claim 3.2.6. Let I ⊂ Z(g) be an ideal such that Z(g)/I is finite-dimensional.
Then D/D ·Πτ (I) is finitely-generated as an R-module.

Proof. Let us denote by p : Z(g)→ U(a) the composition of hc′∅ : Z(g)→ Z(g∅)
and Z(g∅) ∼= Z(k∅) ⊗ U(a) → U(a) induced by the augmentation morphism
Z(k∅)→ C. The map p preserves the filtrations, and is gr-finite.

Notice that Π̃τ respects the filtrations. Furthermore, clearly Π̃τ strictly
decreases the filtration on elements in U(g)k, and from the formula in the proof
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of lemma 3.2.3, also on elements in nU(g). Also, notice that for U ∈ U(a) one

has simply Π̃τ (U) = 1 ⊗ Id ⊗ U . From these, it is clear that the associated
graded map

grΠτ : grZ(g)→ grD
sends U ∈ Z(g) to 1⊗ Id⊗ gr(p)(U).

To show that D/D · Πτ (I) is a finitely-generated R-module, it is enough to
show that gr(D/D ·Πτ (I)) ∼= gr(D)/gr(D ·Πτ (I)) is. Notice that

gr(D) · gr(Πτ )(gr(I)) ⊂ gr(D) · gr(Πτgr(I)) ⊂ gr(D ·Πτ (I)),

so it is enough to show that gr(D)/gr(D) · gr(Πτ )(gr(I)) is a finitely-generated
R-module. Notice that gr(D) · gr(Πτ )(gr(I)) ∼= R⊗End(EK∅)⊗ gr(p)(gr(I)),
so gr(D)/gr(D) · gr(Πτ )(gr(I)) ∼= R⊗ End(EK∅) ⊗ U(a)/gr(p)(gr(I)), and so
is a finitely generated R-module since gr(p) is finite.

Corollary 3.2.7. Let f ∈ C∞τ (Greg;E), and suppose that f is Z(g)-finite.
Then denoting h1 := Res(f) ∈ C∞(A−−;EK∅), we can find functions h2, . . . , hr ∈
C∞(A−−;EK∅) such that the vector h = (h1, . . . , hr) ∈ C∞(A−−; (EK∅)r) sat-
isfies differential equations

RHh = M(H) · h,

where M : a→ R⊗ End((EK∅)r) is some linear map.

Proof. Let I ⊂ Z(g) be an ideal of finite codimension which annihilates f .
By the previous claim, we can choose d1 := 1, d2, . . . , dr ∈ D which span the
R-module D/D ·Πτ (I). Denote hi := dif .

Let us now introduce the coordinates zα := aα on Ass, which identify it
with (0,∞)R

s

. These identify A−−ss with (0, 1)R
s

. Notice that the functions
in R extend, in these z-coordinates, to holomorphic functions on DRs , where
D = {z ∈ C | |z| < 1}. Thus, the function h ∈ C∞((0, 1)R

s

; (EK∅)r) from the
previous corollary, restricted to A−−ss and viewed in the z-coordinates, satisfies
differential equations of the form

zα∂zαh = Mαh,

where Mα are holomorphic End((EK∅)r)-valued functions on DRs .

Example 3.2.8. For SL2(R), we have z = aα = e2t. The ring R is generated

by z
1−z2 ,

z2

1−z2 . The map Πsph : Z(g)→ D is given by

1

4
C 7→ (z∂z)

2 − 1 + z−2

1− z−2
· z∂z

. Considering the ideal Jc = (C − 4c) ⊂ Z(g), we see that D/DΠsph(Jc) is
generated over R by 1, z∂z.

If a K-biinvariant function f satisfies 1
4Cf = cf , setting h = h1 := f |A−−

and h2 = z∂zh1, we obtain the equation

z∂z

(
h1

h2

)
=

(
0 1

c 1+z−2

1−z−2

)(
h1

h2

)
.
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3.3 PDE with regular singularities

Let D ⊂ C denote the open unit disc, D∗ := D−{0}, H = {z ∈ C | Re(z) < 0}.
We have the universal cover H → D∗ : w 7→ ew.

Let p ∈ Z≥0. Let E be a finite-dimensional complex vector space. Let
G1, . . . , Gp be holomorphic End(E)-valued functions on Dp. We consider the
PDE

zi
∂

∂zi
f = Gif, 1 ≤ i ≤ p,

where f is a holomorphic E-valued function on (an open subset of) X := (D∗)p.

We use the universal cover X̃ := Hp → X given by

(w1, . . . , wp) 7→ (ew1 , . . . , ewp).

Our PDE on X̃ becomes

∂

∂wi
f̃ = G̃if̃ , 1 ≤ i ≤ p.

Lemma 3.3.1. Any solution of our PDE on an open connected non-empty
subset of X̃ extends (uniquely) to a solution on the whole X̃.

Proof. complete

Fix a point x ∈ X̃, and identify the space of solutions with the space E0 ⊂ E
of their values at x, getting the universal solution F : E0 × X̃ → E (where

(w1, . . . , wp) 7→ F (v, w1, . . . , wp)

is the solution having value v at x). Then sending

f̃(w1, . . . , wp) 7→ f̃(w1, . . . , wi + 2πi, . . . , wp)

gives us a transformation on solutions, encoded by a map Mi ∈ Aut(E0), so
that

F (v, w1, . . . , wi + 2πi, . . . , wp) = F (Miv, w1, . . . , wp).

These maps M1, . . . ,Mp commute, and one can see that one can find then
commuting maps R1, . . . , Rp ∈ End(E0) such that e−2πiRi = Mi (why?). We
notice now that the function

F ′(v, w1, . . . , wp) := F (ew1R1+...+wpRpv, w1, . . . , wp)

is invariant under adding 2πi to the wi’s. We have:

F (v, w1, . . . , wp) := F ′(e−(w1R1+...+wpRp)v, w1, . . . , wp).

From this and Jordan theory, we conclude that, fixing some v ∈ E0, there exist
v1, . . . , vk ∈ E0, λi,j ∈ C with 1 ≤ i ≤ p, 1 ≤ j ≤ k, and pj ∈ PolC(w1, . . . , wp)
such that

F (v, w1, . . . , wp) =
∑

1≤j≤k

eλ1,jw1+...+λp,jwppj(w1, . . . , wp)F
′(vi, w1, . . . , wp).
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Let us denote by f ′(v, z1, . . . , zp) the function on E0 ×X corresponding to

F ′ on E0 × X̃.

Lemma 3.3.2. Fix v ∈ E0. There exists (d1, . . . , dp) ∈ Zp≥0 such that zd11 · · · z
dp
p f ′

extends to a holomorphic function on E0 ×Dp.

Proof. complete

Corollary 3.3.3. Let f be a solution of our PDE on an open subset in X.
Then f extends to a multivalued solution on the whole X. Moreover, f can be
written as a finite sum of functions of the form

zλ1
1 . . . zλpp p(logz1, . . . , logzp)h(z1, . . . , zp),

where p is a polynomial and h is a holomorphic function on Dp with values in
E.

3.4 Asymptotics of K-bifinite Z-finite functions

A lot of trivial inaccuracies with the ρ-shift are below...
We now combine the two previous sections, to obtain the existence of an

asymptotic development of K-finite matrix coefficient.

Definition 3.4.1. Let us say that a function f ∈ C∞(A−−) is regular at ∞,
if it can be written as the sum of an absolutely convergent series∑

µ∈Z≥0Rs

cµ · aµ

(where cµ ∈ C are some coefficients).

Claim 3.4.2. Let f ∈ C∞(G) be K-bifinite and Z(g)-finite. Then f can be
written as a finite sum of functions of the form

aλ · p(log(a)) · h,

where λ ∈ a∗C , p ∈ PoCl(a) and h is a function regular at ∞.

Proof. On A−−ss we deduce it from the theory above. The Z(g)-finiteness gives
us U(acent)-finiteness, from which it is easy to deduce the needed form on the
whole A−−.

Definition 3.4.3.

1. A subset S ⊂ a∗C is called conical, if there exists a finite subset S0 ⊂ a∗C
such that S ⊂ S0 + Z≥0R

s.

2. Let S ⊂ a∗C be a conical subset. We denote by Smin ⊂ S the subset of
≥Rs -minimal elements (it is a finite subset, non-empty if S is).

39



3. Let S ⊂ a∗C be a conical subset. We denote by S ⊂ Scl the subset Scl :=
S + Z≥0R

s = Smin + Z≥0R
s (it is again a conical subset).

Corollary 3.4.4. Let f ∈ C∞(G) be K-bifinite and Z(g)-finite. Then there
exists a conical subset S ⊂ a∗C and polynomials pµ ∈ PolC(a) (for µ ∈ S) such
that f is equal to the sum of the absolutely convergent series∑

µ∈S
pµ(loga) · aµ+ρ.

One can show that the set supp(f) of µ ∈ S for which pµ 6= 0 is a conical subset
which does not depend on the choices. One can also show that pµ, µ ∈ supp(f)
don’t depend on the choices (we will write pµ(f) for these pµ).

Lemma 3.4.5. Let f ∈ C∞(G) be K-bifinite and Z(g)-finite. Let λ ∈ a∗. Then
the property

|f(a)| � aλs(a)d (a ∈ A−−,ε)

for some d ∈ Z≥0 and some/all ε > 0 is equialent to the property

Re(supp(f |A−−)) ≥ λ.

3.5 The support of a HC (g, K)-module

For subspaces F ⊂ Ṽ , E ⊂ V , we denote

suppF (E) := ∪ṽ∈F,v∈Esupp(mṽ,v).

We also denote supp(V ) := suppṼ (V ).

Claim 3.5.1. Let V be a HC (g,K)-module, and let Ṽ ′ ⊂ Ṽ be a finitely
generated (g,K)-submodule. Then suppṼ ′(V ) is conical.

Proof. Let E ⊂ V, F ⊂ Ṽ ′ be finite-dimensional K-invariant subspaces, s.t.
V = U(g)E, Ṽ ′ = U(g)F . Denote S := ∪ṽ∈F,v∈Esupp(mṽ,v). We will show
that suppṼ ′(V ) ⊂ Scl. Assume inductively that supp(mṽ,v) ⊂ Scl for all ṽ ∈
U(g)mF, v ∈ U(g)nE. Let now ṽ ∈ U(g)mF, v ∈ U(g)nE and X ∈ g - we
would like to show that supp(mṽ,Xv) ⊂ Scl. If X ∈ k, this is clear, since
kU(g)nE ⊂ U(g)nE. If X ∈ a, this is clear, since mṽ,Xv = RXmṽ,v, and clearly
supp(RXf) ⊂ supp(f) when X ∈ a. Finally, let us assume that X ∈ ga,α, where
α ∈ R+. Then by a calculation we did above:

mṽ,Xv(a) = (RXmṽ,v)(a) =
1

a−α − aα
·(LX+θXmṽ,v)(a)− aα

a−α − aα
·(RX+θXmṽ,v)(a) =

= (aα + a3α + · · · ) ·m(X+θX)ṽ,v(a)− (a2α + a4α + · · · ) ·mṽ,(X+θX)v(a).

Thus, we see that in this case supp(mṽ,Xv) ⊂ Scl + α.
Similarly one handles the examination of mXṽ,v for X ∈ g.
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Claim 3.5.2. Let V be a HC (g,K)-module, and let Ṽ ′ ⊂ Ṽ be a finitely
generated (g,K)-submodule. Then

suppṼ ′(g
a,αv) ⊂ suppṼ ′(v) + α

for v ∈ V and α ∈ R+. As a corollary,

suppṼ ′(n
kV ) ⊂ suppṼ ′(V ) + kR+

for k ≥ 0.

Proof. Let X ∈ ga,α and ṽ ∈ Ṽ ′. Notice that

mṽ,Xv(a) = (RXmṽ,v)(a) = −LaXmṽ,v = −aαLXmṽ,v = −aαmXṽ,v.

Thus, clearly supp(mṽ,Xv) ⊂ suppṼ ′(v) + α.

Claim 3.5.3. Let V be a HC (g,K)-module and Ṽ ′ ⊂ Ṽ a finitely generated
(g,K)-submodule. Then suppṼ ′(V )min ⊂ wt(pres∅(V )).

Proof. Let λ ∈ suppṼ ′(V )min. There exist ṽ ∈ Ṽ ′, v ∈ V such that λ ∈
supp(mṽ,v). Let us consider the map V → PolC(a) · aλ+ρ given by v 7→
pλ(mṽ,v)a

λ. Since supp(mṽ,nv) ⊂ suppṼ ′(V )cl+R+, it is clear that pλ(mṽ,nv) =
0. One hence sees that the map considered factors throuth an a-map pres∅(V )→
PolC(a) · aλ+ρ. Thus, since v maps to a non-zero element, and on the target
a acts via generalized eigenweight λ, we conclude that v must have a non-zero
λ-component.

Corollary 3.5.4. Let V be a HC (g,K)-module. Then supp(V ) is conical;
More precisely,

supp(V ) ⊂ wt(pres∅(V ))cl.

We have
supp(V )min ⊂ wt(pres∅(V )).

3.6 Casselmans submodule theorem, existence
of globalizations

Theorem 3.6.1 (Casselmans submodule theorem). Let V be a HC (g,K)-
module. Then if V 6= 0, we have pres∅(V ) 6= 0 (i.e., V/nV 6= 0).

Proof. If V 6= 0, then supp(V ) 6= ∅, and thus supp(V )min 6= ∅. Since supp(V )min ⊂
wt(pres∅(V )), we have wt(pres∅(V )) 6= ∅, and hence pres∅(V ) 6= 0.

Corollary 3.6.2. Let V be an irreducible HC (g,K)-module. Then there exists
an irreducible (g∅,K∅)-module W , and an injection V → pind∅(W ). In par-
ticular, V admits a Hilbert globalization - a subrepresentation of pindHilb∅ (W),
where W is W considered as a G∅-representation.
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We would like now to generalize the corollary to arbitrary HC (g,K)-modules
(not necessarily irreducible).

Claim 3.6.3. Let V be a HC (g,K)-module. Then ∩m≥0n
mV = 0.

Proof. Let v ∈ ∩m≥0n
mV , and let ṽ ∈ Ṽ . We have supp(mṽ,v) ⊂ supp(V ) +m ·

R+ for every m ≥ 1. This forces supp(mṽ,v) = ∅. This means mṽ,v = 0. Since

this holds for every ṽ ∈ Ṽ , we deduce v = 0.

Lemma 3.6.4. Let J ⊂ Z(g) be an ideal of finite codimension. Then there
exists a finite subset S ⊂ a∗C such that for every HC (g,K)-module V annihilated
by J , we have wt(V/nV ) ⊂ S.

Proof. If JV = 0 then hc′∅(J)(V/nV ) = 0. Hence we have an ideal of finite
codimension in U(a) (namely, Z(g∅)hc

′
∅(J) ∩ U(a)) which annihilates V/nV .

From this the claim is clear.

Lemma 3.6.5. Let V be a HC (g,K)-module. Then there exists k ∈ Z≥1, such
that nkV contains no non-zero (g,K)-submodules.

Proof. Let J ⊂ Z(g) be an ideal of finite codimension annihilating V . Let S ⊂
a∗C be corresponding to J as in the previous lemma. Notice that wt(nmV/nm+1V ) ⊂
wt(nm−1V/nmV )+R+. Hence, we can find k such that S∩wt(nmV/nm+1V ) = ∅
for all m ≥ k. Let now W ⊂ V be a non-zero (g,K)-submodule - we want
to show that W 6⊂ nkV . By passing to a submodule, we can assume that
W is finitely generated (so a HC (g,K)-module). Then W/nW 6= 0. Since
∩m≥1n

mV = 0, there exists m ≥ 0 such that W 6⊂ nm+1V - let m0 be
the smallest such m. Then we have a non-zero map of a-modules W/nW →
nm0V/nm0+1V . Since wt(W/nW ) ⊂ S, we obtain that nm0V/nm0+1V has an
a-weight in S. This implies m0 < k. Thus, we see that W 6⊂ nkV .

Let E be a finite-dimensional P∅-representation. Define ind′(E) analogously
to before, as the space of continuous functions f : G → E, satisfying f(gp) =
p−1f(g) for p ∈ P∅, g ∈ G. Then ind′(E) is admissible and pre-Hilbertizable.
One has Frobenius reciprocity: For a (g,K)-module W , one has

Hom(g,K)(W, ind
′(E)) ∼= Hom(p∅,K∅)(W,E).

Claim 3.6.6. Let V be a HC (g,K)-module. Then there exists a finite-dimensional
P∅-representation E, and an injection of (g,K)-modules V → ind′(E).

Proof. By the previous lemma, let k ∈ Z≥1 be such that nkV does not contain
non-zero (g,K)-submodules. The (p∅,K∅)-module V/nkV can be lifted to a
P∅-representation. Then the morphism V → ind′(V/nkV ) corresponding to the
projection V → V/nkV is injective, because its kernel is a (g,K)-submodule
which sits in nkV .

Corollary 3.6.7. Let V be a HC (g,K)-module. Then V admits a Hilbert
globalization.
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3.7 An estimate on matrix coefficients

Lemma 3.7.1. Let V be a HC (g,K)-module. Then there exist λ ∈ a∗ and

d ∈ Z≥0 such that for all v ∈ V, ṽ ∈ Ṽ one has

|mṽ,v(a)| � aλs(a)d, a ∈ A−.

Proof. It is not hard to see that it is enough to provide a bound on A−ss (complete
why).

We have a Hilbert globalization V, so in particular a globalization of mod-
erate growth, by claim 2.3.3. Then, considering the continuous seminorm w 7→
|〈ṽ, w〉|, we have a continuous seminorm σ and d ∈ Z≥0 such that

|〈ṽ, gv〉| � eds(g)σ(v), g ∈ G.

Notice now that
eds(a) ∼ ed

′||log(a)||

(for some d′) and we can find λ such that

||log(a)|| � λ(log(a)), a ∈ A−ss.

Claim 3.7.2. Let V be a HC (g,K)-module, and let λ ∈ a∗. Suppose that

Re(wt(pres∅(V ))) ≥ λ. Then there exists d ∈ Z≥0 such that for all v ∈ V, ṽ ∈ Ṽ
one has

|mṽ,v(a)| � aλ+ρ · s(a)d, a ∈ A−.

We will prove the claim after a few lemmas.
Let us denote dα := minλ′∈wt(V/n(∅)V )(Re(λ

′)(Ωα)) for α ∈ Rs. We can
assume that λ + ρ = λV , where λV (Ωα) = dα for α ∈ Rs, and (λV )|acent =
(λ+ ρ)|acent .

Given µ ∈ a∗ and d ∈ Z≥0, we say that v ∈ V is (µ, d)-good if one has

|mṽ,v(a)| ≤ Daµ · s(a)d, a ∈ A−

for some D ∈ R>0. We say that a subspace V0 ⊂ V is µ-good if there exists
d ∈ Z≥0 such that every v ∈ V0 is (µ, d)-good. We want to show that V is
λV -good.

By lemma 3.7.1, there exists µ ∈ a∗ such that V is µ-good. We can assume
that µ|acent = (λV )|acent .

For the next few lemmas, let us fix α ∈ Rs, and denote I = Rs − {α}. For
µ ∈ a∗ and r ∈ R, we denote µr := µ+ (r−µ(Ωα)α (i.e. µr coincides with µ on
acent +

∑
β 6=αR · Ωβ , and is equal to r on Ωα).

Lemma 3.7.3. Suppose that V is µ-good. Then n(I)V is (µ+ α)-good.
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Proof. For X ∈ ga,β we have

mṽ,Xv(a) = −aβmXṽ,v(a).

If ga,β ⊂ n(I), we have β ≥Rs α, hence β ≥ α, i.e. aβ � aα, a ∈ A−.

Lemma 3.7.4. Let f(t), h(t) ∈ C1(R≥0). Suppose that

|h(t)| ≤ Cert(1 + t)d

for some r ∈ R, d ∈ Z≥0 and C ∈ R>0. Suppose also that one has ∂tf − cf = h
for some c ∈ C. Then, if r ≤ Re(c) one has

|f(t)| ≤ D(|f(0)|+ C)eRe(c)t(1 + t)d+1,

and if r > Re(c) one has

|f(t)| ≤ D(|f(0)|+ C)ert(1 + t)d;

Both for some D ∈ R>0 which depends only on r, c.

Proof. One has

f(t) = ect
(
f(0) +

∫ t

0

e−csh(s)

)
.

Thus:

|f(t)| ≤ eRe(c)t
(
|f(0)|+ C

∫ t

0

e(r−Re(c))s(1 + s)d
)
≤

eRe(c)t
(
|f(0)|+ C

∫ t

0

e(r−Re(c))s
)

(1 + t)d.

If r ≤ Re(c), we estimate ∫ t

0

e(r−Re(c))s ≤ t

and obtain the desired estimate. If r > Re(c), we estimate∫ t

0

e(r−Re(c))s ≤ 1

r −Re(c)
e(r−Re(c))t

and obtain the desired estimate.

Lemma 3.7.5. Let v ∈ V and c ∈ C. Denote w := Ωαv − cv. Suppose that v
is (µ, d)-good and w is (µr, d)-good. Then v is (µmin(Re(c),r), d+ 1)-good.

Proof. Fix ṽ ∈ Ṽ and let us denote

f(H, t) := mṽ,v(ae
−tΩα), h(H, t) := mṽ,w(ae−tΩα)
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where a ∈ exp(acent −
∑
β 6=α R≥0Ωβ) and t ∈ R≥0. We have

|f(a, 0)| ≤ Daµs(a)d, |h(a, t)| ≤ Daµe−rts(a)d(1 + t)d

for some D ∈ R>0. We have ∂tf + cf = h. Hence, by lemma 3.7.4 (where we
plug in C := Daµs(a)d), we obtain that if −r ≤ −Re(c),we have

|f(a, t)| ≤ D′ · aµs(a)d · e−Re(c)t(1 + t)d+1

while if −r > −Re(c) we have

|f(a, t)| ≤ D′ · aµs(a)d · e−rt(1 + t)d

(both for some D′ ∈ R>0).

Lemma 3.7.6. If V is µ-good, then V is µdα-good.

Proof. Let us write µ = µr (so r := µ(Ωα)).
First, notice that since Ωα ∈ acent,I , and since V/n(I)V is a HC (gI ,KI)-

module, the action of Ωα is finite on V/n(I)V . Moreover, it is easy to see that
the eigenvalues of this action are exactly λ(Ωα), as λ runs over wt(V/n(∅)V ).
By lemma 3.7.3, n(I)V is µr+1-good. Denoting by Vc ⊂ V the subspace which is
the preimage of the generalized eigenspace of Ωα in V/n(I)V with eigenvalue c,
by repeated use of lemma 3.7.5, we see that Vc is µmin(Re(c),r+1)-good. Hence,
V is µmin(dα,r+1)-good. Thus, replacing µr with µr+1, after a finite number of
steps we will arrive to the desired conclusion.

Proof (of claim 3.7.2). By repeated use of lemma 3.7.6, we see that V is λV -
good.
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Chapter 4

Intertwining integrals -
minimal parabolic case

4.1 Principal series

Let us notice that all HC (g∅,K∅)-modules are finite-dimensional. The irre-
ducible HC (g∅,K∅)-modules are classified by pairs (λ, ε) where λ ∈ a∗C and
ε ∈ K∨. We denote by Eλ,ε the corresponding irreducible finite-dimensional
G∅-representation. We denote Pλ,ε := pind∅(Eλ,ε) (the (continuous) principal
series). Let us also denote Pλ := Pλ,triv (the spherical principal series).

4.2 Intertwining

Let E be a finite-dimensional G∅-representation, and fix w ∈ NK(a). We denote

by wE the representation on U given by g ∗new u := (w
−1

g) ∗old u. We define,
formally (i.e. ignoring convergence) a G-equivariant morphism

Iw : pindI(E)→ pindI(
wE)

as follows:

Iw(f)(g) :=

∫
N(∅)/N(∅)∩wN(∅)

f(gxw).

We also define formally a map

Jw : pindI(E)→ E

by

Jw(f) :=

∫
w−1N(∅)/w

−1N(∅)∩N(∅)

f(x)

(
=

∫
w−1N(∅)∩N−(∅)

f(x)

)
.

Notice that Jw(f) = Iw(f)(w−1) and Iw(f)(g) = Jw((gw)−1f). Also notice
that Jw depends only on the class of w in W , while Iw depends ”slightly” on
the actual representative w.
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Lemma 4.2.1. Suppose that Jw(f) converges absolutely for every f ∈ pind∅(E)[K].
Then there exists a unique (g,K)-morphism

Iw : pind∅(E)[K] → pind∅(
wE)[K],

satisfying
Iw(f)(e) = Jw(w−1f).

Proof. Recall that pind∅(E)[K] ∼= pind∅(E [K]), so that a morphism as desired is
the same as a morphism of (g∅,K∅)-modules

pres∅pind∅(E [K])→ wE [K].

We obtain such a morphism by sending f 7→ Jw(w−1f).

For example:

Lemma 4.2.2. Suppose that a acts on E via a character λ ∈ a∗C. Suppose that
the integral ∫

N−
(∅)

r(x)−Re(λ)−ρ

converges.

1. For every w ∈ NK(a) and f ∈ pind∅(E)[K], the integral Jw(f) converges
absolutely.

2. The map pind∅(E)[K] → E given by f 7→ Jw0
(f) is surjective.

Proof.

1. First, we want to see that if the above integral converges, then the same
integral, but over w−1

N(∅) ∩N−(∅), also converges. Indeed, we can express

the integral over N−(∅) as an integral of r(xy)−Re(λ)−ρ over

(w
−1

N−(∅) ∩N
−
(∅))× (w

−1

N(∅) ∩N−(∅)).

Noticing that x ∈ K · w−1

r(wx) · w−1

N(∅), we obtain∫
x∈w−1N−

(∅)∩N
−
(∅)

∫
y∈w−1N(∅)∩N−(∅)

r(xy)−Re(λ)−ρ =

=

∫
x∈w−1N−

(∅)∩N
−
(∅)

∫
y∈w−1N(∅)/w

−1N(∅)∩N(∅)

r(xy)−Re(λ)−ρ =

=

∫
x∈w−1N−

(∅)∩N
−
(∅)

∫
y∈w−1N(∅)/w

−1N(∅)∩N(∅)

r(w
−1

r(wx)y)−Re(λ)−ρ =

=

∫
x∈w−1N−

(∅)∩N
−
(∅)

∫
y∈w−1N(∅)/w

−1N(∅)∩N(∅)

r(x)···r(y)−Re(λ)−ρ
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(where in the last passage we jumped w−1

r(wx) over y). Thus the integral
that we assume converging, separates into an integral of a positive quantity
in x, times the integral we want to make sure is converging.

Second, notice that for f ∈ pind∅(Eλ,ε)[K], we have ||f(g)|| � r(g)−Re(λ)−ρ.
Hence, lemma 4.2.1 implies that we have the desired well-defined mor-
phism Iw.

2. Let ζ ∈ E∗. We would like to show that there exists f ∈ pind∅(E)[K] such
that 〈ζ, Jw0

(f)〉 6= 0.

Notice that for every f ∈ pind∅(E) one has

||f(g)|| � r(g)−Re(λ)−ρ (g ∈ G),

and thus Jw0(f) converges absolutely.

Let us fix a function u ∈ C∞c (N−(∅)) for which
∫
N−

(∅)
u = 1 and let us fix

an element v ∈ E for which 〈ζ, v〉 6= 0. Define an element f0 ∈ pind∅(E)
by f0(xmn) = u(x) · ∆(m)−1mv for (x,m, n) ∈ N−(∅) × G∅ × N(∅), and

f0(g) = 0 if g /∈ N−(∅)P(∅). Then one has

〈ζ, Jw0
(f0)〉 = 〈ζ, v〉 6= 0.

We now consider elements φ ∗ f0 ∈ pind∅(E) where φ ∈ C(K). Denote
S = supp(f0|N−

(∅)
). Given ε > 0, we can find e ∈ U ⊂ K such that

|f0(kx)− f0(x)| < ε for k ∈ U, x ∈ S. Then, we fix φ ∈ C(K) such that φ
takes real non-negative values,

∫
K
φ = 1 and supp(φ) ⊂ U . Then we have

||Jw0
(φ ∗ f0)− Jw0

(f0)|| = ||
∫
N−

(∅)

∫
K

φ(k)f0(k−1x)− f0(x)|| =

= ||
∫
KS∩N−

(∅)

∫
U

φ(k)(f0(k−1x)− f0(x))|| ≤ ε ·meas(KS ∩N−(∅)).

Thus, we can find φ ∈ C(K) such that 〈ζ, Jw0
(φ ∗ f0)〉 6= 0.

Next, for φ1, φ2 ∈ C(K) we have

||Jw0
(φ1 ∗ f0)− Jw0

(φ2 ∗ f0)|| = ||
∫
N−

(∅)

∫
K

(φ1(k)− φ2(k))f0(k−1x)|| ≤

≤ ||φ1 − φ2||sup · C ·
∫
N−

(∅)

r(x)−Re(λ)−ρ,

where C > 0 is such that

||f0(g)|| ≤ Cr(g)−Re(λ)−ρ (g ∈ G).
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From here, taking φ2 := φ and φ1 = ψ ∗ φ where ψ ∈ C(K)[K] is suitable,
we obtain that

〈ζ, Jw0
(φ1 ∗ f0)〉 6= 0

(we use Stone-Weierstrass). Since φ1 ∈ C(K)[K], we see that φ1 ∗ f0 ∈
pind∅(E)[K].

Example 4.2.3. Let us consider the integral∫
N−

(∅)

r(x)−Re(λ)−ρ

in the example of SL2(R). We identify N−(∅) with R via

(
1 0
x 1

)
←[ x. Using

Gram-Schmidt orthogonalization we obtain(
1 0
x 1

)
=

(
1/r −x/r
x/r 1/r

)(
r 0
0 1/r

)(
1 x/r2

0 1

)
where we have denoted r :=

√
1 + x2. We also identify a∗C with C via λ 7→ λ(H).

We thus obtain r(x)λ = (1 + x2)λ/2. Hence, the integral is∫
R

(1 + x2)−
Re(λ)+1

2 dx.

This integral converges absolutely when Re(λ) > 0.

4.3 Lemmas about r

Lemma 4.3.1. Let E be an algebraic representation of G(C), and 0 6= v ∈ Ea,λ

satisfying n(∅)v = 0.

1. Let g ∈ G◦ and a ∈ A−. The we have r(a−1ga)λ ≤ r(g)λ.

2. Let g ∈ N−(∅). Then r(g)λ ≥ 1, with equality if and only if gv = v.

3. Let a ∈ A−−. Then there exists 0 < c < 1 such that r(a−tgat)λ ≤√
1 + ctr(g)2λ for all g ∈ N−(∅) and t ≥ 0.

Proof. We choose a K̃-invariant inner product on E, and can assume ||v|| = 1.
Notice that we have ||gv||2 = r(g)2λ for all g ∈ G. Let us write gv =

∑
i≥1 vi

with vi ∈ Ea,λi (all λi different). The different vi are orthogonal.
(1) Notice that since g ∈ G◦, we have gv ∈ U(g)v = U(n−∅ )U(k∅)v, so

λ− λi ≥R+ 0 and thus λ− λi ≥ 0. Then

||a−1gav||2 = ||
∑
i

aλ−λivi||2 =
∑
i

aλ−λi ||vi||2 ≤
∑
i

||vi||2 = ||
∑
i

vi||2 = ||gv||2.
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(2) Since g ∈ N−(∅), we can assume that v1 = v. Then ||gv||2 = 1+
∑
i 6=1 ||vi||2

from which the claim is clear.
(3) Set c = maxα∈Rs a

α (0 < c < 1 because a ∈ A−−). We can assume that
v1 = v. We obtain:

||a−tgat||2 = 1 +
∑
i6=1

at(λ−λi)||vi||2 ≤ 1 + ct
∑
i 6=1

||vi||2 ≤ 1 + ct||gv||2.

Lemma 4.3.2.

1. For dominant λ ∈ a∗, we have

r(a−1ga)λ ≤ r(g)λ

for all g ∈ G◦ and a ∈ A−.

2. For dominant λ ∈ a∗, we have

r(g)λ ≥ 1

for g ∈ N−(∅).

3. Let a ∈ A−−. Then there exists 0 < c < 1 such that

r(a−txat)ρ ≤ 4
√

1 + ctr(x)4ρ

for all x ∈ N−(∅) and t ≥ 0.

4. Let g ∈ N−(∅). If r(g)ρ = 1, then g = e.

Proof.
(1) Clearly, the set of λ for which the inequality holds is closed under R≥0-

span. Notice that if λ is the restriction to a of highest weight for a ⊕ ib (in
the notations of section 4.3.1), then by part 1 of lemma 4.3.1 we have the
desired inequality. Using corollary 4.3.6, we obtain the desired inequality for all
dominant λ.

(2) The proof is the same as in (1), using part 2 of lemma 4.3.1.

(3) We use part 3 of lemma 4.3.1 with E :=
∧dim n(∅) gC, and a non-zero

vector v in the one-dimensional subspace corresponding to n(∅). Notice that
n(∅)v = 0 and v ∈ Ea,2ρ.

(4) We use part 2 of lemma 4.3.1, applied to E, v as in part (3) above. It is
easy to calculate that the stabilizer of v in g is p(∅). Thus, the intersection of

N−(∅) with the stabilizer of v in G is finite. Since N−(∅) does not contain non-trivial

finite subgroups, we deduce that N−(∅) intersects this stabilizer trivially.
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4.3.1 Complex roots

Note to self: this subsection is quite messy
Let b ⊂ k∅ be a maximal abelian subalgebra.

Lemma 4.3.3. The complexification h := (a ⊕ b)C is a Cartan subalgebra in
gC.

Proof. The adjoint action of this subalgebra is semisimple, because the operators
from a are symmetric and those from b are skew-symmetric (w.r.t. the form
B(·, θ·)). If an element X ∈ g commutes with a⊕ b, then so does θX, and thus
the components of X w.r.t. g = k⊕ s. Then from the definitions of a and b we
see that those components lie in b and a respectively.

We thus can consider the complex root system, corresponding to h acting
on gC.

One can (and we always will) choose positive complex roots in such a way
that their restriction to a is either zero, or a positive root.

The real form a ⊕ ib of h is the ”correct” one, in the sense that it is the
R-span of the lattice of integral weights, i.e. the weights which are derivatives
of characters of the complex torus whose Lie algebra is h.

The form B(·, ·) is positive definite on a ⊕ ib, and is preserved under the
Weyl group (because it is invariant under G(C)). Furthermore, a is orthogonal
to ib. Let us denote by λ = λa + λb the decomposition corresponding to the
decomposition (a ⊕ ib)∗ = a∗ ⊕ (ib)∗. We also denote by B(·, ·) the form on
(a + ib)∗ corresponding to the form B(·, ·) on a + ib, and ||λ||2 := B(λ, λ).

Let us denote by La ⊂ acent and by Lb ⊂ z(gC) ∩ ib the integral lattices.
Then there exists m ∈ Z≥1 such that a complex weight λ ∈ (a⊕ib)∗ is integral if
λ(La) ⊂ mZ, λ(Lb) ⊂ mZ, and λ(H ′γ) ∈ mZ for every complex root γ ∈ (a⊕ib)∗

(we denote by H ′γ ∈ a⊕ ib the corresponding complex coroot).

Lemma 4.3.4. Let γ ∈ (a⊕ ib)∗ be a complex root. Then ||γa||
2

||γ||2 is rational.

Proof. By applying σ, we see that σ(γ) = γa − γb is a root as well. Thus

2B(γa + γb, γa − γb)

||γa + γb||2
∈ Z.

Hence
||γa||2 − ||γb||2

||γa||2 + ||γb||2
∈ Q.

Adding 1, we obtain

||γa||2

||γ||2
=

||γa||2

||γa||2 + ||γb||2
∈ Q.
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Corollary 4.3.5. There exists m ∈ Z≥1 and a lattice L ⊂ ass with the following
property. Let λ ∈ a∗ be satisfying λ(Hα) ∈ mZ≥0 for all α ∈ R+, and λ(L) ∈
mZ. Then λ+ 0 ∈ (a⊕ ib)∗ is a dominant and integral complex weight.

Proof. For a positive complex root γ, we have

2
B(λ, γ)

||γ||2
= 2

B(λ, γa)

||γa||2
· ||γa||

2

||γ||2
∈ mZ≥1.

Corollary 4.3.6. The R≥0-span of the restrictions to a of dominant and integral
complex weights is equal to the set of dominant weights.

Proof. Notice that for a dominant complex weight λ ∈ (a⊕ ib)∗, the restriction
λ|a is a dominant weight. Indeed, for a positive root α ∈ a∗, we can find a
positive complex root γ ∈ (a ⊕ ib)∗ such that γ|a = α, and then α = 1

2 (γ +
σ(γ)), and σ(γ) is also a positive complex root. Hence, B(λ, α) = 1

2 (B(λ, γ) +
B(λ, σ(γ)), so is positive.

4.4 The convergence of an integral - 1

Claim 4.4.1. Let λ ∈ a∗ be dominant. Then∫
N−

(∅)

r(x)−2ρ−λ

converges.

Proof. Let us first notice that ∫
N−

(∅)

r(x)−2ρ

converges for ”formal” reasons - it is an expression for∫
G//P(∅)

r(g)−2ρ.

Now, we consider the integral∫
N−

(∅)

r(a−1xa)λr(x)−2ρ−λ

for a ∈ A−. Letting log(a) −→ ∞, the integrand converges to r(x)−2ρ−λ point-
wise. On the other hand, the integrand can be esimated using lemma 4.3.2:

r(a−1xa)λr(x)−2ρ−λ ≤ r(x)−2ρ,

and hence is convergent. Hence, by the dominated convergence theorem our
integral, the integral of the pointwise limit, converges.
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4.5 Harish-Chandra’s homomorphism hc

There is a G-invariant pairing between Pλ and P−λ, given by

〈f1, f2〉 :=

∫
G//P(∅)

f1(g)f2(g).

We have a K-invariant vector ξλ ∈ Pλ given by

ξλ(g) := r(g)−λ−ρ.

Clearly, the subspace of K-invariant vectors in Pλ is one-dimensional, spanned
by ξλ.

Since the action of U(g)K preserves K-invariancy, we obtain a map

hc : U(g)K → Fun(a∗C),

given by

hc(U)(λ) :=
Uξλ
ξλ

= (Uξλ)(e).

Using the Iwasawa decomposition, we have U(g) = U(a)⊕ (U(g)k+n∅U(g)).
Let us denote by pr : U(g) → U(a) the resulting projection. We will think
of U(a) as embedded into Fun(a∗C), by interpreting elements of a as linear
functionals on a∗C (thus, the image of the embedding consists of the polynomial
functions).

Lemma 4.5.1. For U ∈ U(g)K , one has

hc(U)(λ) = pr(U)(λ+ ρ).

Proof. We want to show that (Uξλ)(e) = pr(U)(λ+ ρ)ξλ(e).
Let W ∈ k and V ∈ U(g). Then VWξλ = 0 because ξλ is K-invariant. Let

now X ∈ n∅ and V ∈ U(g). Then

(XV ξλ)(e) = limt→0
(V ξλ)(e−tX)− (V ξλ)(e)

t
= 0.

Finally, notice that for H ∈ a we have

(Hξλ)(a) = limt→0
ξλ(e−tHa)− ξλ(a)

t
=

(
limt→0

et(λ+ρ)(H) − 1

t

)
·ξλ(a) = (λ+ρ)(H)ξλ(a).

Let us write H(λ+ρ) instead of (λ+ρ)(H) by the convention above of looking at
U(a) as an algebra of functions on a∗C, and we can iterate the above calculation
to obtain, for V ∈ U(a):

(V ξλ)(a) = V (λ+ ρ)ξλ(a).

Summing up the above findings, we get the desired.
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Thus, we can consider hc as an algebra homomorphism

hc : U(g)K → U(a) ∼= PolC(a∗C)

(having formula hc(U) = pr(U)(·+ ρ)).

Claim 4.5.2. The image of hc is contained in U(a)W .

Proof. It is enough to show that for U ∈ U(g)K , w ∈ W and λ ∈ a∗ for which
λ− ρ is dominant, we have hc(U)(wλ) = hc(U)(λ) (because the set of such λ’s
is Zariski-dense in a∗C).

By claim 4.4.1 and lemma 4.2.2, we have a morphism

Iw : P [K]
λ → P [K]

wλ ,

which is non-zero on ξλ (because Iw(ξλ)(e) is given by a positive integral).
Hence, Iw(ξλ), being K-invariant, must be a non-zero multiple of ξwλ. Then by
Iw(Uξλ) = UIw(ξλ) we obtain the desired equality.

We will now want to see that hc : U(g)K → U(a)W is onto. For this, we
need:

Theorem 4.5.3 (Chevalley’s restriction theorem). The restriction map

PolC(s)K → PolC(a)W

is an isomorphism.

We can reformulate the above theorem as follows:

Corollary 4.5.4. The map s→ a given by s ↪−→ g
pr−→ a induces an isomorphism

SymC(s)K → SymC(a)W .

Proof. Since w.r.t. the form B(·, θ·) the subspace a is orthogonal to k + n∅, we
see that pr : g→ a is the orthogonal projection. Hence, we have a commutative
diagram

s
∼

pr

��

s∗

restriction
��

a
∼

a∗

where the horizontal identifications are via B(·, θ·). Since B(·, θ·) is K-invariant,
the upper (resp. lower) horizontal identification is K-equivariant (resp. W -
equivariant). Now the corollary follows quite clearly.

Claim 4.5.5. The map hc : U(g)K → U(a)W is onto.
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Proof. Consider the situation

U(g)
U 7→pr(U)(·+ρ)

// U(a)

U(g)K
hc //

?�

OO

U(a)W
?�

OO
.

All the spaces have filtrations and the maps are compatible with them. When
passing to the associated graded, the situation becomes

S(g)
S(pr)

// S(a)

S(g)K //
?�

OO

S(a)W
?�

OO
,

where S(pr) is the map of symmetric algebras induced by the map of vector
spaces pr : g → a. To show that hc is surjective, it is enough to show that
the bottom map in the last diagram is surjective. And indeed, precomposing
with the inclusion S(s)K → S(g)K , we obtain an isomorphism, by the previous
corollary.

4.6 Harish-Chandra’s functions Ξλ

We form now the matrix coefficient

Ξλ(g) := 〈gξλ, ξ−λ〉.

The function Ξλ is K-biinvariant. From the definitions we get

Ξλ(g) =

∫
K

r(g−1k)−λ−ρ

and also, for a ∈ A:

Ξλ(a) = aλ+ρ

∫
N−

(∅)

r(a−1xa)−λ−ρr(x)λ−ρ.

Lemma 4.6.1.

Ξλ(g1g
−1
2 ) =

∫
K

r(g1k)λ−ρr(g2k)−λ−ρ.

Proof.

Ξλ(g1g
−1
2 ) = 〈g1g

−1
2 ξλ, ξ−λ〉 = 〈g−1

2 ξλ, g
−1
1 ξλ〉 =

∫
K

r(g1k)λ−ρr(g2x)−λ−ρ.
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Corollary 4.6.2. For every compact Ω ⊂ G, there exists C > 0 such that

Ξλ(g1g2) ≤ C · Ξλ(g2)

for all g2 ∈ G, g1 ∈ Ω.

Corollary 4.6.3. Ξλ(g−1) = Ξ−λ(g).

Claim 4.6.4. For λ, λ′ ∈ a∗C we have Ξλ = Ξλ′ if and only if λ′ ∈Wλ.

Proof. Notice that for U ∈ U(g)K we have RUΞλ = hc(U)Ξλ. Indeed:

(RUΞλ)(g) = 〈gUξλ, ξ−λ〉 = hc(U)〈gξλ, ξ−λ〉 = hc(U)Ξλ(g).

Suppose that Ξλ = Ξλ′ . Then we have hc(U)(λ) = hc(U)(λ′) for all U ∈
U(g)K . By what we saw, this means that p(λ) = p(λ′) for all W -invariant
polynomials p ∈ PolC(a∗C). This yields λ′ ∈Wλ.

Conversely, let us show that Ξwλ = Ξλ for w ∈ W . The differnce, f :=
Ξwλ − Ξλ, is an analytic function on G, which is K-biinvariant, and such that
(RUf)(e) = 0 for all U ∈ U(g)K . If we show that (RUf)(e) = 0 for all U ∈ U(g),
then we are obviously done (because f will have Taylor series 0 at e, hence will
be equal to 0 on G◦, and since it is K-biinvariant, it will be equal to 0 on G).
But, given U ∈ U(g) and k ∈ K, we have

(RAd(k)Uf)(e) = (RkRURk−1f)(e) = (RkRUf)(e) = (RUf)(k) =

= (LkRUf)(e) = (RULkf)(e) = (RUf)(e).

Hence, if we consider the average

U ′ =

∫
K

Ad(k)U,

we have U ′ ∈ U(g)K and so (RUf)(e) = (RU ′f)(e) = 0.

For λ ∈ a∗, let us denote by λmax (resp. λmin) the unique dominant (resp.
antidominant) element in Wλ.

Claim 4.6.5. Let λ ∈ a∗. Then we have

aλ
max+ρ � Ξλ(a) � aλ

min+ρs(a)d (a ∈ A−),

for some d ∈ Z≥0.

Proof. Let us show the left estimate. Since, by claim 4.6.4, Ξλ = Ξλmax , we
can replace λ by λmax and so assume that λ is dominant. We then have, using
lemma 4.3.2:

Ξλ(a) = aλ+ρ

∫
N−

(∅)

r(a−1xa)−λ−ρr(x)λ−ρ ≥ aλ+ρ

∫
N−

(∅)

r(x)−λ−ρr(x)λ−ρ = aλ+ρ

∫
N−

(∅)

r(x)−2ρ.
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Let us now show the right estimate. Again, we can assume that λ itself

is antidominant. Let V ⊂ P [K]
λ be the (g,K)-submodule generated by ξλ.

By 3.4.5, in order to establish the estimate on A−−,ε, it is enough to show
that Re(supp(V )) ≥ λ, and for this it is enough to see that for every µ ∈
wt(pres∅(V )), we have Re(µ) ≥ λ. For such µ, we can find an irreducible
representation E of K∅, such that Eµ is a quotient of pres∅(V ). Then we
obtain a non-zero morphism V → pind∅(Eµ). Examining the (non-zero) image
of ξλ under this morphism, we see that E is the trivial representation, and
furthermore hc(U)(λ) = hc(U)(µ) for every U ∈ U(g)K . Since hc is onto
PolC(a∗)W , we obtain that µ ∈ Wλ. Since λ is antidominant, we get Re(µ) =
µ ≥ λ.

Thus, we have established the estimate on A−−,ε. Extending it to A− is
facilitated by corollary 4.6.2. Indeed, one easily finds compact Ω ⊂ G such that
A− ⊂ Ω ·A−−,ε (take Ω to be a big closed ball around e in A), and then deduces
the estimate on A− from that on A−−,ε.

4.7 The convergence of an integral - 2

Claim 4.7.1. Let λ ∈ a∗ be dominant and regular. Let d ∈ Z≥0. Then∫
N−

(∅)

r(x)−ρ−λ

converges.

Proof. Let us notice that λ − ερ is dominant for small enough ε > 0. Then
r(x)λ−ερ ≥ 1 for x ∈ N−(∅) by part (2) of lemma 4.3.2, i.e. r(x)−λ ≤ r(x)−ερ,

and thus it is enough to show the convergence of∫
N−

(∅)

r(x)−ρ−ερ.

Let us fix a ∈ A−−. The right estimate of claim 4.6.5 gives, for λ = 0:

atρ
∫
N−

(∅)

r(a−txat)−ρr(x)−ρ = Ξ0(at) � atρs(at)d (t ∈ R≥0).

Rewriting: ∫
N−

(∅)

r(a−txat)−ρr(x)−ρ � (1 + t)d (t ∈ R≥0).

We can find a compact subset Ω ⊂ N−(∅) such that atΩa−t sits in the interior

of asΩa−s for t < s, and ∪t≥0a
tΩa−t = N−(∅). For t ≥ 1, let us denote Ωt :=

atΩa−t.
There exists C1 > 1 such that r(x)ρ ≥ C1 for x ∈ N−(∅) − Ω0. Thus, for

x /∈ Ωn, since a−nxan /∈ Ω0, we have

r(a−nxan)ρ ≥ C1.
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By part (3) of lemma 4.3.2, there exists 0 < c < 1 such that

r(a−nxan)ρ ≤ 4
√

1 + cnr(x)4ρ

for all x ∈ N−(∅). In particular, for x /∈ Ωn, we get

r(x)−ερ ≤ (C4
1 − 1)−ε/4cεn/4.

There exists C2 > 0 such that r(x)ρ ≤ C2 for x ∈ Ω1. Thus, for x ∈ Ωn+1,
since a−nxan ∈ Ω1, we have

r(a−nxan)−ρ ≥ C−1
2 .

We get:∫
Ωn+1−Ωn

r(x)−ρ−ερ � cεn/4
∫

Ωn+1−Ωn

r(x)−ρr(a−nxan)−ρ ≤

≤ cεn/4
∫
N−

(∅)

r(x)−ρr(a−nxan)−ρ � cεn/4(1 + n)d.

From this, the convergence of the integral is clear.

4.8 A formula of (Harish-Chandra and) Lang-
lands

Claim 4.8.1. Let E be a HC (g∅,K∅)-module. Suppose that a acts on E strictly
via a character λ ∈ a∗C, and suppose that Re(λ) is regular and antidominant.

Then for every f ∈ pind∅(E), h ∈ pind∅(Ẽ) one has

a−λ−ρ · 〈h, af〉 log(a)→−∞−−−−−−−−→ 〈
∫
N−

(∅)

h(x), f(e)〉.

Here a ∈ A−− and log(a)→ −∞ means that α(log(a))→ −∞ for all α ∈ Rs.

Proof. We have

a−λ−ρ〈h, af〉 = a−λ−ρ
∫
N−

(∅)

〈h(x), f(a−1x)〉 =

=

∫
N−

(∅)

〈h(x), f(a−1xa)〉 log(a)→−∞−−−−−−−−→
∫
N−

(∅)

〈h(x), f(e)〉 = 〈
∫
N−

(∅)

h(x), f(e)〉.

For the last equality, we notice that the integral converges by what we saw
above. As for the limit procedure, the convergence is clear pointwise for the
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integrand, and in order to verify it for the integral, we will invoke the dominated
convergence theorem. By the K-finiteness of f and h, it is enough to estimate
the following integrand:

r(x)Re(λ)−ρr(a−1xa)−Re(λ)−ρ.

Since Re(λ) is antidominant and regular, we can find 1 > ε > 0 such that
−Re(λ)− ερ is dominant. We then have

r(x)Re(λ)−ρr(a−1xa)−Re(λ)−ρ =

= r(x)−(1+ε)ρ ·
(
r(a−1xa)−(1−ε)ρ

)
·
(
r(x)−(−Re(λ)−ερ) · r(a−1xa)−Re(λ)−ερ

)
≤

≤ r(x)−(1+ε)ρ

(the middle brackets are ≤ 1 by lemma ... since a−1xa ∈ N−(∅) and (1 − ε)ρ
is dominant; The right brackets are ≤ 1 by lemma ... since −Re(λ) − ερ is
dominant and a ∈ A−, x ∈ N−(∅)). This last expression doesn’t depend on a and

is integrable by ...

Remark 4.8.2. Let f ∈ C∞K,Z(G) and let λ ∈ a∗C. Suppose that

a−λ−ρf(a)
log(a)→−∞−−−−−−−−→ c

for some non-zero c. Then it is not hard to see that λ ∈ supp(f) and for every
µ ∈ supp(f), one has Re(µ) ≥ Re(λ).

4.9 A more precise relation between supp(V ) and
pres∅(V )

Claim 4.9.1. Let E be an irreducible HC (g∅,K∅)-module, on which a acts
via λ ∈ a∗C. Suppose that Re(λ) is antidominant and regular. Then for every
non-zero submodule V ⊂ pind∅(E), we have λ ∈ supp(V )min.

Proof. Denoting by Ve ⊂ E the image of V under h 7→ h(e), we see that Ve is
a non-zero (g∅,K∅)-submodule. Since E is irreducible, we get Ve = E. Thus,

since J− : pind∅(Ẽ) → Ẽ is non-zero, we deduce that there exists h ∈ V and

f ∈ pind∅(Ẽ) such that 〈J−(f), h(e)〉 6= 0. Then, by claim 5.7.1 and remark
4.8.2, we see that λ ∈ supp(V )min.

Lemma 4.9.2. Let λ ∈ a∗C, and assume that Re(λ) is antidominant and regular.
Let V be a HC (g,K)-module. Then if λ ∈ wt(pres∅(V )), then λ ∈ supp(V ).

Proof. Suppose that λ ∈ wt(pres∅(V )). We can then find an irreducible repre-
sentation E of K∅, such that the (g∅,K∅)-module Eλ is a quotient module of
pres∅(V ). We thus obtain a non-zero morphism V → pind∅(Eλ). Denoting by
V0 the image of this moprhism, it is enough to see that λ ∈ supp(V0), and this
follows from claim 4.9.1.

59



We would like now to tensor with algebraic representations of G(C), in order
to generalize the previous lemma to arbitrary λ’s.

Lemma 4.9.3. Let V be a HC (g,K)-module, and E an irreducible algebraic
representation of G(C) with lowest weight ν ∈ a∗. Then wt(pres∅(V )) + ν ⊂
wt(pres∅(V ⊗ E)).

Proof. Let λ ∈ wt(pres∅(V )), and let v ∈ V be a corresponding weight vector
(modulo nV ). Let e ∈ E be a lowest weight vector, with lowest weight ν ∈ a∗.

Notice that (H− (λ+ν+ρ)(H))(v⊗ e) ∈ (nV )⊗ e ⊂ n(V ⊗E) +V ⊗nE, so
λ+ν ∈ pres∅( V⊗EV⊗nE ) (notice that V⊗E

V⊗nE is a quotient p∅-module of V ⊗E, so that

we can take pres∅ of it). Hence, since wt(pres∅(
V⊗E
V⊗nE )) ⊂ wt(pres∅(V ⊗ E)),

we obtain λ+ ν ∈ wt(pres∅(V ⊗ E)).

Lemma 4.9.4. Let V be a HC (g,K)-module, and E an algebraic representation
of G(C). Then supp(V ⊗ E) ⊂ supp(V ) + wt(E).

Proof. The matrix coefficients of V ⊗ E are spanned my those of the form
mv⊗e,ζ⊗δ, where e is a weight vector, and the claim follows easily.

Claim 4.9.5. Let V be a HC (g,K)-module. Then wt(pres∅(V )) ⊂ supp(V )cl.

Proof. Fix λ ∈ wt(pres∅(V )). There exists an algebraic irreducible representa-
tion of G(C), with lowest weight ν ∈ a∗, such that Re(λ) + ν is regular and
antidominant (add reference to something above..). By the first lemma above,
we have λ+ν ∈ wt(pres∅(V ⊗E)). By 4.9.2, we have then λ+ν ∈ supp(V ⊗E).
By the second lemma above, we have now λ+ ν ∈ supp(V ) + wt(E). Thus, we
obtain

λ ∈ supp(V ) + wt(E)− ν ∈ supp(V )cl.

Corollary 4.9.6 (Milicic). Let V be a HC (g,K)-module. Then wt(pres∅(V ))min =
supp(V )min.

Proof. We saw that supp(V )min ⊂ wt(pres∅(V )) ⊂ supp(V )cl, from which the
claim follows easily.

4.10 Further finiteness

Lemma 4.10.1. Let E be an irreducible HC (g∅,K∅)-module, on which a acts
via λ ∈ a∗C. Suppose that Re(λ) is dominant and regular. Then pind∅(E) is
finitely generated.

Proof. Recall that pind∅(E)→ E given by

f 7→ Jw0
(f) =

∫
N−∅

f(x)
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absolutely converges for every f and is non-zero for some f . Fix f for which
Jw0(f) 6= 0. We will show that f generates pind∅(E). Let V ⊂ pind∅(E) be the
submodule generated by f .

Let W ⊂ Ẽ be a non-zero sub (g,K)-module. Let h ∈ W be non-zero.
Then there exists k ∈ K such that (kh)(e) = h(k−1) 6= 0. Thus, the (g∅,K∅)-

submodule of Ẽ obtained by considering the values at e of elements in W is
non-zero. Since Ẽ is irreducible, this submodule is the whole Ẽ. In particular,
we can find h ∈ W such that 〈h(e), Jw0

(f)〉 6= 0. Then claim 5.7.1 shows
that mh,f 6= 0. This implies that h is not orthogonal to V , and thus W is not
orthogonal to V . Since this is true for every non-zero W , one has V = pind∅(E).

Lemma 4.10.2. Let E be an irreducible HC (g∅,K∅)-module. Then pind∅(E)
is finitely generated.

Proof. Notice that one has a ”projection formula” morphism

Z ⊗ pind∅(E)→ pind∅(Z/n∅Z ⊗ E)

where Z is a (g,K)-module and E is a (g∅,K∅)-module.
Let λ ∈ a∗C be the weight by which a acts on E. We can find an algebraic

representation Z of G(C) such that there exists µ ∈ wt(Z/n(∅)Z) for which
Re(λ) − µ is dominant and regular. Let F be an irreudcible (g∅,K∅)-quotient
of Z/n(∅)Z on which a acts by µ. We obtain a (g,K)-morphism

Z ⊗ pind∅(F ∗ ⊗ E)→ pind∅(E).

This morphism is surjective why??. Hence, since by the previous lemma the
module pind∅(F

∗ ⊗ E) is finitely generated and since tensoring with finite-
dimensional modules preserves finite generation, we obtain that pind∅(E) is
finitely generated.

Lemma 4.10.3. Let E be an irreducible HC (g∅,K∅)-module. Then pind∅(E)
is of finite length.

Proof. We know that pind∅(E) is finitely generated. Moreover, since ˜pind∅(E) =

pind∅(Ẽ) is finitely generated, it satisfies the ascending chain condition, and
hence the module pind∅(E) satisfies the descending chain condition. This shows
that pind∅(E) has finite length.

Theorem 4.10.4 (Harish-Chandra). Let χ ∈ Hom(Z(g),C). Then there exists
finitely many isomorphism classes of irreducible (g,K)-modules on which Z(g)
acts by χ.

Proof. There are finitely many isomorphism classes of irreducible (g∅,K∅)-modules
E on which Z(g∅) acts by a given character. Recall that Z(g) acts then on
pind∅(E) by the character obtained from the given one by precomposing with
hc∅ : Z(g) → Z(g∅), a finite morphism. since each such pind∅(E) is of finite
length and every irreducible (g,K)-module is a submodule of such an induction,
the theorem follows.

61



Corollary 4.10.5. Let V be a (g,K)-module which is admissible and Z(g)-
finite. Then V has finite length.

Proof. We can assume without loss of generality that Z(g) acts on V by a char-
acter, say χ. Since by the previous theorem there are finitely many isomoprhism
classes of irreducible (g,K)-modules on which Z(g) acts by χ, we can find a fi-
nite subset S ⊂ K∨ such that every irreducible (g,K)-module on which Z(g)
acts by χ admits some element of S as a K-type. Thus, the functor

M(g,K)adm,χ → V ectf.d., W 7→ ⊕α∈SW [α]

is exact and faithful. This implies the claim.

Remark 4.10.6. Thus, we now know that all the four finiteness conditions in
... are equivalent.

4.11 Examples for SL2(R)

4.11.1 Embedding discrete series into principal series

Recall the discrete series representation Dn (where n ∈ Z>0), consisting of
holomorphic functions on the upper half plane, on which G acts by:

(

(
a b
c d

)
f)(z) = (−cz + a)−nf(

(
d −b
−c a

)
z).

We have found the K-types: the functions wm, m ∈ Z≥0 in the D-model
(wm has K-type n + 2m). Converting back to the H-model, we obtain the
functions:

φm(z) =
(z − i)m

(z + i)n+m
.

Notice that N acts as follows:

(

(
1 x
0 1

)
f)(z) = f(z − x).

Thus, it is clear how to produce an N -invariant functional:

`(f) =

∫
R
f(x+ i)dx.

If n > 1, we see that ` converges absolutely on K-finite vectors.
Let us calculate the A-equivariancy of this functional:

`(

(
a 0
0 a−1

)
f) = a−n

∫
R
f(a−2x+a−2i) = a2−n

∫
R
f(x+a−2i) = a2−n

∫
R
f(x+i) = a2−n`(f).

And the K∅-equivariancy:

`(

(
−1 0
0 −1

)
f) = (−1)n`(f).
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Thus, we can interpret ` as a functional

D[K]
n /nD[K]

n → (sgnn)(2−n)ρ,

or
pres∅(D

[K]
n )→ (sgnn)(1−n)ρ.

This gives us an embedding

D[K]
n → P [K]

1−n,(−1)−n .

some mistake with indices..
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Chapter 5

Intertwining integrals

5.1 Intertwining

Let U be an admissible GI -representaiton. Let f ∈ pindI(U) and ζ ∈ U∗. We
will write

J−(f ; ζ) :=

∫
N−

(I)

〈ζ, f(x)〉.

5.2 Lemmas about r

Generalizing part 3 of lemma 4.3.1, we have:

Lemma 5.2.1. Let E be an algebraic representation of G(C), and 0 6= v ∈ Ea,λ

satisfying n(∅)v = 0. Assume additionally that n−I v = 0. Let a ∈ A−−,(I). Then

there exists 0 < c < 1 such that r(a−tgat)λ ≤ 4
√

1 + ctr(g)4λ for all g ∈ N−(I)
and t ≥ 0.

Proof. (notations as in ...) Set c = maxα∈Rs−I aα (0 < c < 1 because
a ∈ A−−,(I)). We can write gv =

∑
vi as above, with v1 = v and λ − λi ∈

Z≥0wt(n(I))− {0} for i 6= 1. We obtain:

||a−tgat||2 = 1 +
∑
i6=1

at(λ−λi)||vi||2 ≤ 1 + ct
∑
i 6=1

||vi||2 ≤ 1 + ct||gv||2.

Lemma 5.2.2.

1. Fix a ∈ A−−,(I). Then there exists 0 < c < 1 such that

r(a−txat)ρ(I) ≤ 4

√
1 + ctr(x)4ρ(I)

for all x ∈ N−(I), and t ≥ 0.
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2. Let g ∈ N−(I). If r(g)ρ(I) = 1, then g = e.

Proof.
(1) We use ... with E :=

∧dim n(I) gC, and a non-zero vector v in the one-
dimensional subspace corresponding to n(I). Then (n(∅) + n−I )v = 0 and v ∈
Ea,ρ(I) .

(2) We use ..., applied to E, v as in part (1) above. It is easy to calculate that
the stabilizer of v in g is p(I). Thus, the intersection of N−(I) with the stabilizer

of v in G is finite. Since N−(I) does not contain non-trivial finite subgroups, we

deduce that N−(I) intersects this stabilizer trivially.

5.3 The convergence of an integral - 3

Claim 5.3.1. Let λ ∈ a∗ be dominant and (Rs−I)-regular. Let d ∈ Z≥0. Then∫
N−

(I)

r(x)−ρ−λs(x)d

converges.

Proof. Let us notice that λ − ερ(I) is dominant for small enough ε > 0. Then

r(x)λ−ερ(I) ≥ 1 for x ∈ N−∅ by part (2) of lemma 4.3.2, i.e. r(x)−λ ≤ r(x)−ερ(I) ,
and thus it is enough to show the convergence of∫

N−
(I)

r(x)−ρ−ερ(I)s(x)d.

Let us fix a ∈ A−−,(I), which furthermore satisfies aα = 1 for α ∈ I.
We first show that, up to a scalar (not depending on t), the integrals∫

N−
(∅)

r(a−txat)−ρr(x)−ρ,

∫
N−

(I)

r(a−txat)−ρr(x)−ρ

are equal (here t ≥ 0). Indeed, we can write∫
N−

(∅)

r(a−txat)−ρr(x)−ρ =

∫
N−

(I)

∫
N−I

r(a−txyat)−ρr(xy)−ρ =

=

∫
N−

(I)

∫
N−I

[
r(a−tκI(y)−1xκI(y)at)−ρr(y)−ρ

] [
r(κI(y)−1xκI(y))−ρr(y)−ρ

]
=

=

∫
N−

(I)

∫
N−I

r(a−txat)−ρr(x)−ρr(y)−2ρ.

In the second passage, we used a lying in the center of GI , so in particular
commuting with κI(y). In the third passage, we changed variables on N−(I),

replacing x by κI(y)−1xκI(y).
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From here, we conclude using the estimate 4.6.5, that∫
N−

(I)

r(a−txat)−ρr(x)−ρ � (1 + t)d

for t ≥ 0.
We can find a compact subset Ω ⊂ N−(I) such that atΩa−t sits in the interior

of asΩa−s for t < s, and ∪t≥0a
tΩa−t = N−(I). For t ≥ 1, let us denote Ωt :=

atΩa−t.
There exists C1 > 1 such that r(x)ρ(I) ≥ C1 for x ∈ N−(I) − Ω0. Thus, for

x /∈ Ωn, since a−nxan /∈ Ω0, we have

r(a−nxan)ρ(I) ≥ C1.

By ..., there exists 0 < c < 1 such that

r(a−nxan)ρ(I) ≤ 4

√
1 + cnr(x)4ρ(I)

for all x ∈ N−(I). In particular, for x /∈ Ωn, we get

r(x)−ερ(I) ≤ (C4
1 − 1)−ε/4cεn/4.

There exists C2 > 0 such that r(x)ρ ≤ C2 for x ∈ Ω1. Thus, for x ∈ Ωn+1,
since a−nxan ∈ Ω1, we have

r(a−nxan)−ρ ≥ C−1
2 .

We get:∫
Ωn+1−Ωn

r(x)−ρ−ερ(I)s(x)d � cεn/4
∫

Ωn+1−Ωn

r(x)−ρr(a−nxan)−ρ ≤

≤ cεn/4
∫
N−

(I)

r(x)−ρr(a−nxan)−ρ � cεn/4(1 + n)d.

From this, the convergence of the integral is clear.

5.4 The weak inequality; tempered and square-
integrable HC (g, K)-modules

Definition 5.4.1. Let V be a HC (g,K)-module.

1. Let λ ∈ a∗. We say that V satisfies the weak (resp. strong) λ-
inequality, if there exists d ∈ Z≥0 such that (resp. for every d ∈ Z<0

and) for all v ∈ V, ṽ ∈ Ṽ , one has

|mṽ,v(g)| � Ξλ(g) · s(g)d (g ∈ G).
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2. We say that V is tempered (resp. square integrable), if it satisfies the
weak (resp. strong) 0-inequality.

Lemma 5.4.2. Let V be a HC (g,K)-module. Then V is tempered (resp. square
integrable) if and only if for every λ ∈ supp(V ) one has Re(λ) ≥ 0 (resp.
Re(λ) > 0).

Proof. By ..., one has Re(λ) ≥ 0 for all λ ∈ supp(V ) if and only if there exists
d ∈ Z≥0 such that

|mṽ,v(a)| � aρs(a)d (a ∈ A−).

Since G = KA−K and since (enlarging d if needed)

aρ � Ξ0(a) � aρs(a)d (a ∈ A−),

one easily sees that this is equivalent to

|mṽ,v(g)| � Ξλ(g) · s(g)d (g ∈ G).

As for square integrability, complete..

5.5 Parabolic induction and the weak inequality

Claim 5.5.1. Let U be a tempered HC (gI ,KI)-module and let χ ∈ G∨,unrI .
Then pindI(Uχ) satisfies the weak (−dχ)-inequality.

Proof. There exists d ∈ Z≥0 such that

|mũ,u(g)| � |χ(g)| · ΞI(g) · s(g)d (g ∈ GI)

for all u ∈ Uχ, ũ ∈ Ũχ.

Let f ∈ pindI(Uχ), h ∈ pindI(Ũχ−1).
Using the K-finiteness of f, h, we easily reduce the estimation of

〈h, gf〉 =

∫
K

|〈h(k), f(g−1k)〉|

to the estimation of ∫
K

|〈ζ, f(`I(g
−1k))〉|

for f ∈ pindI(Uχ), ζ ∈ Ũ−1
χ .

We have:∫
K

|〈ζ, f(`I(g
−1k))〉| =

∫
K

∆
−1/2
(I) (`I(g

−1k)) · |mζ,f(e)((`I(g
−1k)−1)| �

�
∫
K

∆
−1/2
(I) (`I(g

−1k)) · |χ−1(`I(g
−1k))| · ΞI(`I(g−1k)) · s(`I(g−1k))d =
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�
∫
K×KI

∆
−1/2
(I) (`I(g

−1k)) · |χ−1(`I(g
−1k))| · r(`I(g−1k)kI)

−ρIs(g)d =

=

∫
K×KI

∆
−1/2
(I) (`I(g

−1kkI)) · |χ−1(`I(g
−1kkI))| · r(g−1kkI)

−ρIs(g)d =

=

∫
K

r(g−1k)−ρ−dχs(g)d = Ξ−dχ(g)s(g)d.

Corollary 5.5.2. Let U be a tempered HC (gI ,KI)-module. Then pindI(U) is
a tempered HC (g,K)-module.

5.6 Convergence and non-vanishing of J−(f ; ζ)

Claim 5.6.1. Let U be a tempered HC (gI ,KI)-module and let χ ∈ G∨,unrI be

(I)-positive. Then for every f ∈ pindI(Uχ) and ζ ∈ Ũχ−1 , the integral J−(f ; ζ)
converges absolutely. Moreover, for every non-zero ζ there exists f such that
J−(f ; ζ) 6= 0.

Proof. Throughout the discussion, we fix ζ ∈ Ũχ−1 .
By ..., there exists d ∈ Z≥0 such that for every u ∈ Uχ we have

|〈ζ, gu〉| � |χ(g)| · ΞI(g) · s(g)d, g ∈ GI .

For the sake of showing the non-vanishing claim, we will need the following
elaboration. Let us define, for f ∈ pindI(Uχ):

σ(f) := supk∈K,g∈GI
|〈ζ, gf(k)〉|

|χ(g)| · ΞI(g) · s(g)d
.

It is easy to see that if f is K-finite, then σ(f) <∞ (see fact 1 below for a
more precise claim). We will show that J−(f ; ζ) converges absolutely whenever
σ(f) <∞, and more precisely∫

N−
(I)

|〈ζ, f(x)〉| � σ(f) (f ∈ pindI(Uχ)).

We have:∫
N−

(I)

|〈ζ, f(x)〉| =
∫
N−

(I)

|〈ζ,∆−1/2
(I) (`I(x))`I(x)−1f(κ(x))〉| ≤

≤
∫
N−

(I)

∆
−1/2
(I) (`I(x)) · σ(f) · |χ(`I(x)−1)| · ΞI(`I(x)−1) · s(`I(x)−1)d ≤
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≤ σ(f)

∫
N−

(I)
×KI

∆
−1/2
(I) (`I(x)) · |χ(`I(x)−1)| · r(`I(x)kI)

−ρIs(x)d =

= σ(f)

∫
N−

(I)
×KI

∆
−1/2
(I) (`I(x)) · |χ(`I(x)−1)| · r(xkI)−ρIs(x)d =

(because the first, second and fourth multipliers are invariant underKI -conjugation)

= σ(f)

∫
N−

(I)

∆
−1/2
(I) (`I(x))·|χ(`I(x)−1)|·r(x)−ρIs(x)d = σ(f)

∫
N−

(I)

r(x)−ρ−d|χ|s(x)d,

and the last integral converges by claim 5.3.1.

We now would like to establish the non-vanishing claim. We have the fol-
lowing facts:

1. If there exists a subset S ⊂ G such that SP(I) = G and f(S) is contained
in U and spans a finite-dimensional subspace, then σ(f) <∞.

2. Let µ be a compactly supported measure on G. Then

σ(π(µ)f) ≤ Csupp(µ) · ||µ|| · σ(f),

where Csupp(µ) is a constant depending only on supp(µ).

3. If supp(f |N−
(I)

) is compact in N−(I) and σ(f) <∞, then for an approxima-

tion of identity φn → δe on K, one has J−(π(φn)f ; ζ)→ J−(f ; ζ).

For fact 1, denoting E = Sp f(S) ⊂ U (so, by the assumption, it is a
finite-dimensional subspace), we notice that f(Cl(S)) ⊂ Clf(S) ⊂ E, so we can
assume that S is closed. Then, we can find a compact subset S′ ⊂ S such that
still S′P(I) = G. Hence, we can assume that S is compact.

Notice that for every k ∈ K, we can write k ∈ sP(I) for some s ∈ S, and
so we have κ(s)−1k ∈ P(I), thus κ(s)−1k ∈ KI . In other words, we see that
K = κ(S)KI .

By projecting S ⊂ G along the decomposition G ∼= K × A×NI ×N(I), we
see that we can find a compact subset Ω ⊂ GI such that s ∈ κ(s)ΩN(I) for every
s ∈ S. Thus, κ(S) ⊂ SΩ−1N(I).

Summing up the above, we have K = κ(S)KI ⊂ SΩ−1KIN(I). Let us
rename Ω := Ω−1KI , so that Ω is a compact subset of GI , and K ⊂ SΩN(I).
We have, for k ∈ K and m ∈ GI :

|〈mf(k), ζ〉| = |〈mf(sωn(I)), ζ〉| = ∆
−1/2
(I) (ω)|〈mω−1f(s), ζ〉|.

The factor ∆
−1/2
(I) (ω) is bounded, and writing f(s) =

∑
fi(s)ei where (ei) is a

basis for E, the fi(s) are also bounded. Thus the expression is majorized by∑
i

|〈mω−1ei, ζ〉|.
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Since the summands are finitely many, and each one is majorized by ΞI,λ(mω−1)s(mω−1)d,
our expression is majorized by

ΞI,λ(mω−1)s(mω−1)d.

By lemma ..., ΞI,λ(mω−1) is majorized by ΞI,λ(m), and since s(mω−1)d ≤
(s(m) + s(ω−1))d, the expression s(mω−1)d is majorized by s(m)d. This shows
that σ(f) <∞.

For fact 2, let us estimate

|〈m(π(µ)f)(k), ζ〉| = |
∫
G

〈mf(g−1k), ζ〉dµ|.

The integrand is equal to

∆
−1/2
(I) (`I(g

−1k))|〈m`I(g−1k)−1f(κ(g−1k)), ζ〉|.

The factor ∆
−1/2
(I) (`I(g

−1k)) is bounded (only depending on supp(µ)), while the

second factor is

≤ σ(f) · ΞI,λ(m`I(g
−1k)−1)s(m`I(g

−1k)−1)d.

Since `I(g
−1k)−1 lies in a compact depending only on supp(µ), by ... we obtain

that our integrand is majorized by

σ(f) · ΞI,λ(m)s(m)d,

with a constant depending only on supp(µ).

For fact 3, denote S := supp(f |N−
(I)

). Notice that supp(f) = SP(I). Fix a

precompact open V ⊂ N−(I) containing S. Then there exists an open U ⊂ K

such that US ⊂ V P(I). Then, if f(k−1x) 6= 0 (for k ∈ U, x ∈ N−(I)), we have

k−1x ∈ SP(I) and so x ∈ kSP(I) ⊂ V P(I), hence x ∈ V . Thus, whenever
supp(φn) ⊂ U , we have

J−(π(φn)f − f ; ζ) =

∫
N−

(I)

∫
K

φn(k)〈f(k−1x)− f(x), ζ〉 =

=

∫
V

∫
supp(φn)

φn(k)〈f(k−1x)− f(x), ζ〉.

This latter integral clearly tends to 0 as n→∞.

Let us finally establish the non-vanishing claim. Assume that ζ 6= 0. We
can choose u ∈ U such that ζ(u) 6= 0, and a function f0 ∈ Cc(N−(I)) for which∫
N−

(I)

f0(x) = 1. Then there is a unique f ∈ pindI(U) such that f(x) = f0(x)u

for x ∈ N−(I) and f(g) = 0 for g /∈ N−(I)P(I). By fact 1 above, σ(f) <∞ (taking
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S = (G − N−(I)P(I)) ∪ supp(f0)). Notice that J−(f ; ζ) = 〈u, ζ〉 6= 0. By fact 3

above, we can find φ ∈ C(K) such that J−(π(φ)f ; ζ) 6= 0. By fact 1 above, for
χ ∈ C(K):

|J−(π(χ)π(φ)f ; ζ)− J−(π(φ)f ; ζ)| � ||(χ ∗ φ− φ|| · σ(f).

Notice now that by taking a χ to be a K-finite supremum-approximation of an
approximation of identity, we can make ||(χ ∗ φ− φ|| to be as small as desired.
Hence, we can find such χ for which J−(π(χ)π(φ)f ; ζ) 6= 0; Since π(χ)π(φ)f is
K-finite, we are finally done.

5.7 A formula of Langlands

Claim 5.7.1. Let U be a tempered HC (gI ,KI)-module on which acent,I acts
by a weight µ ∈ a∗C strictly, and let χ ∈ G∨,unrI be (I)-negative. Then for every

f ∈ pindI(Uχ) and h ∈ pindI(Ũχ−1) one has

a−(µ+dχ+ρ(I)) · 〈h, af〉 log(a)→−∞−−−−−−−−→ J−(h; f(e)).

Here, a ∈ Acent,I and log(a) → −∞ means that α(log(a)) → −∞ for all α ∈
Rs − I.

Proof. We have

a−(µ+dχ+ρ(I))〈h, af〉 = a−(µ+dχ+ρ(I))

∫
N−

(I)

〈h(x), f(a−1x)〉 =

=

∫
N−

(I)

〈h(x), f(a−1xa)〉 log(a)→−∞−−−−−−−−→
∫
N−

(I)

〈h(x), f(e)〉 = J−(h; f(e)).

Here, the convergence is clear pointwise for the integrand, and in order to
verify it for the integral, we will invoke the dominated convergence theorem. By
the K-finiteness of f and h, it is enough to estimate the following integrand:

∆
−1/2
(I) (`I(x))∆

−1/2
(I) (`I(a

−1xa)) · |mh(e),f(e)(`I(x)`I(a
−1xa)−1)| �

� ∆
−1/2
(I) (`I(x))∆

−1/2
(I) (`I(a

−1xa))·|χ|−1(`I(a
−1xa)`I(x)−1)·ΞI(`I(x)`I(a

−1xa)−1)·s(`I(x)`I(a
−1xa)−1)d �

(we use ... to rewrite ΞI via an integral overKI ; We also estimate s(`I(a
−1xa)`I(x)) ≤

s(axa−1)+s(x), and then use s(x) ∼ 1+log(1+||log(x)||) to see that s(a−1xa) �
s(x))

� (∆
−1/2
(I) |χ|)(`I(x))(∆

−1/2
(I) |χ|

−1)(`I(a
−1xa)·

∫
KI

r(`I(a
−1xa)kI)

−ρI r(`I(x)kI)
−ρIs(x)d =
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(since KI normalizes N(I), we have r(`I(x)kI) = r(xkI) = r(k−1
I xkI), and

similarly, since a commutes with the elements of KI , we have r(`I(a
−1xa)kI) =

r(a−1k−1
I xkIa), which, since KI normalizes N−(I) (and we are dealing with an

integrand over N−(I)), allows us to eliminate the integration over KI)

same N−
(I)

integral

≡ r(x)d|χ|−ρ(I)r(a−1xa)−d|χ|−ρ(I) · r(a−1xa)−ρI r(x)−ρIs(x)d =

= r(a−1xa)−ρ−d|χ|r(x)−ρ+d|χ|s(x)d.

Now, fix ε > 0 so small so that −d|χ|−ερ(I) and ρ−ερ(I) are both dominant.
Then by lemma 4.3.2 (parts 1 and 2), we obtain

r(a−1xa)−ρ−d|χ|r(x)−ρ+d|χ| =

= r(a−1xa)−ρ+ερ(I) ·
(
r(a−1xa)−ερ(I)−d|χ|r(x)ερ(I)+d|χ|

)
·r(x)−ρ−ερ(I) ≤ r(x)−ρ−ερ(I) .

We obtain that our integrand is further estimated:

≤ r(x)−ρ−ερ(I)s(x)d,

which does not depend on a, and whose integral over N−(I) converges by claim
5.3.1.
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Chapter 6

The Langlands classification

6.1 The results

The results of this chapter are:

Claim 6.1.1. Let U be an irreducible tempered HC (gI ,KI)-module. Let χ ∈
G∨,unrI be (I)-positive. Then pindI(Uχ) admits a unique irreducible quotient.

Definition 6.1.2.

1. By a Langlands datum (I, U, χ) we mean a subset I ⊂ Rs, (an isomor-
phism class of) an irreducible tempered HC (gI ,KI)-module U , and an
(I)-positive χ ∈ G∨,unrI . We denote by LD(G) the set of Langlands data.

2. By the Langlands quotient associated to the Langlands datum (I, U, χ)
we mean (the isomorphism class of) the unique irreducible quotient of
pindI(Uχ). Thus, we have a map q : LD(G)→ Irr(G).

Claim 6.1.3 (Langlands classification). The map

q : LD(G)→ Irr(G)

is a bijection.

Claim 6.1.4. Let V be an irreducible tempered HC (g,K)-module. Then there
exists I ⊂ Rs and an irreducible square integrable HC (gI ,KI)-module U , such
that V is isomorphic to a submodule of pindI(U).

Corollary 6.1.5. Let V be an irreducible tempered HC (g,K)-module. Then
V is unitarizable.

Corollary 6.1.6. Let V be an irreducible tempered HC (g,K)-module. Then

Ṽ is also tempered.

Corollary 6.1.7. Let V be an irreducible HC (g,K)-module. Then there exists
I ⊂ Rs and an irreducible square integrable HC (gI ,KI)-module U , such that V
is isomorphic to a submodule of pindI(U).
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6.2 Proofs

6.2.1 Proof of uniqueness of irreducible quotient

Proof (of claim 6.1.1). By ..., we have a well-defined

J−(f ; ζ) : pindI(Uχ)⊗ Ũχ−1 → C.

Under J−(f) = 0 we will understand J−(f ; ζ) = 0 for all ζ (so we have
Ker(J−) ⊂ pindI(Uχ)). By ..., Ker(J−) 6= pindI(Uχ).

Let us denote by Ker(J−)′ the subspace consisting of v for which the (g,K)-
submodule generated by v is contained in Ker(J−). Then a (g,K)-submodule
of pindI(Uχ) is contained in Ker(J−) if and only if it is contained in Ker(J−)′.

It is enough to show that every proper submodule of pindI(Uχ) is contained
in Ker(J−)′ or, equivalently in Ker(J−). Equivalently, for f ∈ pindI(Uχ)
such that f /∈ Ker(J−), we want to show that the submodule V ⊂ pindI(Uχ)
generated by f is equal to the whole pindI(Uχ).

Denoting by V ⊥ ⊂ pindI(Ũχ−1) the orthogonal complement, we need to
show that V ⊥ = 0.

Since V ⊥ is a (g,K)-submodule, we easily verify that V ⊥e := {h(e) : h ∈ V ⊥}
is a (gI ,KI)-submodule in Ũχ−1 . If V ⊥ 6= 0, then V ⊥e 6= 0, because for h ∈ V ⊥,
h(k) = (k−1h)(e), and if h|K = 0 then h = 0. Since U is irreducible, we see

that if V ⊥ 6= 0, then V ⊥e = Ũχ−1 , which implies (since f /∈ Ker(J−)) that there
exists h ∈ V ⊥ for which J−(f ;h(e)) 6= 0. But by ..., J−(f ;h(e)) is the limit of
values in C× · 〈a−1f, h〉, which are zero since h is orthogonal to V , and hence
to the closure of V (in which a−1f is contained). This contradiction shows that
V ⊥ = 0.

6.2.2 Proof of injectivity of q

Proof (of injectivity in claim 6.1.3). Suppose that V is a quotient both of pindI(Uχ)
and of pindI′(U

′
χ).

By ..., pindI′(Ũ
′
χ′) satisfies the weak (−dχ′)-inequality, and hence so does

Ṽ . By ..., since (−dχ′) is antidominant, we have

|mv,ṽ(a
−1)| � a−dχ

′+ρs(a)d, a ∈ A−,

for v ∈ V, ṽ ∈ Ṽ .
On the other hand, by ..., we can find v ∈ V, ṽ ∈ Ṽ such that

|mv,ṽ(a
−1)| � a−dχ+ρ(I) , log(a) ∈ a

(I)-remote
cent,I ,

where
a

(I)-remote
cent,I = {H ∈ acent,I | α(H) ≤ −R ∀α ∈ Rs − I}

for some fixed big-enough R.

74



Combining these two estimates, we obtain

adχ
′−dχ � s(a)d, log(a) ∈ a

(I)-remote
cent,I .

This forces dχ′− dχ to be non-positive on a
(I)-remote
cent,I , and hence on a

(I)-negative
cent,I ,

where
a

(I)-negative
cent,I = {H ∈ acent,I | α(H) ≤ 0 ∀α ∈ Rs − I}.

Notice now that Hα ∈ a
(I)-negative
cent,I for α ∈ I. Thus, we get dχ′(Hα) ≤

dχ(Hα) = 0 for α ∈ I. This forces α ∈ I ′ for α ∈ I, i.e. I ′ ⊂ I. By symmetry,
we get I = I ′.

Now, once we know I = I ′, we obtain by the above that both dχ′ ≤ dχ and

dχ ≤ dχ′ on a
(I)-negative
cent,I . Thus dχ′ = dχ on a

(I)-negative
cent,I . This implies dχ′ = dχ

on acent,I , and this implies χ′ = χ.
It is left now to see that U is isomorphic to U ′.
complete

6.2.3 Langlands geometric lemmas

To prove the surjectivity of q, we will need the following material. Our reference
is [5].

Let E be a finite-dimensional Euclidean vector space over R. Let (vi)i∈Σ be
a basis for E, and (wi)i∈Σ the dual basis. We have the positive cone

Epos :=
∑

R≥0vi

and the dominant cone
Edom :=

∑
R≥0wi.

Define the Langlands retraction

L : E → Edom

by sending v to the closest vector to it in Edom. This is well-defined since Edom

is non-empty, closed and convex. It is also not hard to see that L is continuous.
For v ∈ E, define Iv ⊂ Σ by

Iv = {i ∈ Σ | (vi, v) = 0}.

Lemma 6.2.1. Let v ∈ E. Then L(v) can be characterized as the unique
element w ∈ V dom satisfying

v − w ∈ −
∑
i∈Iw

R≥0vi.
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Proof. Let us denote I = Iw for brevity. Let us write

v =
∑
i∈I

civi +
∑
i/∈I

ciwi.

Notice that w ∈
∑
i/∈I R>0wi.

Notice that w = L(v) if and only if for every w′ ∈ E for which w+εw′ ∈ Edom
for small ε, one has

dist(v, w + εw′)2 ≥ dist(v, w)2

for small ε. One has:

dist(v, w + εw′)2 = dist(v, w)2 + ε2||w′||2 − 2ε(v − w,w′),

so the condition for w = L(v) is

(v − w,w′) ≤ 0

for all the above w′. It is enough to check for w′ ∈
∑
i/∈I Rwi and w′ = wi for

i ∈ I. The condition for the first yields

(
∑
i/∈I

ciwi − w,w′) ≤ 0

for all w′ ∈
∑
i/∈I Rwi, hence w =

∑
i/∈I ciwi (and the condition is equivalent to

this). The condition for the second, w′ = wi for some i ∈ I, gives then ci ≤ 0.
To conclude, we see that w = L(v) if and only if w =

∑
i/∈I ciwi and ci ≤ 0

for i ∈ I. This makes the lemma clear.

For I ⊂ Σ, let us define

CI := −
∑
i∈I

R≥0vi +
∑
i/∈I

R≥0wi.

Also, denote by PI ∈ End(E) the orthogonal projection with kernel
∑
i∈I Rvi.

Lemma 6.2.2.

1. One has L|CI = PI |CI .

2. The CI ’s cover E (as we run over I ⊂ Σ).

Proof. Both claims are clear by the previous lemma.

From now on, suppose that (vi, vj) ≤ 0 for i 6= j. Define the partial order
v ≤ w if w − v ∈ Epos.

Lemma 6.2.3. L is order preserving, i.e. v ≤ w implies L(v) ≤ L(w).
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Proof. First, notice that it is enough to assume that v, w ∈ CI for some I ⊂ Σ
(indeed, we see this by walking along the line segment between v and w). On
CI , L is given by PI . Hence, it is enough to show that PI is order preserving.
In other words, we want to show that PI(E

pos) ⊂ Epos. For that, it is enough
to show that PI(vi) ∈ Epos for every i ∈ Σ. If i ∈ I, PI(vi) = 0 and the claim
is clear. If i /∈ I, then since (vi − PI(vi), vj) = (vi, vj) for all j ∈ I, we have
(vi − PI(vi), vj) ≤ 0 for all j ∈ I. Thus, since vi − PI(vi) ∈

∑
j∈I Rvj , we have

vi − PI(vi) ∈
∑
j∈I R≤0vj . Hence PI(vi) ∈ vi +

∑
j∈I R≥0vj ⊂ Epos.

Lemma 6.2.4. Let v ∈ E. Then L(v) can be characterized as the unique ≤-
minimal element of the set

{w ∈ Edom | w ≥ v}.

Proof. By lemma ..., we clearly have v ≤ L(v). Furthermore, if v ≤ w and
w ∈ Edom, then L(v) ≤ L(w) = w by the previous lemma.

Lemma 6.2.5. Let S ⊂ E be a finite subset. Let v ∈ S be such that L(v) is a ≤-
maximal element in L(S). Then for every v′ ∈ S satisfying v′−v ∈

∑
i∈IL(v)

Rvi,
we have L(v′) = L(v).

Proof. Let us denote by L′ the retraction L for
∑
i∈IL(v)

Rvi with its basis vi,

and write M ′ = Id− L′. Then

v′ = (v′ − L(v)) + L(v) ≥M ′(v′ − L(v)) + L(v)

and thus, applying L, we obtain

L(v′) ≥ L(M ′(v′ − L(v)) + L(v)) = L(v).

From the property of v, we obtain L(v′) = L(v).

6.2.4 Proof of surjectivity of q

Proof (of surjectivity in claim 6.1.3). Let V be an irreducible HC (g,K)-module.
We want to show that V can be embedded into pindI(Uχ) where U is tempered

and χ is (I)-negative (then Ṽ = q(I, Ũ , χ−1) and substituting Ṽ for V gives the
desired).

This is equivalent to finding I ⊂ Rs, a quotient U of presI(V ), and χ ∈
G∨,unrI such that χ is (I)-negative and Uχ−1 is tempered.

For µ ∈ wt(pres∅(V )) and I ⊂ Rs, we consider χ ∈ G∨,unrI defined by
dχ|acent,I = µ|acent,I , and consider the summand U of presI(V ) on which acent,I
acts via generalized character dχ. We will find µ and I such that χ is (I)-
negative and Uχ−1 is tempered.

We use E := a∗ss with its Euclidean form B. We use the basis vα := α
of E, and the dual basis wα. Let us denote by S ⊂ E the set of −Re(µss)
with µ ∈ wt(pres∅(V )). Let us choose µ ∈ wt(pres∅(V )) such that for the
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corresponding v := −Re(µss) ∈ S, L(v) is a maximal element in L(S), and set
I := IL(v).

Let us denote w := −Re(dχss) ∈ E. Notice that (wα, w) = (wα, v) for
α /∈ I, and also (vα, w) = 0 for α ∈ I. This forces w = L(v). In particular,
(vα, w) > 0 for α /∈ I. This translates to Re(dχ)(Hα) < 0 for α /∈ I, i.e. Re(dχ)
is (I)-negative.

Furthermore, for v′ ∈ S such that (wα, v
′) = (wα, v) when α /∈ I, by ... we

obtain L(v′) = L(v) = w, showing that v′ ≤ L(v′) = w. This translates to: For
µ′ ∈ wt(pres∅(V )) for which µ′|acent,I = µ|acent,I , we have Re(µ′ − dχ)(Ωα) ≥ 0
for α ∈ Rs. In other words, we obtain Re(µ′ − dχ) ≥I 0.

6.3 Example: SL2(R)

6.3.1 Notations

We have the standard basis of g:

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

Then H is a basis element of a, X is a basis element of n, and Y is a basis
element of n−.

We identify a∗C
∼= C, via λ 7→ λ(H).

We also have a basis of gC given by

Hc = −iX + iY, Xc =
1

2
(−iH +X + Y ), Yc =

1

2
(iH +X + Y ).

Notice that iHc is a basis element for k.

6.3.2 Principal series

The irreducible representations of K∅ = {±1} are the trivial and sign repre-
sentations - we will parametrize them by ε ∈ {0, 1}. Thus, the irreducible HC
(g∅,K∅)-modules are parametrized by (λ, ε) ∈ C×{0, 1}, and so are the principal
series; we have

Pλ,ε = {smooth f : G/N → C | f(g·c·etH) = cεe−(λ+1)tf(g) ∀g ∈ G, t ∈ R, c ∈ K∅}.

We can identify G/N ∼= R2 − {0}, via gN 7→ g

(
1
0

)
. Then

Pλ,ε = {smooth f : R2−{0} → C | f(sv) = |s|−(λ+1)sgn(s)εf(v) ∀v ∈ R2−{0}, s ∈ R×}.

Let us denote by eλn : R2 − {0} → C the function given by

eλn(

(
s · cos(θ)
s · sin(θ)

)
) := s−(λ+1)einθ, s ∈ R×+, θ ∈ R/2πR.
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P [K]
λ,ε has a basis eλn, n ∈ 2Z when ε = 0, and eλn, n ∈ 2Z + 1 when ε = 1.

One has:

Hce
λ
n = neλn, Xce

λ
n =

1

2
i(−(λ+ 1)− n)eλn+2, Yce

λ
n =

1

2
i(λ+ 1− n)eλn−2.

6.3.3 Decomposition of principal series

The case ε = 0:

If λ /∈ 2Z + 1, then P [K]
λ,0 is irreducible. Let’s assume that λ ∈ 2Z + 1. If

λ ∈ {1, 3, · · · }, then P [K]
λ,0 has a finite dimensional quotient module - the span

of eλn with −(λ − 1) ≤ n ≤ λ − 1, and the kernel is the direct sum of the two

”tails”. If λ ∈ {−1,−3, · · · }, then P [K]
λ,0 has a finite dimensional submodule -

the span of eλn with λ+ 1 ≤ n ≤ −(λ+ 1), and the cokernel is the direct sum of
the two ”tails”.

The case ε = 1:

If λ /∈ 2Z, then P [K]
λ,1 is irreducible. Let’s assume that λ ∈ 2Z. If λ ∈ {2, 4, · · · },

then P [K]
λ,1 has a finite dimensional quotient module - the span of eλn with −(λ−

1) ≤ n ≤ λ − 1, and the kernel is the direct sum of the two ”tails”. If λ ∈
{−2,−4, · · · }, then P [K]

λ,1 has a finite dimensional submodule - the span of eλn
with λ + 1 ≤ n ≤ −(λ + 1), and the cokernel is the direct sum of the two

”tails”. Finally, if λ = 0, then P [K]
λ,1 is the direct sum of two ”tails” - that with

Hc-weights {1, 3, · · · }, and that with Hc-weights {−1,−3, · · · }.

6.3.4 Irreducible (g, K)-modules

The center Z(g) is the polynomial algebra in the Casimir element

Z =
1

8
(H2

c + 2Hc + 4YcXc).

One calculates that Z acts on P [K]
λ,ε by 1

8 (λ2− 1). Thus, P [K]
λ,ε and P [K]

λ′,ε′ have no
common irreducible constituents, unless λ′ ∈ {λ,−λ} and ε′ = ε. One can see
by direct calculation, or using the calculation of character (add?), that in the
latter case, the Jordan-Holder contents of the two modules is the same.

This allows us to summarize (in view of Casselman’s submodule theorem),
what are the irreducible (g,K)-modules:

1. P [K]
λ,ε for ε = 0 and λ /∈ 2Z + 1, or ε = 1 and λ /∈ 2Z.

2. A finite dimensional module Lk of dimension k, for k ∈ Z≥1.

3. A module D+
k with Hc-weights {k, k + 1, . . .} for k ∈ Z≥1.

4. A module D−k with Hc-weights {−k,−(k + 1), . . .} for k ∈ Z≥1.
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6.3.5 Tempered irreducible (g, K)-modules

Let us determine which irreducible (g,K)-modules V are tempered/square in-
tegrable.

Recall that V is temp. (resp. s.i.) if for all µ ∈ wt(pres∅(V )), one has
Re(µ) ≥ 0 (resp. Re(µ) > 0).

Notice that µ ∈ wt(pres∅(V )) if and only if one has a non-zero morphism

V → P [K]
µ,ε for some ε.

Let us consider the weights in wt(pres∅(V )) for irreducible representations
V according to the list of the previous subsection:

1. The weights of P [K]
λ,ε are λ,−λ.

2. The weights of Lk are −k.

3. The weights of D+
k are k − 1.

4. The weights of D−k are k − 1.

We see thus that:

1. P [K]
λ,ε are tempered when Re(λ) = 0, and never square integrable.

2. Lk are not tempered.

3. D+
k are square integrable for k ≥ 2, and D+

1 is tempered (but not square
integrable).

4. D−k are square integrable for k ≥ 2, and D−1 is tempered (but not square
integrable).

6.3.6 Langlands classification

We have identifications G∨,unr∅
∼= a∗C

∼= C (the first via χ 7→ dχ, and the second
as before). Via this identification, µ ∈ C corresponds to a (∅)-positive character,
if µ ∈ R>0.

The tempered irreducible HC (g∅,K∅)-modules correspond to (λ, ε) with
λ ∈ iR. Thus, the parabolic inductions of positive twists of tempered represen-

tations, appearing in the Langlands classification, are P [K]
λ+µ,ε, with λ ∈ iR and

µ ∈ R>0.

The Langlands quotient of such P [K]
λ+µ,ε is simply P [K]

λ+µ,ε unless:

1. λ = 0, ε = 0, and µ ∈ {1, 3, · · · }, in which case the Langlands quotient is
Lµ.

2. λ = 0, ε = 1, and µ ∈ {2, 4, · · · }, in which case the Langlands quotient is
Lµ.
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Chapter 7

Character
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Chapter 8

Further spherical stuff

8.1 Spherical irreducible (g, K)-modules

An irreducible (g,K)-module V is called spherical, if V K 6= 0.

Claim 8.1.1. For each λ ∈ a∗C, P [K]
λ has exactly one spherical irreducible sub-

quotient (i.e. any Jordan-Holder filtration) - call it Sλ. We have Sλ ∼= Sλ′ if
and only if λ′ ∈ Wλ. Every sphercial irreducible (g,K)-module is isomorphic
to one of the Sλ.

Proof. That P [K]
λ has exactly one spherical irreducible subquotient follows from

V 7→ V K being exact, and dimPKλ = 1.
One has Sλ 6∼= Sλ′ if λ′ /∈Wλ because U(g)K acts differently.
One has Swλ ∼= Sλ because, denoting by λmax the dominant element in Wλ,

one has an non-zero intertwining morphism P [K]
λmax → P

[K]
λ . complete

Given a spherical irreducible (g,K)-module V , one can find an embedding
V → pind∅(Eλ) where E is an irreducible (g∅,K∅)-module. This implies that
pind∅(Eλ)K 6= 0 and hence E must be the trivial module. Hence we have an

embedding of V to P [K]
λ , and thus V ∼= Sλ.

Corollary 8.1.2 (Gelfand property of (G,K)). For every spherical irreducible
(g,K)-module V , one has dimV K = 1.

8.2 The Harish-Chandra transform

Completely analogously to the above

hc : U(g)K → Fun(a∗C),

we can define
H : C∞c (K\G/K)→ Fun(a∗C).
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Namely,

H(φ)(λ) :=
π(φ)ξλ
ξλ

.

We call it the Harish-Chandra transform.

Claim 8.2.1. The map H is an injective algebra homomorphism (where the
source is an algebra under convolution, and the target is an algebra under point-
wise multiplication).

Proof. ThatH is an algebra homomorphism is clear. To show that it is injective,
notice that if H(φ) = 0, then φ acts by zero on every spherical irreducible
admissible quasi-simple representation of G. but φ clearly acts by zero also on
every non-spherical irreducible representation of G. In particular, we see that
φ acts by zero on every finite-dimensional representation of G(C) (restricted to
G). Equivalently, the inner product of φ with any matrix coefficient of such a
representation is zero. By the Stone-Weierstrass theorem we see that φ = 0.

Claim 8.2.2. We have

H(φ)(λ) =

∫
G

φ(g)Ξλ(g) =

∫
A

aλ ·

[
aρ
∫
N(∅)

φ(an)

]
.

Proof. For the first equality, notice that

H(φ)(λ) = 〈π(φ)ξλ, ξ−λ〉 =

∫
G

φ(g)Ξλ(g).

For the second equality:∫
G

φ(g)Ξλ(g) =

∫
G×K

φ(g)r(g−1k)−λ−ρ =

∫
G

φ(g)r(g−1)−λ−ρ =

∫
A×N(∅)

φ(an)aλ+ρ.

Define the Abel transform

A : C∞c (K\G/K)→ Fun(A)

by the formula inspired by the above:

A(φ)(a) := aρ
∫
N(∅)

φ(an).

We see that H(φ) is the Fourier transform of A(φ).

Theorem 8.2.3 (The real version of the p-adic Satake isomorphism (is there
a better name? Payley-Wiener type?)). The transform A induces an algebra
isomorphism

A : C∞c (K\G/K)→ C∞c (A)W

(where the target is an algebra under convolution).
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Proof. Notice that Im(H) ⊂ Fun(a∗C)W because Ξwλ = Ξλ. Also, notice that
for φ ∈ C∞c (K\G/K), A(φ) is smooth and has compact support. Thus, all
points in the above theorem are clear/already established, except the surjectiv-
ity. We omit the proof of the surjectivity (it is not immediate).

One would like also variants of this theorem for L2 and Schwartz spaces
(maybe add formulations).
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Chapter 9

Square integrable
representations

9.1 The results
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Chapter 10

The Langlands parameters

10.1 The Langlands dual group

10.2 The Langlands parameters

10.3 The Langlands correspondence
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Chapter 11

More precise information
on asymptotics
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