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Symmetry, as wide or as narrow
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1 Sources

Some of the sources:

• “Complex Semisimple Lie Algebras” by J. P. Serre

• “Lectures on Lie Algebras” by J. Bernstein

2 Topological groups, actions and representa-
tions

2.1 Topological groups

Definition 2.1.

• A topological group is a set G equipped with both a group structure
and a topology, such that the multiplication map G × G → G and the
inverse map G→ G are continuous.

• Given topological groups G and H, a morphism of topological groups
from G to H is a map ϕ : G → H which is both continuous and a group
homomorphism.

Example 2.2. Here are some examples of topological groups.

• Any group, given the discrete topology, becomes a topological group.

• R, with the group operation of addition and its standard topology, is a
topological group. So is C. Another example is Qp, the additive group of
the field of p-adic numbers.
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• We have the topological groups R×, C× and Q×p - the multiplicative groups
of the fields, i.e. the sets of non-zero elements, with group operation being
multiplication and the topology on F× being inherited from F , the former
being an open subset in the latter.

• The group GLn(R) of invertible matrices over R of order n, with the op-
eration of multiplication of matrices and the topology inherited to it as an
open subset of the R-vector space Mn(R). Again, we have also GLn(C)
and GLn(Qp).

• The next example is essentially the same as previous one. If we have a
finite-dimensional vector space V over R, we have the topological group
GL(V ) = GLR(V ) of invertible R-linear transformations from V to V ,
with the operation of composition. Similarly, for vector spaces over C or
Qp (the reader is welcome to describe the topology).

• Various closed subgroups1 of GLn(R), GLn(C) and GLn(Qp). For ex-
ample, the subgroups SLn(F ) ⊂ GLn(F ) consisting of matrices of de-
terminant 1. Or, the subgroups O(n) ⊂ GLn(R) and U(n) ⊂ GLn(C)
consisting of orthogonal, respectively unitary, matrices. We also have
SO(n) := O(n) ∩ SLn(R) and SU(n) := U(n) ∩ SLn(C).

• There are also natural topological groups which are not locally compact.
For example, Given a topological group G we can consider the topological
space of continuous maps Map(S1, G) from the circle S1 to G, equipped
with the compact-open topology, and define the group operation pointwise.
This is a “loop group”.

Remark 2.3. Except those of the last items, all the groups in Example 2.2 are
locally compact.

Exercise 2.1. Show that the topological groups O(n) and U(n) are compact.

2.2 Actions

Definition 2.4. Let G be a topological group.

• Let X be a set. An abstract G-action on X is a map (with no require-
ment of continuity what-so-ever) a : G×X → X satisfying

(1) a(1G, x) = x for all x ∈ X.

(2) a(g1, a(g2, x)) = a(g1g2, x) for all g1, g2 ∈ G and x ∈ X.

• Let X be a topological space. A G-action on X is an abstract action
a : G×X → X which is continuous.

1Although any subgroup of a topological group becomes itself a topological group with
the subspace topology, it is most natural to look at closed subgroups, because those are the
subgroups for which the quotient G/H will be a T1-space.
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• A G-space is a topological space X equipped with a G-action.

Given a G-space X, we almost always keep the action map a implicit,
writing gx or g · x instead of a(g, x)2.

• Given G-spaces X and Y , a morphism of G-spaces from X to Y is a
map ϕ : X → Y satisfying ϕ(gx) = gϕ(x) for all g ∈ G and x ∈ X.

Example 2.5.

1. Let G be a topological group. There are three strandard actions of G on
itself. The left regular action is given by a(g, g′) := gg′. The right
regular action is given by a(g, g′) := g′g−1. The conjugation action
is given by a(g, g′) := gg′g−1.

2. Let G be a topological group and let H ⊂ G be a closed subgroup. We have
a canonical surjective map π : G → G/H (sending g to gH) and we give
G/H the corresponding quotient topology, i.e. U ⊂ G/H is defined to be
open if π−1(U) ⊂ G is open. Then we make G/H a G-space by setting
a(g, g′H) := gg′H.

3. We have the standard action of GLn(R) on Rn given by multiplying a
vector by a matrix.

4. Consider Sn−1 ⊂ Rn, the closed subspace consisting of vectors of length
1 with respect to the standard inner product (the ”unit sphere”). Then
SO(n) acts on Sn−1 by multiplying a vector by a matrix.

5. Let H ⊂ C consist of complex numbers z for which Im(z) > 0 (the ”upper
half plane”). Let G := SL2(R). We have an action of G on H (“by Möbius
transformations”), given by setting(

a b
c d

)
· z := az + b

cz + d
.

6. Consider the symmetric R-bilinear form on R4 given by

Q((x1, x2, x3, t), (x
′
1, x
′
2, x
′
3, t
′)) := x1x

′
1 + x2x

′
2 + x3x

′
3 − tt′

(appearing in special relativity). Consider the “light cone” X := {v ∈
R4 | Q(v, v) = 0}. Consider the closed subgroup SO(3, 1) ⊂ GL4(R) con-
sisting of matrices A which preserve Q, i.e. which satisfy Q(Av,Aw) =
Q(v, w) for all v, w ∈ R4. Then we have an action of SO(3, 1) on X by
multiplying a vector by a matrix.

Definition 2.6. Let G be a topological group and let X be a G-space.

2In the same way as when given a group G, we keep the multiplication map, say m, implicit,
don’t give it a name, and write g1g2 instead of m(g1, g2).
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• X is said to be transitive if X is non-empty and for every x1, x2 ∈ X
there exists g ∈ G such that gx1 = x2.

• X is said to be homogeneous if it is isomorphic3 to the G-space G/H
for some closed subgroup H ⊂ G.

Clearly, a homogeneous G-space is transitive. To check whether the converse
holds, let X be a transitive G-space. Choose some x0 ∈ X. Denote

Gx0
:= {g ∈ G | gx0 = x0} ⊂ G.

Then Gx0
is a closed subgroup of G, called the stabilizer of x0. We have a

map
ϕ : G/Gx0

→ X, gGx0
7→ gx0.

Check, that ϕ is a morphism of G-spaces. Check, that ϕ is bijective. Thus, the
only problem that might be is that ϕ is not a homeomorphism, i.e. that the
inverse of ϕ is not continuous. This is equivalent to the map G → X given by
g 7→ gx0 not being an open map.

Lemma 2.7. Let G be a topological group and let X be a G-space. Suppose that
G and X are locally compact and that G is separable4. Then if X is a transitive
G-space it is also homogeneous.

Proof. Fix x0 ∈ X. As just explained, we want to check that the map ψ : G→ X
given by g 7→ gx0 is open. Let U ⊂ G be a non-empty open subset. We want
to see that ψ(U) ⊂ X is an open subset. To that end, fix u0 ∈ U , and we want
to see that ψ(u0) is an interior point of ψ(U). Translating everything by u−10 ,
we can assume without loss of generality that 1G ∈ U and u0 = 1G. Let us
pick a compact neighbourhood of 1G lying in U , call it 1G ∈ V ⊂ U , such that
V −1 · V ⊂ U . It is enough to show that ψ(V ) contains some interior point.
Indeed, if v ∈ V is such that ψ(v) is an interior point of ψ(V ), ψ(1G) = v−1ψ(v)
will be an interior point of v−1ψ(V ) = ψ(v−1V ), and since v−1V ⊂ U , ψ(1G)
will also be an interior point of ψ(U), as desired. Thus, we want to see that ψ(V )
contains some interior point. SinceG is separable, we can find a countable subset
{gi} ⊂ G which is dense in G. Then it is immediate to see that ∪igiV = G.
Hence ∪igiψ(V ) = X. By Baire’s category theorem5, for some i the subset
giψ(V ) of X has an interior point. Translating, the subset ψ(V ) of X has an
interior point, as desired.

In our practice we will only deal with second countable6 locally compact
spaces, and hence the last lemma shows that there is no difference between
transitive and homogeneous G-spaces.

3An isomorphism is a morphism which admits an inverse morphism - so we can speak of
an isomorphism of topological groups, an isomorphism of G-spaces, etc.

4A topological space is separable if it contains a countable subset which is dense in it.
5Baire’s category theorem says, in particular, that if a locally compact space is pre-

sented as a countable union of closed subsets, then one of these closed subsets has an interior
point.

6A topological space is second countable if it has a countable base for the topology.
Second countable topological spaces are separable.
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Exercise 2.2. Check which of the examples in Example 2.5 are homogeneous.

2.3 Harmonic analysis

Let X be a topological space. We can ask a basic question in harmonic analysis:
How to study a, say continuous, function f : X → C? The basic idea is that we
want a systematic way of writing such an f as some (infinite) sum of “simple”
functions which we can understand. When having a G-action on X, the basic
idea is that those “simple” functions should be functions that “transform simply
under the G-action”. What does it mean more precisely?

First, denoting by C(X) the C-vector space of continuous functions from X
to C, let us notice that we have an abstract7 action of G on C(X): Given g ∈ G
and f ∈ C(X), we set gf to be the function sending x to f(g−1x), i.e. we set
(gf)(x) := f(g−1x).

The simplest behaviour is of being G-invariant: A function f ∈ C(X) is
G-invariant if gf = f for all g ∈ G, i.e. f(g−1x) = f(x) for all g ∈ G and
x ∈ X. In other words, given g ∈ G denote by Tg : C(X) → C(X) the linear
operator given by f 7→ gf . Then f is G-invariant if it is an eigenvector of all
the operators Tg, with eigenvalue 1.

A generalization is as follows. Let χ : G → C× be a function. A function
f ∈ C(X) is χ-equivariant, or a G-eigenfunction with eigencharacter χ,
if gf = χ(g) ·f for all g ∈ G, i.e. f(g−1x) = χ(g) ·f(x) for all g ∈ G and x ∈ X.
In other words, f is χ-equivariant if, for every g ∈ G, f is an eigenvector of Tg
with eigenvalue χ(g). We have the following exercise:

Exercise 2.3. If f ̸= 0, then χ is in fact a morphism of topological groups.

Because of the exercise, we only consider χ’s which are morphisms of topo-
logical groups.

Definition 2.8. Let G be a topological group. A quasi-character of G is a
morphism of topological groups G → C×. A character of G is a morphism of
topological groups G → C×|−|=1. Let us denote by qCh(G) (resp. Ch(G)) the

abelian group of quasi-characters of G (resp. characters of G), where the group
operation is pointwise multiplication. So Ch(G) is a subgroup of qCh(G).

Exercise 2.4. Let G be a topological group. Show that if G is compact, then
every quasi-character of G is a character of G.

Remark 2.9. Often in harmonic analysis one is interested in χ-eigenfunctions
only when χ is a character, rather than merely a quasi-character. But, this
is not always to case, for example the Laplace transform involves also quasi-
characters. Anyway, our focus in this course will be compact groups, for which,
in view of Exercise 2.4, there is no difference.

7One can give C(X) a topology so that this abstract action will be an action, i.e. it will
be continuous, but we don’t want to discuss this now.
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Example 2.10. Let us illustrate. Consider the unit circle S1 ⊂ R2, and the
action of SO(2) on it, multiplying a vector by a matrix, as in one of the examples
above. Here, it is convenient to identify both S1 and SO(2) with R/Z as follows.
Notice that R/Z is a topological group naturally (R is a topological group with
respect to addition, and the quotient by the closed normal subgroup Z is again
a topological group naturally). Let us abbreviate [x] := x + Z. We have an
isomorphism of topological groups

R/Z ∼−→ SO(2)

given by

[x] 7→
(

cosx − sinx
sinx cosx

)
.

We have an isomorphism of topological spaces

R/Z ∼−→ S1

given by

[x] 7→
(

cosx
sinx

)
.

Under these isomorphisms, our action becomes the action of R/Z on R/Z given
by a([x], [y]) := [x + y], i.e. simply translation (or what we called the regular
(left or right) action). What characters of R/Z do we have? Given n ∈ Z, we
have χn ∈ Ch(R/Z) given by χn([x]) := e2πinx. One checks that Z→ Ch(R/Z)
given by n 7→ χn is an isomorphism of abelian groups. Now, what are the
eigenfunctions? One immediately sees that, setting fn := χ−n, we have that fn
is χn-equivariant, i.e.

fn([x]− [y]) = e2πinyfn([x]), ∀x, y ∈ R,

and all χn-equivariant functions are scalar multiples of fn.

Let us continue with this example. As we said, the idea is that we want to
write any function f ∈ C(R/Z) as an infinite sum of functions which behave
simply under the translation action. So, we want to write any function f ∈
C(R/Z) as an infinite C-linear combination of the fn’s. More explicitly, we can
think of continuous functions on R/Z as continuous functions on R which are
periodic, with period 1. So given f ∈ C(R) which is 1-periodic, we want to
write (yet non-formally, heuristically)

f(x) =
∑
n∈Z

cn · e−2πinx.

This is the subject of classical Fourier theory - the subject of Fourier series.
First, one needs to guess what should be the coefficients cn. For this, we inte-
grate (yet non-formally, heuristically):∫ 1

0

f(x) · e2πimx · dx =
∑
n∈Z

cn ·
∫ 1

0

e−2πinxe2πimx · dx = cm.

Now, one can formulate various formal claims, for example:
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Theorem 2.11. Given n ∈ Z, denote by fn ∈ C(R) the 1-periodic function
x 7→ e−2πinx. Let f ∈ C(R) be 1-periodic and smooth. Define

cn :=

∫ 1

0

f(x) · f−n(x) · dx.

Then
f =

∑
n∈Z

cnfn

absolutely and uniformly.

Proof. Omitted.

Remark 2.12. In this course, we concentrate on compact groups. Already
now we can see how non-compact groups provide more complication. Namely,
consider the group R instead of R/Z. Explicitly this has the meaning that we
now consider continuous functions in C(R) which are not necessarily 1-periodic.
This time, we have R ∼−→ Ch(R), given by t 7→ χt, where χt(x) := e2πitx. So the
“space of parameters” is now not discrete. Therefore, we will expect a general
function to not decompose as an infinite sum of simple functions, but rather as
an integral of simple functions. Namely, we have ft(x) := e−2πitx as before, but
now we will want to write

f(x) =

∫ +∞

−∞
ct · e2πitx · dt.

Remark 2.13. Complete harmonic analysis of functions on X in terms of G
is, generally speaking, impossible, unless X is a homogeneous G-space. For
example, imagine R acting on R2 by x′ · (x, y) := (x + x′, y). Functions which
“transform simply” under the action in that case will be functions of the form
(x, y) 7→ h(y) · e−2πiux for u ∈ R and g ∈ C(R), i.e. “in the y-direction” we
are completely unrestrained. Thus, the action has not helped us to gain any
simplification “in the y-direction”. To gain simplification in “all directions”, the
action needs to be homogeneous8.

Finally, let us illustrate how such harmonic analysis can be used.

Theorem 2.14. Let α ∈ R be an irrational number. Let (a, b) ⊂ [0, 1] be a
subinterval. Then

lim
N→∞

1

N
· (number of 0 ≤ n ≤ N − 1 for which nα ∈ (a, b) + Z) = b− a.

In words, {[nα]}n≥0 is equidistributed in R/Z.

Proof. Notice that if consider a function f on R/Z to be the characteristic
function of (a, b), then the statement of the theorem is formulated as

lim
N→∞

1

N

N−1∑
n=0

f([nα]) =

∫ 1

0

f([x])dx. (2.1)

8Or, maybe, just having a dense orbit also sometimes allows for “complete analysis”.
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Next, we would like to understand that it is enough to estbalish (2.1) for all
smooth functions f on R/Z - this is a small exercise, approximating the charac-
teristic function by smooth functions from below and above. Now, notice that
the equality (2.1) is stable under linear combinations and under passage to a
limit of a uniformly convergent sequence. Hence, in view of Theorem 2.11, in
order to establish (2.1) for all smooth functions f it is enough to establish it for
the functions f := fm, for m ∈ Z. To that end, let us calculate:

1

N

N−1∑
n=0

fm([nα]) =
1

N

N−1∑
n=0

e2πimnα =

{
1 m = 0
1
N
e2πimNα−1
e2πimα−1 m ̸= 0

N→∞−−−−→

N→∞−−−−→

{
1 m = 0

0 m ̸= 0

and since we also have ∫ 1

0

fm(x)dx =

{
1 m = 0

0 m ̸= 0

we are done.

2.4 Representations

Representations naturally arise when we consider more complicated examples
than the one above. Namely, let us consider SO(3) acting on S2 as we had some-
where above. So, attempting to do as above, we again first ask about Ch(SO(3)).
However, it turns out that Ch(SO(3)) = {1} (this is an exercise whose solution
we omit currently). The SO(3)-eigenfunctions with trivial eigencharacter are
the constant functions. So, we need to somehow extend our understanding of
“functions which transform simply under the action”. A simple thing to notice
is that if we consider functions in C(S2) which are of the form x

y
z

 7→ ax+ by + cz

for some a, b, c ∈ C, those form a 3-dimensional C-linear subspace of C(S2), call
this subspace L, and we notice that L is SO(3)-invariant, i.e. gf ∈ L whenever
g ∈ SO(3) and f ∈ L. So we have now a hint regarding what to “transform
simply” could mean more generally - a (non-zero) SO(3)-eigenfunction is sim-
ply a function spanning a SO(3)-invariant 1-dimensional subspace, and we can
generalize, and search for SO(3)-invariant f.d. subspaces.

Thus, let us try to formulate abstractly what we are aiming at currently.
Let G be a topological group and let X be a G-space. Let L ⊂ C(X) be a
f.d. C-linear subspace which is G-invariant, i.e. gf ∈ L whenever g ∈ G and
f ∈ L. We have an abstract action a : G × L → L inherited from the abstract
action of G on C(X).
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Exercise 2.5. Let M be a f.d. C-vector space. Choose an isomorphism of C-
vector spaces M ∼= Cn, and using it transport the standard topology of Cn to
M . Show that the resulting topology on M does not depend on the choice of
isomorphism. Thus a f.d. C-vector space has a well-defined topology - we will
always consider them with that topology.

Exercise 2.6. Show that the abstract action a above is, in fact, an action, i.e.
it is continuous (where we have explained in Exercise 2.5 what is the topology
to be taken on L).

Furthermore, clearly this action a is C-linear in the second variable, i.e. for
any g ∈ G the map L→ L given by v 7→ a(g, v) is C-linear. What replaces the
eigenvalue prescription χ ∈ Ch(G) in our current generalization is an “abstract
model” for our L, i.e. a f.d. C-vector space M , equipped with a G-action which
is C-linear in the second variable (and M has nothing to do with X - that is
the meaning of the adjective “abstract”). So we define:

Definition 2.15. Let G be a topological group.

• Let V be a C-vector space. A C-linear abstract G-action on V is an
abstract action G× V → V which is C-linear in the second variable.

• An abstract G-representation is a C-vector space V equipped with a
C-linear abstract G-action.

• Let V be a f.d. C-vector space. A C-linear G-action on V is a G-action
on V which is C-linear as an abstract action, i.e. the abstract action
G× V → V should be continuous and C-linear in the second variable.

• A f.d. G-representation is a f.d. C-vector space M equipped with a
C-linear G-action.

• Let V1 and V2 be abstractG-representations. Amorphism of G-representations
from V1 to V2 is a C-linear map T : V1 → V2 satisfying T (gv) = gT (v) for
all g ∈ G and v ∈ V1. We denote by HomG(V1, V2) the C-vector space of
morphisms of G-representations from V1 to V2 (the structure of C-vector
space on this set is just by it being a C-vector subspace of HomC(V1, V2)).

Thus, our L of before is a 3-dimensional SO(3)-representation, which we
have found inside C(S2), which itself is an abstract SO(3)-representation.

Exercise 2.7. Here is a basic reformulation of what a f.d. representation is.
Let G be a topological group and let M be a f.d. C-vector space. Show that
the set of C-linear G-actions on M is in bijection with the set of topological
group morphisms G → GL(M), by sending a : G ×M → M to the morphism
ρ : G→ GL(M) defined by ρ(g)(v) := a(g, v). We will swap freely between these
two equivalent formulations.

However, a f.d. G-representation is still not the precise generalization of
a quasi-character of G. To explain this, let us consider the following simple
notions:
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Remark 2.16.

• Let V be a f.d. G-representation. Let W ⊂ V be a G-invariant C-
linear subspace (i.e. for g ∈ G and v ∈ W we have gv ∈ W ). Then
W itself, with the G-action gotten by restriction of that on V , is a f.d.
G-representation. For that reason, a G-invariant C-linear subspace is also
called a G-subrepresentation.

• Recall first some notions for vector spaces. There is the notion of an
(external) direct sum: Let W and U be C-vector spaces. Then we
construct a new C-vector spaceW ⊕U as the Cartesian product ofW and
U , with addition and multiplication by scalar performed element-wise.
There is also the notion of an internal direct sum: If V is a C-vector
space andW,U ⊂ V are C-vector subspaces, then V is said to be the direct
sum of W and U if the C-linear map W ⊕U → V given by (w, u) 7→ w+u
is an isomorphism of C-vector spaces. Equivalently, if V = W + U and
W ∩ U = {0}. One then also writes V = W ⊕ U (causing a very slight
abuse of notation).

• Let V and W be two f.d. G-representations. We construct a f.d. G-
representation V ⊕W , called the (external) direct sum of V and W ,
as follows. As a C-vector space it is the direct sum of V and W . The
G-action is given by g(v, w) := (gv, gw).

• Let V be a f.d. G-representation. LetW,U ⊂ V be twoG-subrepresentations
such that V = W ⊕ U (internal direct sum). Then the (external) direct
sum W ⊕ U of W and U is isomorphic as a G-representation to V via
(w, u) 7→ w + u.

We don’t want to look for things isomorphic to a direct sum M1 ⊕ M2

inside C(X) - it is inefficient once we have already looked for things which are
isomorphic to M1 and things which are isomorphic to M2. Thus, we in some
sense want to only consider “smallest possible” G-representations. One arrives
to the following definition:

Definition 2.17. Let G be a topological group and let M be a f.d. G-
representation. We say that M is irreducible if M ̸= 0 and the only G-
subrepresentations of M are 0 and M . The term “irreducible representation” is
often abbreviated as “irrep”.

Remark 2.18. One can also define M to be indecomposable if given G-
subrepresentationsM1,M2 ⊂M such thatM =M1⊕M2, one has eitherM1 = 0
or M2 = 0. Then clearly an irreducible representation is indecomposable. We
will see later that if G is compact then the converse also holds.

We can now state a theorem for the action of SO(3) on S2:

Theorem 2.19. For every n ∈ 2Z≥0+1 there exists a unique SO(3)-invariant n-
dimensional subspace Ln ⊂ C(S2) which is irreducible as an SO(3)-representation.

12



Given a smooth9 f ∈ C(S2) there exists a unique collection (fn)n∈2Z≥0+1 with
fn ∈ Ln such that

f =
∑

n∈2Z≥0+1

fn

absolutely and uniformly.

Proof. Omitted.

Definition 2.20. Let G be a topological group. We denote by Irr(G) the set
of isomorphism classes of irreducible f.d. G-representations. Given an irre-
ducible f.d. G-representation M , we denote by [M ] ∈ Irr(G) the corresponding
isomorphism class.

Irr(G) is our generalization of qCh(G) - this is what replaces eigencharacters.
Given [M ] ∈ Irr(G), one looks for G-invariant f.d. C-linear subspaces L ⊂
C(X) which are isomorphic, as G-representations, to M - this is what replaces
eigenfunctions.

How is this related to the previous search for G-eigenfunctions? A quasi-
character χ ∈ qCh(G) gives rise to an irreducible 1-dimensionalG-representation
which we denote by Cχ. It is constructed as follows. As a C-vector space, it
is simply C itself. The G-action is given by g · c := χ(g)c. Now, a G-invariant
C-linear subspace L ⊂ C(X) which is isomorphic to Cχ as a G-representation is
simply a 1-dimensional subspace all of whose vectors are G-eigenfunctions with
eigencharacter χ (check this!).

Exercise 2.8. Show that every 1-dimensional G-representation is irreducible,
and is isomorphic to Cχ for some quasi-character χ ∈ qCh(G). Show also
that given two quasi-characters χ1, χ2 ∈ qCh(G) such that χ1 ̸= χ2, the 1-
dimensional G-representations Cχ1 and Cχ2 are non-isomorphic. In other words,
we have an injection qCh(G) ↪→ Irr(G) given by χ 7→ [Cχ], whose image is the
set of isomorphism classes of 1-dimensional G-representations.

Example 2.21. One can show that every irreducible f.d. SO(3)-representation
is isomorphic to Ln for some n ∈ 2Z≥0 + 1 (in the notation of Theorem 2.19).
Of course, this is a very nice situation - in general, there can be irreducible
f.d. G-representations which do not appear in a certain C(X), and there can
be irreducible f.d. G-representations which appear in a certain C(X) more than
once.

9One of the characterizations of a function f ∈ C(S2) being smooth is that for every p ∈ S2

there exists an open p ∈ U ⊂ R3 and a smooth function f̃ ∈ C(U) such that f̃ |U∩S2 = f .
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3 Basic representation theory of compact groups

3.1 Haar measure

By a locally compact space we will always mean a second countable locally
compact space10. By Cc(X) ⊂ C(X) we denote the subspace of functions with
compact support11.

Definition 3.1. Let X be a locally compact topological space. A signed
Radon measure on X is a functional

∫
: Cc(X) → C with the following

property:

• (continuity) Given a sequence {fn} ⊂ Cc(X) converging uniformly to
f ∈ Cc(X), such that there exists a compact subset K ⊂ X with the
property that fn|X∖K = 0 for all n, the sequence {

∫
fn} converges to

∫
f .

The set of signed Radon measures is naturally a C-vector space, and we
denote it by M(X). We say that a signed Radon measure

∫
: Cc(X) → C is a

Radon measure if it satisfies in addition the following property:

• (positivity) Given f ∈ Cc(X) such that f(x) ≥ 0 for all x ∈ X, we have∫
f ≥ 0.

Example 3.2.

• On R we have the Radon measure sending f ∈ Cc(R) to the usual Riemann

integral
∫ +∞
−∞ f(x) · dx.

• Generalizing the previous example, given a continuous function g ∈ C(R),
we have on R the signed Radon measure sending f ∈ Cc(R) to

∫∞
−∞ g(x)f(x)·

dx. It is a Radon measure if and only if g(x) ≥ 0 for all x ∈ R.

• On R we have the Radon measure δ0 (the Dirac delta) sending f ∈ Cc(R)
to f(0).

• Given a (countable) set X, considering X as a discrete topological space
we have the counting Radon measure on X given by

∫
f :=

∑
x∈X f(x).

Exercise 3.1. Let X be a locally compact space and V a f.d. C-vector space.
We denote by Cc(X,V ) the C-vector space of continuous functions from X to
V which have compact support. Let

∫
∈ M(X). Then we can naturally define

an “extension” of
∫

to a C-linear map Cc(X,V )→ V , which by abuse of nota-
tion we also call

∫
. It is the unique C-linear map which sends any expression∑

1≤i≤n fivi (where fi ∈ Cc(X) and vi ∈ V ) to
∑

1≤i≤n
(∫
fi
)
vi. We have some

natural properties. For example, given a C-linear operator T : V → W between
two f.d. C-vector spaces, we have T

(∫
F
)
=
∫
(T ◦ F ) where F ∈ Cc(X,V ).

10I assume second countability to be on the safe side and not think about technicalities
(and, since most spaces in practice are second countable, this is not very restrictive).

11The support of a function f ∈ C(X) is defined as the closure in X of the subset of X
consisting of x ∈ X for which f(x) ̸= 0.
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Let G be a topological group and let X be a G-space, which is locally
compact. Recall that we have on the C-vector space C(X) the structure of
an abstract G-representation - given g ∈ G and f ∈ C(X) we define gf ∈ C(X)
by (gf)(x) := f(g−1x). It is clear that Cc(X) ⊂ C(X) is a G-subrepresentation.
Now, on the C-vector space M(X) of signed Radon measures we also have the
structure of an abstract G-representation - given g ∈ G and

∫
∈ M(X) we

define g
∫
∈ M(X) by (g

∫
)(f) :=

∫
g−1f . In general, given an abstract G-

representation V , a vector v ∈ V is said to be G-invariant if gv = v for all
g ∈ G. So, we can speak about G-invariant signed Radon measures on X.

Remark-Notation 3.3. Let G be a topological group. Recall the left regular
action of G on G given by a(g, g′) := gg′ and the right regular action of G
on G given by a(g, g′) := g′g−1. We correspondingly get two abstract C-linear
actions ofG on Cc(G) and onM(G), as described above. Given g ∈ G, we denote
by Lg : Cc(G) → Cc(G) and Rg : Cc(G) → Cc(G) the corresponding C-linear
operators of acting by g, so concretely (Lgf)(g

′) = f(g−1g′) and (Rgf)(g
′) =

f(gg′). Also, we denote (slightly abusing notation) by Lg : M(G)→M(G) and
Rg : M(G) → M(G) the corresponding C-linear operators of acting by g, so(
Lg
∫ )

(f) =
∫
Lg−1f and

(
Rg
∫ )

(f) =
∫
Rg−1f .

Theorem-Definition 3.4 (Haar). Let G be a locally compact group.

• (existence) There exists a non-zero Radon measure
∫
∈ M(X) which is

right G-invariant (i.e. G-invariant w.r.t. the right regular action), i.e.
satisfying Rg

∫
=
∫

for all g ∈ G.

• (uniqueness) Any two non-zero right G-invariant signed Radon measures
on X differ by a scalar.

A right G-invariant non-zero Radon measure on X is called a right Haar
measure. Thus, any two right Haar measures differ by a scalar in R×>0.

Proof. Omitted.

Remark 3.5. Of course, by considering the left regular action, we analogously
obtain the notion of a left Haar measure.

Exercise 3.2. Let G be a discrete group. Show that the counting measure on G
is both a left and a right Haar measure. In particular, for that class of groups
there is a canonical choice for a right Haar measure (which in general is only
defined up to a positive scalar).

Example 3.6. A Haar measure on R (clearly on an abelian group there is no
difference between right and left Haar measures) is given by the usual Riemann

integral f 7→
∫ +∞
−∞ f(x) · dx.

Exercise 3.3. Let G be a locally compact group and let
∫

be a right Haar
measure on G. Let f ∈ Cc(G) satisfy f(g) ≥ 0 for all g ∈ G and suppose that
f ̸= 0. Then

∫
f > 0.
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Remark 3.7. Let us see that right Haar measures coincide with left Haar
measures for compact groups as well. Let

∫
∈ M(G) be a right Haar measure.

Let g ∈ G. One immediately sees that Lg
∫

is again a right Haar measure.
By the uniqueness of a right Haar measure, there exists c ∈ R>0 such that
Lg
∫

= c ·
∫
. Notice that (Lg

∫
)(1) =

∫
(Lg−1(1)) =

∫
1 (where 1 ∈ Cc(G) is

the function which is equal to 1 everywhere - it has compact support since G is
compact!) and on the other hand (Lg

∫
)(1) = (c

∫
)(1) = c ·

∫
1. Comparing, we

obtain c = 1, and so Lg
∫
=
∫
. Since this holds for every g ∈ G, by definition∫

is a left Haar measure.

Let us here also notice that the right Haar measure
∫
∈ M(G) for our

compact group G can be always normalized so that
∫
1 = 1. We can say that

such a right Haar measure has total mass 1.

3.2 Complete reducibility, Schur’s lemma, multiplicities

Definition 3.8. LetG be a topological group. Let V be a f.d. G-representation.
An inner product ⟨−,−⟩ on V is said to be G-invariant if

⟨gv1, gv2⟩ = ⟨v1, v2⟩, ∀g ∈ G, v1, v2 ∈ V.

Lemma 3.9. Let G be a compact group. Let V be a f.d. G-representation.
Then there exists a G-invariant inner product on V .

Proof. Let ⟨−,−⟩0 be any inner product on V . Denoting by
∫
a Haar measure

on G, let us define a function ⟨−,−⟩ : V × V → C by

⟨v1, v2⟩ :=
∫

(g 7→ ⟨gv1, gv2⟩).

Then clearly ⟨−,−⟩ is an inner product on V (the strict positivity is a conse-
quence of Exercise 3.3), and it is G-invariant, since given h ∈ G we have

⟨hv1, hv2⟩ =
∫
(g 7→ ⟨ghv1, ghv2⟩) =

∫
(g 7→ ⟨gv1, gv2⟩) = ⟨v1, v2⟩.

Claim 3.10. Let G be a compact group. Let V be a f.d. G-representation. Let
W ⊂ V be a G-invariant C-linear subspace. Then there exists a G-invariant
C-linear subspace U ⊂ V such that V =W ⊕ U .

Proof. Let ⟨−,−⟩ be a G-invariant inner product on V (which exists by Lemma
3.9). Consider W⊥ ⊂ V - the orthogonal complement to W w.r.t. ⟨−,−⟩. We
have V = W ⊕W⊥, so it is enough to check that W⊥ is G-invariant. Thus,
given v ∈ W⊥ and g ∈ G, we want to check that gv ∈ W⊥. For this, we need
to check that ⟨w, gv⟩ = 0 for all w ∈W . But we have

⟨w, gv⟩ = ⟨g−1w, g−1(gv)⟩ = ⟨g−1w, v⟩

and since g−1w ∈W , this is 0, as desired.
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Corollary 3.11. Let G be a compact group. Every f.d. G-representation is the
direct sum of irreducible f.d. G-representations.

Proof. We continue breaking the representation into direct sum of smaller ones
using Claim 3.10, until we hit irreducible representations.

Example 3.12. Let us consider the representation of S3 on V := C3, given by

σ

 x1
x2
x3

 :=

 xσ−1(1)

xσ−1(2)

xσ−1(3)

 .

The C-span of

 1
1
1

, denote it by L, is an S3-subrepresentation of V . Notice

that the standard inner product on V = C3 is in fact S3-invariant. Hence L⊥

is an S3-subrepresentation of V as well. It is an exercise to see that L⊥ is
an irreducible S3-representation, which simply means in this case that there are
no non-zero vectors in L⊥ which are eigenvectors for all operators from the
S3-action.

Exercise 3.4. Let V and W be abstract G-representations and let T : V →W
be a morphism of G-representations. Show that Ker(T ) is a G-subrepresentation
of V and Im(T ) is a G-subrepresentation of W .

Claim 3.13 (Schur’s lemma). Let G be a topological group. Let E and F be
two irreducible f.d. G-representations. Then HomG(E,F ) = 0 if E and F are
not isomorphic and dimC HomG(E,F ) = 1 if E and F are isomorphic.

Proof. Let T : E → F be a non-zero morphism of G-representations. Consider
Ker(T ). Since it is a G-subrepresentation of E and since E is irreducible we
have either Ker(T ) = 0 or Ker(T ) = E. In the latter case we have T = 0,
so we must be in the former case, i.e. T is injective. Similarly, Im(T ) is a G-
subrepresentation of F and therefore Im(T ) = 0 or Im(T ) = F . In the former
case T = 0 and so we must be in the latter case, i.e. T is surjective. Thus T is
bijective, and hence an isomorphism of G-representations12.

We have shown that if E and F are non-isomorphic then HomG(E,F ) = 0.
Now assume that E and F are isomorphic, and we want to see that HomG(E,F )
is 1-dimensional. It is enough13 to check that HomG(E,E) is 1-dimensional. Of
course, the 1-dimensional subspace of scalar operators lies in HomG(E,E), so
we need to check that given T ∈ HomG(E,E) in fact T is a scalar operator. Let
λ ∈ C be an eigenvalue of T . Since Ker(T − λ · IdE) is a non-zero G-invariant
C-vector subspace of E, we must have Ker(T − λ · IdE) = E. So T = λ · IdE , as
desired.

12This is a very small exercise - a bijective morphism of G-representations is an isomoprhism
of G-representations, i.e. its inverse is also a morphism of G-representations.

13That it is enough is a very small exercise.
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Corollary-Definition 3.14. Let G be a compact group. Let V be a f.d. G-
representation and let E be an irreducible f.d. G-representation. Decomposition
V = E1⊕. . .⊕En as a direct sum of irreducible f.d. G-representations, the num-
ber of 1 ≤ i ≤ n for which Ei is isomorphic to E is equal to dimC HomG(E, V ),
and in particular it does not depend on the decomposition. It is called the mul-
tiplicity of E in V and denoted [V : E].

Proof. We have

HomG(E, V ) = HomG(E,E1 ⊕ . . .⊕En) ∼= HomG(E,E1)⊕ . . .⊕HomG(E,En)

and by Schur’s lemma the i-th summand is 1-dimensional if Ei is isomorphic to
E and 0 otherwise. From this the claim is clear.

Corollary 3.15. Let G be a compact group. Let V andW be f.d. G-representations.
Suppose that for every irreducible f.d. G-representation E we have [V : E] =
[W : E]. Then V is isomorphic to W .

Proof. We write V and W as direct sums of irreducible representations, and
construct an isomorphism by adding isomorphisms between the various sum-
mands.

3.3 Character

Let us fix a compact group G, and let us fix the Haar measure
∫
∈ M(G)

normalized to have total mass 1.

Definition 3.16. Let V be a f.d. G-representation. The character of V is the
function chV ∈ C(G) given by

chV (g) := Tr (V → V : v 7→ gv) .

Example 3.17. The character of Cχ is χ.

Claim 3.18. Let V be a f.d. G-representation.

1. The character chV is a class function, which means chV (hgh
−1) =

chV (g) for all g, h ∈ G.

2. We have chV (g
−1) = chV (g) for all g ∈ G.

Proof. The first item follows immediately from the property Tr(STS−1) = T
for C-linear endomorphisms T, S : V → V of a f.d. C-vector space. As for
the second item, let ⟨−,−⟩ be a G-invariant inner product on V and denote by
T ∈ EndC(V ) the operator T (v) := gv. We know that T is a unitary operator
w.r.t. the inner product ⟨−.−⟩ and we want to see that Tr(T−1) = Tr(T ). This
is an exercise in linear algebra (recall that a unitary operator is diagnolizable
with all eigenvalues being complex numbers of absolute value 1).
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Given a f.d. G-representation V , let us denote by V G ⊂ V the C-linear
subspace of G-invariants:

V G := {v ∈ V | gv = v, ∀g ∈ G}.

Lemma 3.19. Let V be a f.d. G-representation. We have∫
chV = dimC V

G.

Proof. Denote by π(g) ∈ EndC(V ) the operator given by π(g)v := gv. Let
us define P ∈ EndC(V ) by (see Exercise 3.1 for integration of vector-valued
functions)

P =

∫
(g 7→ π(g)).

We claim that P is a projection operator onto V G. Notice that for every v ∈ V
we have P (v) =

∫
(g 7→ gv). First, let us check that for any v ∈ V we have

P (v) ∈ V G. Indeed, let g ∈ G. Then gP (v) = g
∫
(h 7→ hv) =

∫
(h 7→ ghv) =∫

(h 7→ hv) = P (v), where in the third equality we used
∫
being a Haar measure.

Next, let us check that for v ∈ V G we have P (v) = v. Indeed, P (v) =
∫
(g 7→

gv) =
∫
(g 7→ v) = (

∫
(g 7→ 1))v = v. Thus indeed P is a projection operator

onto V G. Therefore, Tr(P ) = dimC V
G. But, on the other hand, we also have

Tr(P ) = Tr

(∫
(g 7→ π(g))

)
=

∫
(g 7→ Tr(π(g))) =

∫
chV .

Given two f.d. G-representations V and W , we construct a linear G-action
on HomC(V,W ) as follows:

(gT )(v) := gT (g−1v).

In this way we make HomC(V,W ) a G-representation. Notice that the subspace
of G-invariants, HomC(V,W )G is equal to HomG(V,W ), the space of morphisms
of G-representations from V to W .

Lemma 3.20. Let V and W be f.d. G-representations. We have

chHomC(V,W )(g) = chW (g) · chV (g−1) = chW (g) · chV (g) ∀g ∈ G.

Proof. The second equality is just item (2) of Claim 3.18. The first equality
follows from the following exercise in linear algebra: Let T ∈ EndC(V ) and
S ∈ EndC(W ). Define R ∈ EndC(HomC(V,W )) by

R(A) := S ◦A ◦ T.

Then
Tr(R) = Tr(S) · Tr(T ).
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Definition 3.21. We define an inner product ⟨−,−⟩G on C(G) by:

⟨f1, f2⟩G :=

∫
(g 7→ f1(g) · f2(g)).

Corollary 3.22. Let V and W be f.d. G-representations. Then

⟨chW , chV ⟩ = dimC HomG(V,W ).

Proof. We have

dimC HomG(V,W ) = dimC(HomC(V,W )G) =

∫
(g 7→ chHomC(V,W )(g)) =

=

∫
(g 7→ chW (g) · chV (g)) = ⟨chW , chV ⟩G.

Corollary 3.23 (Orthogonality relations). The functions chE ∈ C(G) as E
runs over non-isomorphic irreducible f.d. G-representations form an orthonor-
mal set, and thus in particular a linearly independnt set.

Proof. By the previous corollary and by Schur’s lemma (Claim 3.13) we have
for an irreducible f.d. G-representation E

⟨chE , chE⟩ = dimC HomG(E,E) = 1

and for non-isomorphic irreducible f.d. G-representations E and F we have

⟨chE , chF ⟩ = dimC HomG(E,F ) = 0.

Remark 3.24. It is also true that {chE}[E]∈Irr(G) form a “complete” orthonor-
mal system in the space of class functions on G, that is, given f ∈ C(G) which
is a class function, if ⟨f, chE⟩ = 0 for all [E] ∈ Irr(G) then f = 0. In a different
terminology, {chE}[E]∈Irr(G) forms a Hilbert basis for the Hilbert space L2(G)G

of square-integrable class functions on G.

Claim 3.25. Let V and W be f.d. G-representations. If chV = chW then V is
(non-canonically) isomorphic to W .

Proof. As explained above, to see that V is isomorphic to W it is enough to see
that [V : E] = [W : E] for all irreducible f.d. G-representations E. We saw that
[V : E] = dimC HomG(E, V ) = ⟨chE , chV ⟩ and from this the claim follows.

Thus, at least in some basic sense, the problem of finding all irreducible f.d.
G-representations up to isomorphism can be thought of as solved once we are
able to write down all their characters.

Remark 3.26. We calculate easily that given a f.d. G-representation V , we
have that V is irreducible if and only if ⟨chV , chV ⟩ = 1, i.e. the character of V
has length 1.

20



3.4 Character in the case of SU(n)

In this course we will focus on the representation theory of the groups SU(n).
The difference with U(n) is not big, but SU(n) has a finite center, making things
a bit more tidy. Also, one could study SO(n) instead, but, again, things will be
a bit more tidy for SU(n).

We denote by T ⊂ SU(n) the subgroup consisting of diagonal matrices. We
have an isomorphism of topological groups

(C×|−|=1)
n−1 ∼−→ T

given by

(t1, . . . , tn−1) 7→ diag

(
t1, . . . , tn−1,

1

t1 · . . . · tn−1

)
(where diag(a1, . . . , an) stands for the diagonal matrix with values a1, . . . , an on
the diagonal).

Claim 3.27. Every element in SU(n) is conjugate to an element in T .

Proof. Let g ∈ SU(n). By linear algebra (every unitary transformation is uni-
tarily diagnolizable) there exists h ∈ U(n) such that g′ := hgh−1 is diagonal.
Since det(g′) = 1, i.e. g′ ∈ SU(n), we have g′ ∈ T . Denote c := det(h). Then
c ∈ C×|−|=1. Denote h′ := c−1/n · h. Then det(h′) = 1, i.e. h′ ∈ SU(n), and still

h′g(h′)−1 = g′.

Corollary 3.28. Let V and W be f.d. SU(n)-representations. If (chV )|T =
(chW )|T then chV = chW and thus V is isomorphic to W .

Therefore, a uniquely determining attribute of a f.d. SU(n)-representation
V is (chV )|T . Let us recall some linear algebra:

Exercise-Definition 3.29. Let V be a f.d. C-vector space. Let S ⊂ EndC(V )
be a subset consisting of pairwise commuting diagnolizable operators. Then,
given a function χ : S → C denoting

VS,χ := {v ∈ V | Tv = χ(T )v ∀T ∈ S},

we have
V =

⊕
χ:S→C

VS,χ.

In fact, if for some χ we have VS,χ ̸= 0 then χ is continuous and also whenever
T1, T2, T1T2 ∈ S we have χ(T1T2) = χ(T1)χ(T2). In particular, if S is a subgroup
in GLC(V ) then if for some χ we have VS,χ ̸= 0 then χ must be a topological
group morphism S → C× and therefore we have

V =
⊕

χ∈qCh(S)

VS,χ.

Let us denote by wtS(V ) ⊂ qCh(S) the subset of χ’s for which VS,χ ̸= 0 (the
subset of weights).
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Exercise-Definition 3.30. Let S be an abelian toploogical group. Show that
every irreducible f.d. S-representation is 1-dimensional. Thus given a f.d. S-
representation V we can write V = L1 ⊕ . . . ⊕ Ln where Li are 1-dimensional
S-subrepresentations. So each Li is isomorphic to Cχi

for some χi ∈ Ch(S).
See that for every χ ∈ Ch(S) we have

VS,χ =
⊕

1≤i≤n
[Li]=[Cχ]

Li.

Now let us go back to a f.d. SU(n)-representation V . Since the operators
by which elements of G act on V are unitary w.r.t. some inner product, they
are all diagnolizable. In particular, the operators by which elements of T act on
V form a subgroup of GLC(V ) consisting of pairwise commuting diagnolizable
operators. Hence we can write

V =
⊕

χ∈Ch(T )

VT,χ

and we have, for t ∈ T ,

chV (t) =
∑

χ∈Ch(T )

(dimC VT,χ) · χ(t)

Hence a uniquely determining attribute of a f.d. SU(n)-representation V is the
vector of dimensions

(dimC(VT,χ))χ∈Ch(T ) .

The vector of dimensions recovers chV |T and, conversely, chV |T recovers the
vector of dimensions:

Exercise 3.5. Using Corollary 3.23 notice that Ch(T ) is a linearly independent
subset of C(T ).

Another important piece of symmetry we have is as follows. Let W denote
the group Sn of permutations on {1, . . . , n}. In this context it is called the
Weyl group. We have an action of W on T by:

w · diag(t1, . . . , tn) = diag(tw−1(1), . . . , tw−1(n)).

It is an action by topological group automorphisms. In the following exercise
we give another way to look at W .

Exercise 3.6. Consider NSU(n)(T ), the normalizer of T in SU(n). Show that
it is equal to subgroup of “permutation matrices”, i.e. matrices whose every row
contains exactly one non-zero entry. Consider ZSU(n)(T ), the centralizer of T
in SU(n). Show that ZSU(n)(T ) = T . In general, recall that given a subgroup
H ⊂ G then ZG(H) is normal in NG(H), and we have a natural action of
NG(H)/ZG(H) on H by group automorphisms, via conjugation. This action is
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faithful, in the sense that if an element acts trivially then it is trivial. Back
to our case, identify NSU(n)(T )/ZSU(n)(T ) with W via their actions on T (i.e.
both identify with the same subgroup of the group of automoprhisms of the group
T ).

Given w ∈W , we will denote ẇ ∈ NSU(n)(T ) an element such that ẇtẇ−1 =
wt for all t ∈ T (all what we will say will not depend on this choice). The action
of W on T induces an action of W on Ch(T ), by (wχ)(t) := χ(w−1t). Now,
given a f.d. G-representation V , notice that we have∑
χ∈Ch(T )

dimC VT,χ·χ(t) = chV (t) = chV (ẇtẇ
−1) =

∑
χ∈Ch(T )

dimC VT,χ·χ(ẇtẇ−1) =

=
∑

χ∈Ch(T )

dimC VT,χ · (w−1χ)(t) =
∑

χ∈Ch(T )

dimC VT,wχ · χ(t)

and therefore dimC VT,wχ = dimC VT,χ for all w ∈ W and χ ∈ Ch(T ). Another
way to explain this equality is to notice that ẇVT,χ = VT,wχ.

3.5 Example: Irreps of SU(2)

Let us consider SU(2). Then matrices in T look like(
t 0
0 t−1

)
for t ∈ C×|−|=1, and every character of T looks like(

t 0
0 t−1

)
7→ tm

for some uniquely defined m ∈ Z. Let us also denote by χ1 the character

corresponding to m := 1. The non-trivial element in W sends

(
t 0
0 t−1

)
to(

t−1 0
0 t

)
, and therefore sends χm1 to χ−m1 .

Let m ∈ Z≥0. Consider the space Pm of homogeneous complex polynomials
in two variables x, y, of degree n. So:

P0 = spanC{1},

P1 = spanC{x, y},
P2 = spanC{x2, xy, y2}

and so on. The natural action of SU(2) ⊂ GL2(C) on C2 (by multiplying a
vector by a matrix) gives rise to a natural C-linear action of SU(2) on Pm given
by:

(gf)

((
x
y

))
:= f

(
g−1

(
x
y

))
.
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Let us calculate the character of Pm. For 0 ≤ i ≤ m, denote by f im ∈ Pm

the polynomial f im

((
x
y

))
:= xiym−i (those form a C-basis for Pm). Notice

that((
t 0
0 t−1

)
f im

)((
x
y

))
= f im

((
t−1 0
0 t

)(
x
y

))
= f im

((
t−1x
ty

))
=

= (t−1x)i(ty)m−i = tm−2i · xiym−i = tm−2i · f im
((

x
y

))
i.e. we got (

t 0
0 t−1

)
f im = tm−2i · f im.

This shows that

chPm

((
t 0
0 t−1

))
= t−m + t−m+2 + . . .+ tm−2 + tm

i.e.
(chPm)|T = χ−m1 + χ−m+2

1 + . . .+ χm−21 + χm1 .

Claim 3.31. Each Pm is an irreducible f.d. SU(2)-representation. Every irre-
ducible f.d. SU(2)-representation is isomorphic to some Pm.

Proof. We will explain it later.

3.6 A glimpse at Weyl’s integration formula

In this subsection, we abbreviate G := SU(n). When we speak of an action of
G on G, we always mean the conjugation action. Also, we denote by

∫
G

the
Haar measure of mass 1 on G and by

∫
T
the Haar measure of mass 1 on T .

Claim 3.32. Restriction of functions from G to T yields an isomorphism of
C-vector spaces

Res : C(G)G
∼−→ C(T )W .

Proof. Clearly the restriction of a G-invariant function on G is a W -invariant
function on T . Let us see that Res is bijective. Let us consider the orbit spaces
G\G (under conjugation action) and W\T . Then we can interpret C(G)G as
C(G\G) and C(T )W as C(W\T ), and Res is given by precomposing with the
natural map W\T → G\G. Therefore, it is enough to see that this last map is
an isomorphism of topological spaces. This map is continuous. It is surjective by
Claim 3.27 and injective because if two elements in T are conjugate in G then
they have the same multisets of eigenvalues and therefore the same diagonal
values up to permutation. Recall that a bijective continuous map between
compact spaces is a homeomorphism. Hence, it is enough to check that W\T
and G\G are compact. If we can show those are Hausdorff, then those are
compact as Hausdorff quotients of the compact spaces G and T . To show that
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W\T is Hausdorff, we need to take t1, t2 ∈ T such that Wt1 ̸= Wt2 and find
disjoint W -invariant open subsets U1, U2 ⊂ T such that t1 ∈ U1 and t2 ∈ U2.
Take U ′1, U

′
2 ⊂ T be disjoint open subsets such that Wt1 ∈ U ′1 and Wt2 ∈ U ′2.

Set Ui := ∩w∈WwU ′i (those are open subsets(!) as the intersections of finitely
many open subsets). Those are as required. To show that G\G is Hausdorff,
notice that it is enough to produce a continuous map ϕ : G → X to some
Hausdorff topological space X, which is G-invariant (i.e. ϕ(gg′g−1) = ϕ(g′) for
all g, g′ ∈ G) and with the property that given g1, g2 ∈ G such that Gg1 ̸= Gg2
we have ϕ(g1) ̸= ϕ(g2). Consider the characteristic polynomial map ϕ : G →
Poln(C) where Poln(C) is the (n+1)-dimensional C-vector space of polynomials
of degree ≤ n. It has the desired properties (we could also use it for W\T , but
wanted to demonstrate another principle there, when a finite group acts).

Now, let us define a C-linear map

AvW : C(T )→ C(T )W

by

AvW (f)(t) :=
1

|W |
∑
w∈W

f(wt)

(i.e. it is the averaging map).

Claim 3.33. Let I be a G-invariant signed Radon measure on G. There exists
a unique W -invariant signed Radon measure I(T ) on T such that

I(f) = I(T )(Res(f)) ∀f ∈ C(G)G.

Also, I(T ) is a Radon measure if I is.

Proof. Let us show uniqueness first. If we have two such J1, J2, then J1(h) =
J2(h) for all h ∈ C(T )W . But then for any h ∈ C(T ) we obtain J1(h) =
J1(AvW (h)) = J2(AvW (h)) = J2(h) and so J1 = J2.

Let us show existence now. Define I(T ) by

I(T )(h) := I(Res−1(AvW (h))).

It is clearly a W -invariant functional on C(T ), and it satisfies the desired prop-
erty: For f ∈ C(G)G we have

I(T )(Res(f)) = I(Res−1(AvW (Res(f)))) = I(Res−1(Res(f))) = I(f).

So it only is left to see that I(T ) satisfies the continuity property required from
a Radon measure. For this it is enough to check that if {hn} is a sequence in
C(T ) converging uniformly on T to h ∈ C(T ) then Res−1(AvW (hn)) converges
uniformly on G to Res−1(AvW (h)). This is immediate to see.

That I(T ) is a Radon measure if I is a Radon measure is immediate to see.
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Applying the claim to I :=
∫
G
, we obtain a W -invariant Radon measure∫ (T )

G
on T satisfying ∫

G
f =

∫ (T )

G
f |T ∀f ∈ C(G)G.

Weyl’s integration formula gives a formula for that
∫ (T )

G
. Let us state it for

SU(2). In the statement we use a general notation - if µ ∈M(X) and h ∈ C(X)
then hµ ∈M(X) denotes the signed Radon measure given by (hµ)(f) := µ(hf).

Theorem 3.34 (Weyl’s integration formula for SU(2)). Assume G = SU(2).
We have ∫ (T )

G
= 1

2 |χ1 − χ−11 |2
∫
T
.

Proof. Omitted.

Let us now use this theorem to see that the SU(2)-representations Pm we
constructed are irreducible. For that, it is enough to see that ⟨chPm

, chPm
⟩ = 1.

And indeed, we calculate:

⟨chPm
, chPm

⟩ =
∫
G

|chPm
|2 =

∫
T

1

2
|χ1−χ−11 |2|χm1 +χm−21 +. . .+χ−m+2

1 +χ−m1 |2 =

=
1

2

∫
T

|χm+1
1 − χ−(m+1)

1 |2 =
1

2

∫
T

(χm+1
1 − χ−(m+1)

1 )(χ
−(m+1)
1 − χm+1

1 ) =

=
1

2

∫
T

(
2 + χ

2(m+1)
1 + χ

−2(m+1)
1

)
= 1.

Here we used the orthogonality relations∫
T

χm1 =

∫
T

χm1 · 1 = ⟨χm1 , 1⟩ =

{
1 m = 0

0 m ̸= 0
.

In fact, we can also use the formula to see that there are no irreducible f.d.
SU(2)-representations except from the Pm’s. To that end, let us consider an
irreducible f.d. SU(2)-representation E and try to see what it means for it to be
different from all the Pm’s. This means that ⟨chE , chPm

⟩ = 0 for all m ∈ Z≥0.
Let us write (chE)|T =

∑
m dm · χm1 for dm ∈ Z≥0. Here, as we remember,

dm = dimCET,χm
1
. The sum is finite (i.e. dm = 0 except for finitely many m’s),

and we have the symmetry property d−m = dm for all m. We have:

⟨chE , chPm
⟩ =

∫
G

chE ·chPm
=

∫
T

1

2
|χ1−χ−11 |2(chE)|T (χm1 +χm−21 +. . .+χ−m+2

1 +χ−m1 ) =

=
1

2

∫
T

(chE)|T (χm1 +χ−m1 −χm+2
1 −χ−(m+2)

1 ) =
1

2

(
d−m + dm − d−(m+2) − dm+2

)
.

Thus, the condition ⟨chE , chPm
⟩ = 0 for all m ∈ Z≥0 translates into:

dm+2 + d−(m+2) = dm + d−m
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for all m ∈ Z≥0 or, by the W -symmetry,

dm+2 = dm

for all m ∈ Z≥0. This implies that dm = 0 for all m ∈ Z, because otherwise we
would have infinitely many m’s for which dm ̸= 0.

3.7 Classification of irreps of SU(n) and Weyl’s character
formula (without proofs)

Remark 3.35. Let us say that an abelian group A is a lattice if it is isomorphic
to Zn for some n ∈ Z≥0. Since Zn is not isomorphic to Zm whenever n ̸= m,
the number n does not depend on the choice of an isomorphism; It is called
the rank of the lattice A. Recall that an abelian group is a lattice if and only
if it is finitely generated and torsion-free. A list e1, . . . , en of elements in A is
said to be a Z-basis for A if the morphism of abelian groups Zn → A given
by (d1, . . . , dn) 7→ d1e1 + . . . + dnen is an isomorphism (in other words, every
element in A can be expressed as a Z-linear combination of the list e1, . . . , en,
uniquely so).

We can always think of Zn as sitting inside Rn, giving us a geometric pic-
ture (for example, we can picture whether an element in Zn sits in the convex
hull of some set of elements in Zn). In fact, for any lattice A, of rank n, we
can construct an n-dimensional R-vector space AR together with a morphism
of abelian groups ι : A→ AR with the property that given a Z-basis {ei}1≤i≤n
of A, {ι(ei)}1≤i≤n is an R-basis of AR. In other words, instead of only linear
combinations of e1, . . . , en with integer coefficients, we now allow linear com-
binations of e1, . . . , en with real coefficients. To construct AR, just choose an
isomorphism e : A

∼−→ Zn, take AR := Rn and set ι to be the composition of the
isomorphism e with the natural embedding of Zn in Rn. If the reader knows
tensor products, a description of AR which does not depend on choices is as
R⊗

Z
A (another description is HomZ(HomZ(A,Z),R)).

Another way to describe the pair (AR, ι) is via a universal property.
Namely, given any pair (V, µ) consisting of a R-vector space V and a mor-
phism of abelian groups µ : A→ V , there exists a unqiue morphism of R-vector
spaces ιµ : AR → V such that ιµ ◦ ι = µ.

In particular, one sees that given an automorphism (of abelian groups) T :
A→ A, there exists a unique automorphism (of R-vector spaces) TR : AR → AR
extending it (i.e. TR(ι(a)) = ι(T (a)) for all a ∈ A). This yields in fact a
group homomorphism Aut(A)→ Aut(AR), where Aut(A) denotes the group of
automorphisms of A as an abelian group, while Aut(AR) denotes the group of
automorphisms of AR as an R-vector space (i.e. another name for Aut(AR) is
GLR(AR)).

The action of W on Ch(T ) induces an action of W on Ch(T )R. Let us fix a
W -invariant inner product ⟨−,−⟩ on Ch(T )R.

27



Definition 3.36. Let V be a f.d. SU(n)-representation. We say that χ ∈
wtT (V ) is extremal if, working in Ch(T )R, every θ ∈ wtT (V ) belongs to the
convex hull of {wχ}w∈W .

Lemma 3.37. Let V be a f.d. SU(n)-representation. If χ ∈ wtT (V ) is extremal,
then θ ∈ wtT (V ) is extremal if and only if θ = wχ for some w ∈W .

Proof. It is clear that wχ is also extremal for each w ∈ W . Given θ ∈ wtT (V ),
consider the length ||θ|| (with respect to our W -invariant inner product ⟨−,−⟩)
on Ch(T )R). Notice that, since ||wχ|| = ||χ|| for all w ∈ W and θ lies in
the convex hull of {wχ}w∈W , we have ||θ|| ≤ ||χ||. If ||θ|| < ||χ||, then the
convex hull of {wθ}w∈W clearly does not contain χ, and so θ is not extremal.
If ||θ|| = ||χ|| then, since θ lies in the convex hull of the points wχ which all lie
on the sphere of radius ||χ|| around the origin, an exercise shows that we must
have θ = wχ for some w ∈ W (the exercise is that if a point on the sphere is a
convex combination of a finite collection of points on the sphere, then it must
be equal to one of them).

We have:

Proposition 3.38. Every irreducible f.d. SU(n)-representation admits extremal
weights.

Proof. Omitted.

Denote by W\Ch(T ) the orbit space, i.e. the quotient of Ch(T ) by the
equivalence relation χ ∼ θ if there exists w ∈ W such that χ = wθ. The above
shows that we have a map

E : Irr(SU(n))→W\Ch(T )

given by sending the isomorphism class of an irreducible f.d. SU(n)-representation
V to the orbit of an extremal weight of V .

Theorem 3.39. The map E is a bijection.

In other words, the theorem classifies irreducible f.d. representations of
SU(n). Given χ ∈ Ch(T ), by Vχ we will denote an irreducible f.d. SU(n)-
representation such that E([Vχ]) = Wχ. Next, after we have parametrized
irreducible f.d. SU(n)-representations, we would like to describe their charac-
ters.

It is convenient to choose representatives for W -orbits in Ch(T ):

Definition 3.40. Let us say that χ ∈ Ch(T ) is dominant if, writing

χ(diag(t1, . . . , tn)) = tm1
1 · . . . · tmn

n ,

we have m1 ≥ m2 ≥ . . . ≥ mn.

Exercise 3.7. Any W -orbit in Ch(T ) contains a unique dominant element.
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We have a bijection

(Z≥0)n−1
∼−→ {χ ∈ Ch(T ) | χ is dominant}

which we denote by (d1, . . . , dn−1) 7→ χd1,...,dn−1
, given by

χd1,...,dn−1(diag(t1, . . . , tn)) := t
d1+d2+...+dn−1

1 · . . . · tdn−2+dn−1

n−2 · tdn−1

n−1 .

We will also have some special characters we will need:

Exercise-Definition 3.41. Given 1 ≤ i < j ≤ n, let us denote by αi,j ∈ Ch(T )
the character given by

αi,j(diag(t1, . . . , tn)) :=
ti
tj
.

Let ∆ ∈ Ch(T ) be given by

∆(t) :=
∏

1≤i<j≤n

αi,j(t).

Show that there exists a unique character
√
∆ ∈ Ch(T ) satisfying

√
∆

2
= ∆.

Namely,
√
∆ = χ1,...,1.

Theorem 3.42 (Weyl’s character formula). Let χ ∈ Ch(T ) be dominant. We
have (for t ∈ T for which the denominator does not vanish, which happens on the
dense subset of T consisting of elements whose entries are pairwise non-equal)

chVχ
(t) =

∑
w∈W sgn(w) · (w(χ

√
∆))(t)

√
∆(t)

∏
1≤i<j≤n(1− αi,j(t)−1)

.

Example 3.43. Let us see what the above means for SU(2). Dominant char-
acters are χd for d ∈ Z≥0. Notice that

√
∆(diag(t, t−1)) = t. The character of

Vχd
is given by:

chVχd
(diag(t, t−1)) =

td · t− t−d · t−1

t(1− t−2)
= td

1− t−2(d+1)

1− t−2
=

= td(1 + t−2 + t−4 + . . .+ t−2d) = td + td−2 + . . .+ t−d.

Deduce from this that Vχd
is isomorphic to Pd that we had above.

Another way to interpret the deduction of the previous example is

chVχd
(diag(t, t−1)) = (td − t−d−2)(1 + t−2 + t−4 + . . .) =

= (td + td−2 + . . .)− (t−d−2 + t−d−4 + . . .) = td + td−2 + . . .+ t−d.

In other words, we have two infinite series, whose difference happens to be finite
(there are a lot of cancellations). This hints at the approach to the proof of
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Weyl’s character formula we want to take in this course eventually - that Vχd

itself is, in some sense, the “difference” of two infinite-dimensional represen-
tations with “characters” our two infinite series. Let us again emphasize the
issue of cancellations of infinities, for the general case of SU(n). We can rewrite
Weyl’s character formula in the following way, operating formally at least:

chV =
∑
w∈W

sgn(w) · wχ · w
√
∆√
∆
·
∏

1≤i<j≤n

(
1 + α−1i,j + α−2i,j + . . .

)
. (3.1)

This is an alternating sum of shifts of some “cone-like” expression. Somehow,
everything cancels except things lying inside the convex hull of finitely many
points {wχ}w∈W . We will illustrate this in the next subsection.

3.8 Some illustrations for Weyl’s character formula for
SU(3)

Let us consider SU(3) now. Let us define ω1, ω2 ∈ Ch(T ) by

ω1(diag(t1, t2, t3)) := t1, ω2(diag(t1, t2, t3)) := t2.

Then ω1, ω2 is a Z-basis for Ch(T ). In order to understand how to draw, we
need to understand a W -invariant inner product on Ch(T )R. Since the lengths
of ω1, ω2 and −(ω1 + ω2) are equal, we see that the angle between ω1 and ω2

should be 2π/3. An element ωm1
1 ωm2

2 is dominant if and only if m1 ≥ m2 ≥ 0.
Let us also denote α := α1,2 and β := α2,3. The product appearing in (3.1) is
in our case seen to be:(
1 + α−1 + α−2 + . . .

)
·
(
1 + β−1 + β−2 + . . .

)
·
(
1 + α−1β−1 + α−2α−2 + . . .

)
=

=
∑

m1,m2≥0

(1 + min{m1,m2}) · α−m1β−m2 . (3.2)

We depict all this information as follows:
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The black points represent elements of Ch(T ). The yellowed points represent
dominant elements. The blued elements represent elements appearing in (3.8),
and I also put in a circle their multiplicity. The green lines form the boundary
of the “cone-like” area defined by the blue points. Let us now choose some
dominant character, for example χ := ω3

1ω
2
2 . Consider the following illustration:
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We drew the six points wχ for w ∈W , and in grey we drew the convex hull

of these points. The six points in violet are the points wχ · w
√
∆√
∆

for w ∈ W .

We then in green emphasized the cones which appear in the formula. Thus, the
formula has the sum of elements in three cones minus the difference of elements
in three cones, and somehow everything cancels except from, potentially, things
in the grey area.
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3.9 Some further notes regarding Weyl’s character for-
mula

Exercise 3.8. By plugging in 1 in place of χ in Weyl’s character formula,
obtain Weyl’s denominator formula∑

w∈W
sgn(w) ·

√
∆(w−1t) =

√
∆(t)

∏
1≤i<j≤n

(1− αi,j(t)−1)

or, plugging in t2 in place of t,∑
w∈W

sgn(w) ·∆(w−1t) =
∏

1≤i<j≤n

(αi,j(t)− αi,j(t)−1).

Writing this concretely gives∑
w∈W

sgn(w) · tn−1w(1)t
n−3
w(2) · . . . · t

−(n−1)
w(n) =

∏
1≤i<j≤n

(
ti
tj
− tj
ti

)
.

Recall that we work under the condition t1 · . . . · tn = 1, but it is immediate to
see that our current equation bears multiplying all ti’s by some fixed t, hence we
can drop the condition t1 · . . . · tn = 1. Clearing denominators our equation is
rewritten as∑

w∈W
sgn(w) · (t2w(1))

n−1(t2w(2))
n−2 · . . . · (t2w(n))

0 =
∏

1≤i<j≤n

(
t2i − t2j

)
.

Setting si := t2i , recognize this as the Van-der-Monde determinant equality∣∣∣∣∣∣∣∣
sn−11 sn−21 . . . s1 1
sn−12 sn−22 . . . s2 1
. . . . . . . . . . . . . . . . . . . . . . . .
sn−1n sn−2n . . . sn 1

∣∣∣∣∣∣∣∣ =
∏

1≤i<j≤n

(si − sj)

Exercise 3.9. Given χ ∈ Ch(T ), we would like to find a formula for dimC Vχ.
Notice that dimC Vχ = chVχ

(1). We can assume that χ is dominant. Let us
denote

Aχ(t) :=
∑
w∈W

sgn(w) · (wχ)(t).

Weyl’s character formula can be written, in view of Exercise 3.8, as

chVχ
(t) =

Aχ
√
∆(t)

A√∆(t)
.

Let us now denote by m1 ≥ m2 ≥ . . . ≥ mn a sequence such that

χ(diag(t1, . . . , tn)) = tm1
1 · . . . · tmn

n
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and by k1 ≥ k2 ≥ . . . ≥ kn a sequence such that

√
∆(diag(t1, . . . , tn)) = tk11 · . . . · tknn .

For τ ∈ C×|−|=1, we have

Aχ(diag(τ
k1 , . . . , τkn)) =

∑
w∈W

sgn(w) · τkw(1)m1 · . . . · τkw(n)mn =

=
∑
w∈W

sgn(w) · τk1mw−1(1) · . . . · τknmw−1(n) = A√∆(diag(τ
m1 , . . . , τmn)).

Therefore, noticing that for τ close to 1, but not equal to it, the components of
(τk1 , . . . , τkn) are pairwise non-equal, we have

chVχ
(diag(τk1 , . . . , τkn)) =

Aχ
√
∆(diag(τ

k1 , . . . , τkn))

A√∆((diag(τ
k1 , . . . , τkn))

=
A√∆(diag(τ

m1+k1 , . . . , τmn+kn))

A√∆(diag(τ
k1 , . . . , τkn))

=

=

√
∆(diag(τm1+k1 , . . . , τmn+kn))√

∆(diag(τk1 , . . . , τkn))
·
∏

1≤i<j≤n

1− τ (mj−mi)+(kj−ki)

1− τkj−ki
.

Hence

dimC(Vχ) = chVχ(1) = lim
τ→1

chVχ(diag(τ
k1 , . . . , τkn)) = lim

τ→1

∏
1≤i<j≤n

1− τ (mj−mi)+(kj−ki)

1− τkj−ki
= . . .

Since 1− τN ∼ N(1− τ) as τ → 1, we can continue

. . . =
∏

1≤i<j≤n

(mj −mi) + (kj − ki)
kj − ki

=
∏

1≤i<j≤n

(
1 +

mi −mj

j − i

)
.

to conclude:

dimC Vd1,...,dn−1
=

∏
1≤i<j≤n

(
1 +

di + . . .+ dj−1
j − i

)
.

For example, let us consider SU(2). We obtain

dimC Vd = 1 + d.

Considering SU(3), we obtain

dimC Vd1,d2 = (1 + d1)(1 + d2)(1 +
d1 + d2

2
).
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4 Manifolds, Lie groups and Lie algebras

4.1 Manifolds

To minimize background, we will only deal with embedded manifolds in this
course. We assume that the reader knows, given f.d. R-vector spaces E and F
and open subsets U ⊂ E and V ⊂ F , what a smooth map from U to V is. We
also assume that given a smooth map f : U → V and a point p ∈ U , the reader
knows what is the differential Dpf : E → F of f at the point p (it is an R-
linear map14). We recall that a smooth map ϕ : U → V is a diffeomorphism
if there exists a smooth map ψ : V → U such that ϕ ◦ψ = idV and ψ ◦ϕ = idU .

Definition 4.1.

• An embedded manifold is a pair (E,M) consisting of a f.d. R-vector
space E and a subset M ⊂ E, such that for every p ∈ M there exist
0 ≤ m ≤ dimRE, an open subset p ∈ U ⊂ E, an open subset 0 ∈ V ⊂ Rn
and a diffeomorphism ϕ : V → U , such that

ϕ−1(M) = {(x1, . . . , xn) ∈ V | xm+1 = . . . = xn = 0}.

To abbreviate, we will often-times call an embedded manifold simply a
manifold, and will write M instead of (E,M) (i.e., E is implicit). We
also say that M is a manifold embedded into E.

• Let (E1,M1) and (E2,M2) be embedded manifolds. A morphism of
manifolds (or simply a smooth map) from (E1,M1) to (E2,M2) is a
map ϕ : M1 → M2 satisfying the following condition: For every f.d. R-
vector space F and every open subset U ⊂ F and every map ψ : U →
M1 such that the composition U

ψ−→ M1 ⊂ E1 is smooth, we have that

the composition U
ψ−→ M1

ϕ−→ M2 ⊂ E2 is smooth. An isomorphism of
manifolds is also called a diffeomorphism.

Definition 4.2. Let M be a manifold. A smooth map M → C is called
a smooth function on M and we denote by C∞(M) the C-vector space of
smooth functions on M .

Remark 4.3. Given an embedded manifold (E,M), we always treat M as a
topological space, with the subspace topology induced by the inclusion M ⊂ E.

Example 4.4.

• (E,U) is an embedded manifold whenever U is an open subset in E.

• Given an embedded manifold (E,M) and an open subset U ⊂ M , (E,U)
is also an embedded manifold.

14Dpf is the unique R-linear map from E to F satisfying f(p+x)−f(p)−(Dpf)(x) = o(||x||)
as x → 0.
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• (E,D) is an embedded manifold whenever D is a discrete subset in E.

• Given embedded manifolds (E1,M1) and (E2,M2), we have an embedded
manifold (E1 × E2,M1 ×M2).

Claim 4.5 (Implicit function theorem). Let E and F be f.d. R-vector spaces.
Let U ⊂ E be an open subset. Let q ∈ F . Let ϕ : U → F be a smooth map.
Assume that Dpϕ : E → F is surjective for every p ∈ ϕ−1(q). Then (E, ϕ−1(q))
is an embedded manifold.

Proof. Omitted.

Example 4.6. (Rn, Sn−1) is an embedded manifold. Indeed, let us consider
the smooth map f : Rn → R given by (x1, . . . , xn) 7→ x21 + . . . + x2n. Then
Sn−1 = f−1(1). So, by Claim 4.5 we will know that (Rn, Sn−1) is an embedded
manifold if we will show that Dpf : Rn → R is non-zero (and hence surjective)
for every p ∈ Sn−1. The matrix representing this Dpf in the standard basis is
(2x1, . . . , 2xn), where p = (x1, . . . , xn). Clearly (2x1, . . . , 2xn) ̸= 0 if and only
if p ̸= 0, in particular when p ∈ Sn−1.

Example 4.7. The requirement of surjectivity in Claim 4.5 is necessary. For
example, we can consider ϕ : R2 → R given by (x, y) 7→ xy. Then (R2, ϕ−1(0))
is not an embedded manifold.

Remark 4.8. One should be careful that, for example, a bijective smooth map
is not necessarily a diffeomorphism. A standard example is the map R → R
given by x 7→ x3.

If (E,M) is an embedded manifold and N ⊂ M is an open subset, then
as we mentioned above (E,N) is an embedded manifold - we say that N is an
open submanifold of M . If N ⊂M is a closed subset, then in general (E,N)
is not an embedded manifold. If it is, we say that N is a closed submanifold
ofM . One can show that if N ⊂M is a subset such that (E,N) is an embedded
manifold then N is locally closed in M , meaning that there exists an open
subset U ⊂ M such that N ⊂ U and N ∩ U is closed in U . If N ⊂ M is such
a locally closed submanifold, then one sees that the inclusion map N → M is
smooth and given a manifold L and a smooth map L→M whose image lies in
N , its corestriction L→ N is a smooth map.

Remark 4.9. Let M be a manifold and let p ∈ M . Then there exist an open
p ∈ U ⊂M , an open 0 ∈ V ⊂ Rn (for some n ∈ Z≥0) and a diffeomorphism of U
and V . In other words, manifolds “look locally” like open subsets in Euclidean
spaces.

Exercise 4.1. Let (E,M) be an embedded manifold. Let f ∈ C∞(M) and let

p ∈M . Then there exists an open subset p ∈ U ⊂ E and f̃ ∈ C∞(U) such that

f̃ |U∩M = f |U∩M .
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4.2 Tangent spaces and tangent maps

Recall directional derivatives:

Definition 4.10. Let E be a f.d. R-vector space. Let p ∈ E and let f be
a smooth function on an open neighbourhood U of p in E. Given v ∈ E the
directional derivative of f at p in the direction of v is:

∂vf := lim
ϵ→0

1

ϵ
(f(p+ ϵ · v)− f(p)) ∈ C.

Exercise 4.2. Recall that the assignment v 7→ ∂vf is R-linear.

Definition 4.11. Let (E,M) be an embedded manifold and let p ∈M .

• A vector v ∈ E is said to be a tangent vector to M at p if for ev-
ery smooth function f on an open neighbourhood U of p in E satisfying
f |M∩U = 0 we have ∂vf = 0.

• The tangent space to M at p is the set of tangent vectors to M at p,
which is an R-linear subspace of E. It is denoted TpM .

Example 4.12. Let (E,U) be an embedded manifold with U open in E. Then
for every p ∈ U we have TpU = E.

Remark 4.13. Let (E,M) be an embedded manifold and let p ∈ M . A “ge-
ometric” description of TpM is as follows. A vector 0 ̸= v ∈ E lies in TpM if
and only if we can find a sequence pn of points in M such that pn → p and

1
||pn−p|| (pn − p) →

1
||v||v. Or, a vector v ∈ E lies in TpM if and only if we can

find a smooth map g : (−ϵ, ϵ)→M such that limt→0
1
t (g(t)− g(0)) = v.

Claim 4.14. Let E and F be f.d. R-vector spaces. Let U ⊂ E be an open
subset. Let q ∈ F . Let ϕ : U → F be a smooth map. Assume that Dpϕ : E → F
is surjective for every p ∈ ϕ−1(q). Denote M := ϕ−1(q) (we saw that M is a
manifold embedded into E). Then, for every p ∈M , TpM = Ker(Dpf).

Proof. Omitted.

Example 4.15. Consider (Rn, Sn−1). The tangent space to Sn−1 at (1, 0, . . . , 0)
is {(x1, . . . , xn) ∈ Rn | x1 = 0}.

Example 4.16. The requirement of surjectivity in Claim 4.14 is necessary.
For example, consider f : R→ R given by f(x) := x2. Then f−1(0) = {0} is a
submanifold in R. We have T0(f

−1(0)) = 0 but D0f = 0 and so Ker(D0f) = R.

Using Exercise 4.1 we see that given a manifold M , a point p ∈ M , f ∈
C∞(M) and v ∈ TpM we can define unambiguously ∂vf ∈ C, by locally extend-

ing f to a function f̃ on an open neighbourhood of p in E and defining ∂vf to
be ∂v f̃ . The assignment

TpM × C∞(M)→ R, (v, f) 7→ ∂v(f)

is R-bilinear and satisfies the Leibnitz rule ∂v(f1f2) = ∂v(f1)f2(p)+f1(p)∂v(f2).
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Proposition-Definition 4.17. Let M1 and M2 be manifolds. Let ϕ : M1 →
M2 be a smooth map and let p ∈ M1. There exists a unique R-linear map
Dpϕ : TpM1 → Tϕ(p)M2 satisfying:

• For every smooth function f on an open neighbourhood of ϕ(p) in M2 and
every v ∈ TpM1, we have ∂v(f ◦ ϕ) = ∂(Dpϕ)(v)(f).

We call it the tangent map of ϕ at p (or differential of ϕ at p).

Exercise 4.3. Let M1,M2 and M3 be manifolds and let ϕ : M1 → M2 and
ψ :M2 →M3 be smooth maps. Let p ∈M1. Then Dϕ(p)ψ ◦Dpϕ = Dp(ψ ◦ ϕ).

Remark 4.18. Let E be a f.d. R-vector space and let U ⊂ E be an open subset.
Let (F,M) be an embedded manifold. Let ϕ : E → M be a smooth map. Let
p ∈ U . Then Dpϕ : E → Tϕ(p)M ⊂ F is the usual differential. Namely, we for
example can characterize

(Dpϕ)(v) := lim
t→0

1

t
(ϕ(p+ tv)− ϕ(p)).

Remark-Definition 4.19. Let I ⊂ R be an open subset (viewed as an embed-
ded manifold (R, I)). Given t ∈ I, we have TtI = R. Given a manifold M and a
smooth map ϕ : I →M , we therefore have the tangent map Dtϕ : R→ Tϕ(t)M .
Let us denote in such a situation dtϕ := (Dtϕ)(1) and call it the derivative of
ϕ at t. The information of the R-linear map Dtϕ : R → Tϕ(t)M is the same
as the information of the vector dtϕ ∈ Tϕ(t)M . If M is an embedded manifold
(E,M), we have:

dtϕ = lim
s→0

1

s
(ϕ(t+ s)− ϕ(t)).

Exercise 4.4. Let I ⊂ R be an open subset and M and N manifolds. Let
ϕ : I →M and ψ :M → N be smooth maps. Show that, for any t ∈ I, we have
(Dϕ(t)ψ)(dtϕ) = dt(ψ ◦ ϕ).

Remark 4.20. Let (E1,M1) and (E2,M2) be embedded manifolds and let
ϕ : M1 → M2 be a smooth map. Let p ∈ M1. A “geometric” description of
Dpϕ : TpM1 → TpM2 is as follows. Given v ∈ TpM1 we find a smooth map
g : (−ϵ, ϵ)→M1 such that v = d0g. Then (Dpϕ)(v) = d0(ϕ ◦ g).

The following theorem gives the basic understanding of smooth maps with
surjective differential:

Theorem 4.21. Let M and N be manifolds, let p ∈ M , let ϕ : M → N be a
smooth map, and assume that Dpϕ : TpM → Tϕ(p)N is surjecitve. Then there
exist n,m ∈ Z≥0, open subsets U ⊂ Rn, V ⊂ Rm open subsets p ∈ U ′ ⊂ M ,
ϕ(p) ∈ U ′′ ⊂ N , diffeomorphisms α : U ′′ → V and β : U ′ → U × V such
that ϕ(U ′) ⊂ U ′′ and we have α(ϕ(m)) = π(β(m)) for all m ∈ U ′, where
π : U × V → V denotes the projection onto the second variable.

Remark 4.22. In other words, at a neighbourhood of a point where the differ-
ential is surjective, a smooth map look like a projection.
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Let us state the inverse function theorem:

Theorem 4.23 (Inverse function theorem). Let M and N be manifolds. Let ϕ :
M → N be a smooth map, and let p ∈ M . Suppose that Dpϕ : TpM → Tϕ(p)N
is invertible. Then there exist open subsets p ∈ U ⊂M and ϕ(p) ∈ V ⊂ N such
that ϕ(U) ⊂ V and the smooth map ϕ|U : U → V is a diffeomorphism.

Proof. This is easy to prove given the previous theorem.

4.3 Vector fields and flows

Definition 4.24. Let (E,M) be an embedded manifold. A vector field on
M is a smooth map ξ :M → E such that for every p ∈M we have ξ(p) ∈ TpM .

Remark 4.25. So, informally a vector field on M is a collection (vp)p∈M with
vp ∈ TpM which “varies smoothly with p” (here we denoted vp for the above
ξ(p)).

Definition 4.26. Let M be a manifold and let ξ be a vector field on M . Let
I ⊂ R be an open interval and let ϕ : I →M be a smooth map. We say that ϕ
obeys ξ if for every t ∈ I we have dtϕ = ξ(ϕ(t)).

The basic theorem of the subject of ordinary differential equations is:

Theorem 4.27 (Uniqueness and existence of solutions of ODE’s). Let M be a
manifold and let ξ be a vector field on M . Let p ∈M .

• (uniqueness) Let I ⊂ R be an open interval and let t0 ∈ I. Let ϕ, ψ : I →
M be two smooth maps obeying ξ and satisfying ϕ(t0) = p and ψ(t0) = p.
Then ϕ = ψ.

• (existence) Let t0 ∈ R. There exists r > 0 and a smooth map ϕ : (t0 −
r, t0 + r)→M obeying ξ such that ϕ(t0) = p.

Proof. Omitted.

We also want to know that the solution in the previous theorem “varies
smoothly with a smooth parameter”. For that, we first define:

Definition 4.28. Let N be a manifold and (E,M) an embedded manifold. An
N-parametrized vector field on M is a smooth map ξ : N ×M → E such
that for every (q, p) ∈ N ×M we have ξ(q, p) ∈ TpM .

And now we can state:

Theorem 4.29 (smooth dependence of solutions of ODE’s on parameters). Let
N and M be manifolds. Let ξ be an N -parametrized vector field on M and let
p ∈M . Let I ⊂ R be an open interval and let t0 ∈ I. Let us be given, for every
n ∈ N , a smooth map ϕn : I → M obeying ξn (where ξn(m) := ξ(n,m)) and
satisfying ϕn(t0) = p. Define a map ϕ : N × I → M by ϕ(n, t) := ϕn(t). Then
ϕ is smooth.

Proof. Omitted.
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4.4 Lie groups

Definition 4.30.

• A Lie group is a manifold G equipped with a group structure, such that
the multiplication map G × G → G and the inverse map G → G are
smooth maps.

• Let G1 and G2 be Lie groups. A morphism of Lie groups from G1

to G2 is a map ϕ : G1 → G2 which is both a smooth map and a group
morphism.

Example 4.31.

• R (a manifold embedded into R) with addition is a Lie group. Similarly,
C is a Lie group.

• R× (a manifold embedded into R) with multiplication is a Lie group. Sim-
ilarly, C× is a Lie group.

• GLn(R) (a manifold embedded into Mn(R)) with matrix multiplication is
a Lie group. Similarly, GLn(C) (a manifold embedded into Mn(C)) is a
Lie group.

We have the following theorem; we will prove it later.

Theorem 4.32.

1. Let G be a Lie group. Let H ⊂ G be a closed subgroup. Then H is a closed
submanifold of G, and therefore H is a Lie group itself (we say that H is
a closed Lie subgroup of G).

2. (“automatic smoothness”) Let G and H be Lie groups. Let ϕ : G → H
be a morphism of topological groups. Then ϕ is a morphism of Lie groups
(i.e. it is smooth).

Proof. Given in §4.8.

Corollary 4.33. All the closed subgroups of GLn(R) and GLn(C) we considered
(such as SU(n),SLn(R) etc.) are Lie groups15.

Remark 4.34. A consequence of part 2 of Theorem 4.32 is that, given a Lie
group G and a representation of G on a f.d. C-vector space V , the corresponding
morphism of topological group π : G → GLC(V ) is automatically a morphism
of Lie groups. In other words, defining in the obvious way smooth f.d. G-
representations, we see that in fact there is no difference between those and our
previously defined (“continuous”) f.d. G-representations.

15Of course one can also check these directly.
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4.5 The exponential map

Definition 4.35. Let (E,G) be an embedded Lie group. For g ∈ G, let us
denote by mg : G → G the diffeomorphism given by x 7→ gx. One can check
that the map λ : T1G × G → E given by (X, g) 7→ (D1mg)(X) is smooth and
so defines an T1G-parametrized vector field on G. Given X ∈ T1G we denote
by λX the vector field on G given by λ(X,−).

Claim 4.36. Let G be a Lie group and let X ∈ T1G. There exists a unique
morphism of Lie groups eX : R → G satisfying d0eX = X. It can also be
characterized as the unique smooth map eX : R→ G obeying λX and satisfying
eX(0) = 1.

Proof. Given r > 0 denote by erX : (−r, r) → G the smooth map obeying λX
and satisfying erX(0) = 1, if it exists (it is unique if exists, by the uniqueness
part of Theorem 4.27). In particular, we can talk about eX := e∞X (if it exists).

Let us first see that if for a given r > 0 the map erX exists, given −r < t, s < r
such that −r < t + s < r we have erX(t)erX(s) = erX(t + s). Put differently,
we fix −r < t < r, and we want to show that given s ∈ (−r′, r′′), where
r′ := min{r, r+ t} and r′′ := min{r, r− t}, we have erX(t+s) = erX(t)erX(s). Let
us denote by f : (−r′, r′′)→ G the map f(s) := erX(t)−1erX(t+ s). We want to
see that f(s) = erX(s) for all s ∈ (−r′, r′′). By the uniqueness part of Theorem
4.27 it is enough to show that f obeys λX and that f(0) = 1. The second is
clear. As for the first, we notice that f : (−r′, r′′) → G can be written as the
composition

(−r′, r′′) s7→s+t−−−−→ (−r, r) erX−−→ G
mer

X
(t)−1

−−−−−−→ G.

Computing using this we see that dsf = λX(f(s)) for all s ∈ (−r′, r′′).
Now, let again r > 0 be such that the map erX exists. We want to show that

e
r+r/2
X exists as well. Define f+ : (r/2, r+r/2)→ G by f+(t) := erX(r/2)erX(t−
r/2). Similarly, define f− : (−r− r/2,−r/2)→ G by f−(t) := erX(−r/2)erX(t+
r/2). Notice that for t ∈ (r/2, r) we have f+(t) = erX(r/2)erX(t− r/2) = erX(t)
in view of the established additivity property above. Similarly f−(t) = erX(t)
for t ∈ (−r,−r/2). Thus, we can patch f−, erX , f

+ into one smooth map h :
(−r − r/2, r + r/2) → G. It is left as a small exercise to see that h suits the

conditions to be e
r+r/2
X .

Notice that erX exists for some r > 0, by the existence part of Theorem

4.27. Using the above, we see that er
′

X then exists for r′ as large as wanted, and

therefore eX := e∞X exists (by patching er
′

X ’s for r′ bigger and bigger). By the
additivity property above we deduce that eX is a morphism of Lie groups, and
clearly d0eX = X.

It is left to see that given a morphism of Lie groups f : R→ G which satisfies
d0f = X, we have f = eX . Of course f(0) = 1. Let t ∈ R. Let us notice that
f : R→ G is equal to the composition

R s7→s−t−−−−→ R f−→ G
mf(t)−−−→ G.
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Computing using this, we find

dtf = λX(f(t)).

Therefore we conclude that f = eX .

Definition 4.37. LetG be a Lie group. The exponential map exp : T1G→ G
(or expG if we want to emphasize G) is defined as sending X to eX(1), where
eX is as in Claim 4.36.

Exercise 4.5. Let G be a Lie group and let X ∈ T1G. Show that eX(t) =
exp(tX) for all t ∈ R.

Exercise 4.6.

• Check that for the Lie group R, the exponential map is the identity map
R→ R.

• Check that for the Lie group R×, the exponential map is the usual expo-
nential map R→ R×.

• Check that for the Lie group C×|−|=1, the exponential map is the map iR→
C×|−|=1 given by u 7→ eu.

Example 4.38. Let G := GLn(R). We have T1G = Mn(R). Recall that we
have the exponentiation of matrices Mn(R)→ GLn(R) given by

X 7→ eX := I +X +
1

2!
X2 + . . . .

Let X ∈ Mn(R). Then the map ϕ : R → GLn(R) given by t 7→ etX is a
morphism of Lie groups, satisfying d0ϕ = X. Hence we have expGLn(R)(X) =

eX .

Lemma 4.39. Let G be a Lie group. The exponential map exp : T1G → G is
smooth, and we have D0 exp = IdT1G.

Proof. Let us consider the map ee : T1G × R → G given by (X, t) 7→ eX(t). It
obeys the T1G-parametrized vector field λ on G and therefore by Theorem 4.29

we see that ee is smooth. Therefore the composition T1G
X 7→(X,1)−−−−−−→ T1G×R→ G

is smooth. Notice that this composition is exp.

As regarding D0 exp, fix X ∈ T1G. Consider the smooth map ϕX : R→ T1G
given by ϕX(t) := tX. Then

X = d0eX = d0(exp ◦ϕX) = (D0 exp)(X),

as desired.
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Exercise 4.7. Let ϕ : H → G be a morphism of Lie groups. Then we have

ϕ ◦ eX = e(D1ϕ)(X) ∀X ∈ T1H

and
ϕ ◦ expH = expG ◦(D1ϕ).

Claim 4.40. Let G be a Lie group and let H ⊂ G be a closed Lie subgroup.
Then given X ∈ T1G we have X ∈ T1H if and only if expG(tX) ∈ H for all
t ∈ R.

Proof. Suppose that X ∈ T1H. Denoting the inclusion i : H → G (it is a
morphism of Lie groups), notice that D1i is the inclusion of T1H in T1G, and
we have

expG(tX) = expG((D1i)(tX)) = i(expH(tX)) ∈ H.

Conversely, let X ∈ T1G and suppose that expG(tX) ∈ H for all t ∈ R. Define
a smooth map ϕ : R→ H by ϕ(t) := expG(tX). Then

(D1i)(d0ϕ) = d0(i ◦ ϕ) = X

so X is in the image of the inclusion D1i : T1H → T1G, i.e. X ∈ T1H.

Example 4.41. Let us consider SLn(R) ⊂ GLn(R). Given X ∈ Mn(R), by
Claim 4.40 we have X ∈ T1SLn(R) if and only if exp(tX) ∈ SLn(R) for all
t ∈ R. Recall that we have det(exp(Y )) = exp(tr(Y )) for all Y ∈ Mn(R).
Therefore

exp(tX) ∈ SLn(R) ∀t ⇐⇒ det(exp(tX)) = 1 ∀t ⇐⇒ exp(t·tr(X)) = 1 ∀t ⇐⇒ tr(X) = 0.

Thus T1SLn(R) = {X ∈Mn(R) | tr(X) = 0}.

4.6 The Lie algebra of a Lie group

Let G be a Lie group. Since, by Lemma 4.39, exp : T1G → G has invertible
differential at 0 ∈ T1G, by Theorem 4.23 we obtain that there exist open subsets
0 ∈ U ⊂ T1G and 1 ∈ V ⊂ G such that exp(U) ⊂ V and exp |U : U → V is a
diffeomorphism. By slight abuse of notation, let us denote by exp−1 : V → U
the smooth map which is inverse to exp |U : U → V . Thus, we think of G, at the
vicinity of 1, and T1G, at the vicinity of 0, as identified. What is the relation
between the additive group structure on T1G (which is “simple”) and the group
structure on G (which is, generally speaking, “complicated”)? To compare, let
us “transport” the group structure on G to T1G, locally near 0. We have an
open subset 0 ∈ U1 ⊂ U such that exp(U1) · exp(U1) ⊂ exp(U) = V . We define
m : U1 × U1 → T1G by

m(X,Y ) := exp−1(exp(X) · exp(Y )).

Up to first approximation, there is no difference between the two group
structures:
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Lemma 4.42. We have (D(0,0)m)(X,Y ) = X + Y . In other words,

m(X,Y ) = X + Y + o(||(X,Y )||)

as (X,Y )→ (0, 0).

Proof. Notice that the composition

U1
X 7→(X,0)−−−−−−→ U1 × U1

m−→ T1G

is equal to X 7→ X. Therefore, taking the tangent map at 0, we obtain that the
composition

T1G
X 7→(X,0)−−−−−−→ T1G⊕ T1G

D(0,0)m−−−−−→ T1G

is equal to X 7→ X. In other words, (D(0,0)m)(X, 0) = X for all X ∈ T1G.
Completely symmetrically we have (D(0,0)m)(0, Y ) = Y for all Y ∈ T1G. Thus

(D(0,0)m)(X,Y ) = (D(0,0)m)(X, 0) + (D(0,0)m)(0, Y ) = X + Y.

The Lie algebra concept appears when we consider the second approxima-
tion. From multivariable calculus, there exists a unique R-bilinear symmetric
map

B : (T1G⊕ T1G)× (T1G⊕ T1G)→ T1G,

such that

m(X,Y ) = X + Y +
1

2
B((X,Y ), (X,Y )) + o(||(X,Y )||2)

as (X,Y )→ (0, 0).

Lemma 4.43. We have B((X1, 0), (X2, 0)) = 0 for all X1, X2 ∈ T1G and
B((0, Y1), (0, Y2)) = 0 for all Y1, Y2 ∈ T1G.

Proof. The second claim is analogous to the first, so let us show just the first.
By the polarization identity, it is enough to see that B((X, 0), (X, 0)) = 0 for
all X ∈ T1G. We have

m(X, 0) = X +
1

2
B((X, 0), (X, 0)) + o(||X||2)

and on the other hand

m(X, 0) = exp−1(exp(X) · exp(0)) = exp−1(exp(X) · 1) = exp−1(exp(X)) = X.

Comparing, we obtain

B((X, 0), (X, 0)) = o(||X||2),

forcing the desired.
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Thus, we have

m(X,Y ) = X + Y +B((X, 0), (0, Y )) + o(||(X,Y )||2)

as (X,Y ) → (0, 0). Let us define an R-bilinear map C : T1G × T1G → T1G by
C(X,Y ) := 2B((X, 0), (0, Y )). So, we have

m(X,Y ) = X + Y +
1

2
C(X,Y ) + o(||(X,Y )||2) (4.1)

as (X,Y )→ (0, 0).

Claim 4.44. We have:

• (alternativity) C(X,X) = 0 for all X ∈ T1G.

• (Jacobi identity) C(X,C(Y,Z)) = C((X,Y ), Z) + C(Y,C(X,Z)) for all
X,Y, Z ∈ T1G.

Proof. Let us show alternativity. It is enough to check it for X close to 0. We
have then

m(X,−X) = exp−1(exp(X) · exp(−X)) = exp−1(1) = 0.

Plugging this into (4.1) we get

0 = C(X,−X) + o(||X||2)

as X → 0, i.e.
C(X,X) = o(||X||)2

as X → 0. This implies that X 7→ C(X,X) is equal to zero, as desired.

The Jacobi identity is a little bit more complicated to establish. We will do
it in the next subsection.

One defines:

Definition 4.45. Let k be a field.

• A Lie algebra over k (or a k-Lie algebra) is a k-vector space g equipped
with a k-bilinear map

[−,−] : g× g→ g

satisfying:

1. (alternativity) [X,X] = 0 for all X ∈ g.

2. (Jacobi identity) [X, [Y,Z]] = [[X,Y ], Z]+[Y, [X,Z]] for all X,Y, Z ∈
g.

The map [−,−] is called the Lie bracket. One usually abuses notation
and denotes [−,−] in the same way for different Lie algebras.
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• Let g1, g2 be Lie algebras over k. A morphism of Lie algebras (or more
precisely a morphism of k-Lie algebras) from g1 to g2 is a k-linear map
α : g1 → g2 satisfying

α([X,Y ]) = [α(X), α(Y )], ∀X,Y ∈ g1.

Thus, given our Lie group G, we have the structure of an R-Lie algebra on
T1G, with C being the Lie bracket. But, as we remarked, we will always denote
it by [−,−], i.e. [X,Y ] := C(X,Y ).

Definition 4.46. Let G be a Lie group. We denote the R-Lie algebra which is
T1G equipped with the Lie bracket described above by Lie(G).

So, to repeat, we have the smooth map exp : Lie(G) → G which is a dif-
feomorphism onto the open image at a neighbourhood of 0 ∈ Lie(G) and the
Lie bracket [−,−] : Lie(G) × Lie(G) → Lie(G) is characterized as the unique
R-bilinear map satisfying

exp(X) exp(Y ) = exp(X + Y +
1

2
[X,Y ] + o(||(X,Y )||2))

when (X,Y )→ (0, 0).

Lemma-Definition 4.47. Let ϕ : H → G be a morphism of Lie groups.
Then D1ϕ : T1H → T1G is a morphism of R-Lie algebras. We denote it by
Lie(ϕ) : Lie(H)→ Lie(G).

Proof. Let us abbreviate T := D1ϕ. We want to check that

[T (X), T (Y )] = T ([X,Y ])

for all X,Y ∈ T1H. We have

exp(X) exp(Y ) = exp(X + Y +
1

2
[X,Y ] + o(||(X,Y )||2)).

Applying ϕ we obtain:

exp(T (X)) exp(T (Y )) = exp(T (X) + T (Y ) +
1

2
T ([X,Y ]) + o(||(X,Y )||2)).

On the other hand, we have

exp(T (X)) exp(T (Y )) = exp(T (X) + T (Y ) +
1

2
[T (X), T (Y )] + o(||(X,Y )||2)).

For small enoughX,Y we can therefore compare and obtain T ([X,Y ])−[T (X), T (Y )] =
o(||(X,Y )||2), implying that the R-bilinear map (X,Y ) 7→ T ([X,Y ])−[T (X), T (Y )]
must be zero, as desired.
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Example 4.48. Let us consider G := GLn(R). Recall that T1G = Mn(R) and
that exp : Mn(R) → GLn(R) is given by the usual exponentiation of matrices.
We start with

exp(X) exp(Y ) = exp(X + Y +
1

2
[X,Y ] + o(||(X,Y )||2))

and expand both sides into power series. We obtain:

(I +X +
1

2
X2 + o(||X||2))(I + Y +

1

2
Y 2 + o(||Y ||2)) =

= I +X + Y +
1

2
[X,Y ] +

1

2
(X + Y +

1

2
[X,Y ])2 + o(||(X,Y )||2)

and simplifying

I +X + Y +
1

2
X2 +

1

2
Y 2 +XY + o(||(X,Y )||2) =

= I +X + Y +
1

2
[X,Y ] +

1

2
(X2 +XY + Y X + Y 2) + o(||(X,Y )||2)

and so we obtain

[X,Y ] = XY − Y X + o(||(X,Y )||2),

yielding
[X,Y ] = XY − Y X.

Thus, the Lie bracket in the case of Lie(GLn(R)) =Mn(R) is the commutator.

Example 4.49. Similarly, Lie(GLn(C)) =Mn(C) and the Lie bracket is again
the commutator. Notice here, interestingly, that we consider this as an R-Lie
algebra, but it is in fact naturally a C-Lie algebra.

Definition 4.50. Let V be a vector space over a field k. We denote the k-Lie
algebra Endk(V ), equipped with the Lie bracket [T, S] := T ◦ S − S ◦ T , by
glk(V ), or gl(V ) if k is understood. One also denotes gln(k) := gl(kn).

Remark 4.51. If H is a closed Lie subgroup of GLn(R) by all that we have
seen we obtain that Lie(H) is a R-Lie subalgebra of Mn(R), so the Lie bracket
is given by the usual commutator of matrices.

4.7 Proof of the Jacobi identity

To prove the Jacobi identity, we will use the adjoint representation. Namely,
given g ∈ G consider the smooth map cg : G → G given by cg(h) := ghg−1. It
sends 1 to 1 and hence we obtain an R-linear map

Ad(g) := D1cg : Lie(G)→ Lie(G).

We obtain thus a map Ad : G→ EndR(Lie(G)).
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Lemma 4.52. The map Ad is a morphism of Lie groups

Ad : G→ AutR(Lie(G)).

Proof. It is easy to see that Ad is multiplicative, and hence in particular its
image lies in AutR(Lie(G)). We leave the verification that it is smooth for
now.

We can therefore think of Ad as a representation of G on Lie(G) (it is
a representation over R) - called the adjoint representation. We can now
consider

ad := D1Ad : Lie(G)→ EndR(Lie(G)).

Recall that, since Ad is a Lie gruop morphism, ad is a Lie algebra morphism,
where the Lie algebra structure on the target is that of the commutator.

Claim 4.53. We have ad(X)(Y ) = [X,Y ] for all X,Y ∈ Lie(G).

Proof. We have

ad(X) = lim
t→0

1

t
(Ad(exp(tX))− IdLie(G))

and so

ad(X)(Y ) = lim
t→0

1

t
(Ad(exp(tX))(Y )− Y ).

Let us use exp−1 on some small enough neighbourhood of 1 in G as we did
before. We have

Ad(g)(Y ) = (D1cg)(Y ) = D1(exp
−1 ◦cg)(Y ) = lim

t→0

1

t
exp−1(g exp(tY )g−1).

Now fix X ∈ Lie(G) and let us consider g := exp(sX) in the formula above. We
have

exp(sX) exp(tY ) exp(−sX) = exp(tY + st[X,Y ] + o(||(s, t)||2))

and so

exp−1(exp(sX) exp(tY ) exp(−sX)) = tY + st[X,Y ] + h(s, t)

where h(s, t) = o(||(s, t)||2). Notice that h(0, t) = 0 and h(s, 0) = 0. Hence
h(s, t) = st · k(s, t) where k is also a smooth function from a neighbourhood of
(0, 0) in the (s, t)-plane to Lie(G). Since

0 = lim
(s,t)→(0,0)

1

s2 + t2
h(s, t) = lim

(s,t)→(0,0)

st

s2 + t2
k(s, t)

we must have k(0, 0) = 0 (we see this by, for example, plugging in s = t). We
now calculate

Ad(exp(sX))(Y ) = lim
t→0

1

t
(tY + st[X,Y ] + h(s, t)) = Y + s[X,Y ] + lim

t→0

1

t
h(s, t).
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We obtain:

ad(X)(Y ) = lim
s→0

1

s
(Ad(exp(sX))(Y )−Y ) = [X,Y ]+ lim

s→0
lim
t→0

1

st
h(s, t)) = [X,Y ].

Claim 4.53, coupled with ad being a Lie algebra morphism immediately
results in Jacobi’s identity:

[X, [Y,Z]] = −[[Y, Z], X] = −ad([Y,Z])(X) = −[ad(Y ), ad(Z)](X) =

= −(ad(Y )(ad(Z)(X))− ad(Z)(ad(Y )(X))) = −([Y, [Z,X]]− [Z, [Y,X]]) =

= [[X,Y ], Z] + [Y, [X,Z]].

4.8 Proof of Theorem 4.32

Claim 4.54. Let G be a Lie group. Let X,Y ∈ Lie(G). Then

exp(X + Y ) = lim
n→∞

(
exp( 1nX) exp( 1nY )

)n
.

Proof. We have

exp( 1nX) exp( 1nY ) = exp( 1nX + 1
nY + 1

2n2 [X,Y ] + o( 1
n2 ))

as n→∞. Therefore(
exp( 1nX) exp( 1nY )

)n
= exp(X + Y + 1

2n [X,Y ] + o( 1n )).

Taking the limit as n→∞ we get what we want.

Proof (of Theorem 4.32, part 1). First, let us notice that it is enough to see
that, for some open 1 ∈ U ⊂ G, we have that H ∩ U is a closed submanifold in
U . Then by applying diffeomorphisms of G of translating by elements in H, we
obtain that H is a closed submanifold also around all of its other points.

Let us denote by h ⊂ Lie(G) the subset consisting of X for which exp(tX) ∈
H for all t ∈ R. Clearly this subset contains 0 and is closed under multiplication
by scalars in R. From Claim 4.54 we also see that this subset is closed under
addition, so it is an R-linear subspace of Lie(G).

Let V ⊂ Lie(G) be an R-linear complement to h in Lie(G). Define a smooth
map ϕ : Lie(G)→ G by

Lie(G)
X+Y← [(X,Y )←−−−−−−−−− h× V (X,Y )7→exp(X)·exp(Y )−−−−−−−−−−−−−−−→ G.

We claim now that for some open 0 ∈ U ⊂ V we have ϕ(U) ∩ H = {1}.
Let us see first that this will finish the proof. Notice that D0ϕ = IdLie(G).
Therefore there exists an open neighbourhood of 0 in Lie(G), which we can
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assume to be of the form U ′ × U where U ′ is an open neighbourhood of 0
in h and U is an open neighbourhood of 0 in V (taken small enough so that
ϕ(U) ∩H = {1}), such that ϕ|U ′×U is a diffeomorphism onto its open image in
G. Then to show that H ∩ϕ(U ′×U) is a closed submanifold of ϕ(U ′×U) is the
same as to show that (ϕ|U ′×U )

−1(H) is a closed submanifold of U ′ ×U . Notice
that (ϕ|U ′×U )

−1(H) = U ′ × {0}. Clearly U ′ × {0} is a closed submanifold of
U ′ × U , as desired.

Thus, it is left to see that there exists an open 0 ∈ U ⊂ V such that
ϕ(U) ∩H = {1}. Let us denote C := {v ∈ V | ϕ(v) ∈ H}. Then C is a closed
subset in V which is also closed under multiplication by scalars in Z. We also
know that C does not contain any non-trivial R-linear subspace of V . Then an
exercise shows that 0 is a discrete point in C, as desired.

We have the following important result, which we don’t prove:

Theorem 4.55 (Sard’s theorem, weak version). Let M and N be non-empty
manifolds and ϕ : M → N a smooth map. There exists q ∈ N such that for
every p ∈ ϕ−1(q) the differential Dpϕ : TpM → TqN is surjective.

Remark 4.56. Sard’s theorem in fact says that the set of points q ∈ N for
which the property we stated holds is in fact “almost all” of N (its complement
has measure zero).

Using Sard’s theorem, we can prove:

Claim 4.57. Let G and H be Lie groups and let ϕ : G → H be a morphism
of Lie groups. If ϕ is surjective then Dpϕ is surjective for all p ∈ G. If ϕ is
bijective then ϕ is an isomorphism of Lie groups.

Proof. By Sard’s theorem, there exists p ∈ G such that Dpϕ is surjecitve. Then
for any other p′ ∈ G, we can write gp = p′ for g ∈ G and then, writing
ϕ = mϕ(g) ◦ ϕ ◦mg we see that Dp′ϕ is surjective. If now ϕ is in fact bijective,
we want to see that its inverse is smooth. This is seen using Theorem 4.21.
From it, we see that the differential of ϕ must be in fact an isomorphism at each
point, and then using the inverse function theorem (which itself is a consequence
of Theorem 4.21) we deduce the desired.

Proof (of Theorem 4.32, part 2). Let us consider the map ϕ̃ : G→ G×H given

by g 7→ (g, ϕ(g)). The image Γ of ϕ̃ is a closed subset in G×H (called the graph
of ϕ). In fact, clearly in our case Γ is also a subgroup of G × H. Therefore,
by Theorem 4.32, Γ is a closed Lie subgroup of G × H. Let us consider the
projections p1 : Γ → G and p2 : Γ → H, which are clearly morphisms of Lie
groups . The projection p1 is bijective. By Claim 4.57 we obtain that p1 is an
isomorphism of Lie groups. Therefore p2 ◦ (p1)−1 : G→ H is a morphism of Lie
groups. But clearly p2 ◦ (p1)−1 = ϕ and we are done.
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4.9 Some of Lie’s theorems

Theorem 4.58 (Lie’s theorems). Let G and H be Lie groups.

1. Suppose that G is connected. Let ϕ1, ϕ2 : G→ H be two morphisms of Lie
groups. Suppose that Lie(ϕ1) = Lie(ϕ2). Then ϕ1 = ϕ2.

2. Suppose that G is simply connected16. Let α : Lie(G) → Lie(H) be a
morphism of R-Lie algebras. Then there exists a morphism of Lie groups
ϕ : G→ H such that Lie(ϕ) = α.

Proof.

1. Since, for X ∈ Lie(G), we have ϕi(exp(X)) = exp((Lie(ϕi))(X)), we de-
duce ϕ1(exp(X)) = ϕ2(exp(X)) for all X ∈ Lie(G). Since exp is a dif-
feomorphism onto the open image at a neighbourhood of 0 ∈ Lie(G), we
obtain ϕ1(g) = ϕ2(g) for g ∈ U , where 0 ∈ U ⊂ G is some open subset.
Hence, the subset S ⊂ G consisting of g for which ϕ1(g) = ϕ2(g) is a closed
and open subgroup in G. Since G is connected, we must have S = G, as
desired.

2. Omitted.

Remark 4.59. It is easy to see why the conditions in the theorem are necessary.
To give a contraexample to item (1) when G is not connected, consider any two
different group morphisms ϕ1, ϕ2 : G→ H where G and H are finite groups. We
can view G and H as Lie groups, and then of course Lie(H) = 0 and Lie(H) = 0,
so Lie(ϕ1) = Lie(ϕ2). To give a contra-example to item (2) when G is not simply
connected, we consider G = C×|−|=1 and H = G. The Lie algebra Lie(G) is a

one-dimensional R-vector space, and the bracket therefore (by the alternativity
axiom) must be trivial: [X,Y ] = 0 for all X,Y ∈ Lie(G). Therefore any R-
linear map Lie(G) → Lie(G) is a morphism of Lie algebras. But the Lie group
morphisms G→ G are all of the form ϕn : z 7→ zn for some n ∈ Z, and Lie(ϕn)
is the R-linear map of multiplication by n. Therefore, if we consider any R-
linear map α : Lie(G) → Lie(G) given by multiplication by some c ∈ R ∖ Z, it
provides a contraexample.

4.10 Representations of Lie groups versus representations
of Lie algebras

Definition 4.60. Let k be a field and let g be a Lie algebra over k.

• Let V be a k-vector space. A g-action on V is a map a : g × V → V
which satisfies:

1. a is k-bilinear.

16For us, simply connected means connected and simply connected.
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2. a([X,Y ], v) = a(X, a(Y, v))−a(Y, a(X, v)) for allX,Y ∈ g and v ∈ V .

As usual, we usually write Xv instead of a(X, v), so the second condition
is then written [X,Y ]v = XY v − Y Xv.

• A g-representation (over k), or a g-module, is a k-vector space equipped
with a g-action.

• Let V1 and V2 be two g-representations. Amorphism of g-representations
from V1 to V2 is a k-linear map T : V1 → V2 such that T (Xv) = XT (v)
for all X ∈ g and v ∈ V1.

It is important to understand the following exercise:

Exercise 4.8. Let k be a field and let g be a Lie algebra over k. Given a k-vector
space V , check that there is a bijection between the set of Lie algebra morphisms
g→ gl(V ) and the set of g-actions on V , given by sending a morphism ρ : g→
gl(V ) to the action a : g× V → V given by a(X, v) := ρ(X)(v).

Example 4.61. Let g be a Lie algebra over a field k. An important example
of a g-module is the adjoint representation, where g acts on g by setting the
result of X acting on Y to be [X,Y ].

Since our Lie algebras are usually over R, but our representation spaces are
usually over C, we need to discuss complexification.

Definition 4.62. Let V be an R-vector space. A complexification of V is a
pair (W, ι) consisting of a C-vector space W and an R-linear map ι : V → W
satisfying the following universal property:

• Let U be a C-vector space and let ι′ : V → U be an R-linear map. Then
there exists a unique C-linear map T :W → U such that T ◦ ι = ι′.

Exercise-Definition 4.63. Let V be an R-vector space. Given two com-
plexifiactions of V , (W, ι) and (W ′, ι′), there exists a unique C-linear map
T : W → W ′ satisfying T ◦ ι = ι′ and there exists a unique C-linear map
S : W ′ → W satisfying S ◦ ι′ = ι. Show that S ◦ T = idW and T ◦ S = idW ′ .
Hence T and S are isomorphisms of C-vector spaces, andW andW ′ are canoni-
cally isomorphic. Thus we can speak about the complexification of V . We denote
it by VC (and ι is usually implicit, since it is injective as we will see immediately
and hence one simply identifies V with its image in VC).

Exercise 4.9. Let V be an R-vector space. We can construct VC as follows.
As an abelian group, VC := V × V . We think of (v1, v2) ∈ VC as v1 + iv2. Then
it is clear how to define multiplication by scalar from C: Given a, b ∈ R and
(v1, v2) ∈ VC, we define

(a+ ib)(v1, v2) := (av1 − bv2, av2 + bv1).

Show that indeed (VC, ι), where ι(v) := (v, 0), is a complexification of V .
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Exercise 4.10. Let V be an R-vector space. Suppose that e1, . . . , en is an R-
basis for V . Show that e1, . . . , en is a C-basis for VC (as we said, we mean that
ι(e1), . . . , ι(en) is a C-basis for VC, but we identify V with ι(V ) with ι and keep
ι implicit).

Exercise 4.11. Let V1 and V2 be R-vector spaces and let W be a C-vector space.
Show that there is a bijection between the sets of C-bilinear maps (V1)C×(V2)C →
W and of R-bilinear maps V1 × V2 →W , given by restriction along the natural
V1 × V2 → (V1)C × (V2)C.

Now, we can also complexify Lie algebras. Given an R-Lie algebra g, we
define its complexification gC as a C-Lie algebra equipped with a morphism of
R-Lie algebras ι : g → gC satisfying a universal property (as an exercise, fill it
in). It is constructed by taking the complexification of g as an R-vector space,
and the Lie bracket gC × gC → gC is obtained from Exercise 4.11 applied to the

R-bilinear map g × g
[−,−]−−−→ g ↪→ gC. The (quite trivial) details are left to the

reader.

The following proposition is basic for us, explaining that we can study Lie
algebra representations instead of Lie group representations.

Proposition 4.64. Let G be a simply connected Lie group.

1. Let V be a f.d. C-vector space. There is a natural bijection between
the set of C-linear G-actions on V and the set of Lie(G)C-actions on
V . More precisely, the bijection is given as follows. Given a morphism
of topological groups ρ : G → GLC(V ), we recall that it is a morphism
of Lie groups, we consider the associated morphism of R-Lie algebras,
Lie(ρ) : Lie(G) → glC(V ), and then consider the unique morphism of C-
Lie algebras Lie(G)C → glC(V ) whose restriction along Lie(G)→ Lie(G)C
is Lie(ρ). This last morphism of C-Lie algebras is the Lie(G)C-action on
V we associate to ρ.

2. Let V and W be f.d. G-representations, so also considered as Lie(G)C-
representations by part 1 of this proposition. A C-linear map T : V →W
is a morphism of G-representations if and only if it is a morphism of
Lie(G)C-representations.

Proof.

1. The described procedure is bijective, by Lie’s theorem and by the universal
property of complexification.

2. Let us denote the morphisms corresponding to the G-actions on V and W
by πV : G → AutC(V ) and πW : G → AutC(W ). It is immediate to see
that T is a moprhism of Lie(G)C-representations (over C) if and only if T
is a moprhism of Lie(G)-representations (over R). Suppose first that T is
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a morphism of G-representations. Then we have a commutative diagram

G
πV //

πW

��

AutC(V )

T◦−
��

AutC(W )
−◦T
// HomC(V,W )

.

Taking the differential at 1 ∈ G we obtain a commutative diagram

Lie(G)
D1(πV )

//

D1(πW )

��

EndC(V )

T◦−
��

EndC(W )
−◦T
// HomC(V,W )

which precisely means that T ◦Lie(πV ) = Lie(πW )◦T , i.e. T is a morphism
of Lie(G)-representations. Conversely, suppose that T is a morphism of
Lie(G)-representations. Let us denote by S ⊂ G the subset consisting of
g for which T ◦ πV (g) = πW (g) ◦ T . We want to see that S = G. Notice
that S is a closed subgroup of G. Also, notice that, for X ∈ Lie(G),

T◦πV (exp(X)) = T◦exp(Lie(πV )(X)) = exp(Lie(πW )(X))◦T = πW (exp(X))◦T

(let us leave as an exercise the the middle equality follows from T ◦
(Lie(πV ))(X) = (Lie(πW ))(X) ◦ T ). Hence, the image of exp is contained
in S. Since exp is a diffeomorphism onto the open image in some neigh-
bourhood of 1 ∈ G, we deduce that S is open in G. Since S is open and
closed in G, and non-empty, and G is connected, we deduce S = G, as
desired.

4.11 The case of SU(n)

As we have seen, Lie(SU(n)) is the R-Lie subalgebra of gln(C) consisting of
matrices X for which etX ∈ SU(n) for all t ∈ R. In other words, the conditions
are:

• etX(etX)tr = 1.

• det(etX) = 1.

As an exercise, check that det(eY ) = etr(Y ). Hence the second condition is
equivalent to t · tr(X) ∈ 2πiZ for all t ∈ R, which is equivalent to tr(X) = 0.
To check what the first condition means, we will differentiate it with respect to
t. We obtain

X · etX · (etX)tr + etX · (X · etX)tr = 0, (4.2)
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and substituting t := 0 we obtain X +Xtr = 0. Conversely, it is easy to check
(as an exercise) that if X +Xtr = 0 then (4.2) holds for all t ∈ R and therefore

etX(etX)tr = 1 (since both sides agree for t := 0 and have the same derivative
for all t ∈ R).

To conclude, we see that Lie(SU(n)) is the R-Lie subalgebra of gln(C) con-
sisting of matrices X satisfying tr(X) = 0 and X +Xtr = 0.

Let us now describe the complexification Lie(SU(n))C. By the universal
property of complexification, the morphism of R-Lie algebras

Lie(SU(n))→ gln(C)

(which is simply the embedding) induces a morphism of C-Lie algebras

Lie(SU(n))C → gln(C). (4.3)

We first claim that (4.3) is injective. Indeed, for that we need to check that if
X,Y ∈ Lie(SU(n)) and X + iY = 0, then X = 0 and Y = 0. But if X + iY = 0
then we have (X + iY )tr = 0, and since X,Y ∈ Lie(SU(n)) the left-hand-side is
equal to −X − i(−Y ) = −(X − iY ), so we obtain X − iY = 0. The equalities
X + iY = 0 and X − iY = 0 of course imply X = 0 and Y = 0. Next, we notice
that the image of (4.3) lies in sln(C), which is the C-Lie subalgebra of gln(C)
consisting of matrices with trace 0. Finally, we leave as an exercise to check
that the C-dimension of Lie(SU(n))C, which is the same as the R-dimension of
Lie(SU(n)), is the same as the C-dimension of sln(C). Therefore (4.3) is an
isomorphism, of C-Lie algebras.

To conclude, we have a natural isomorphism of Lie(SU(n))C with sln(C).
We also have:

Claim 4.65. The topological group SU(n) is simply connected.

Proof. Omitted for now.

Therefore, by Proposition 4.64, we obtain:

Corollary 4.66. On finite-dimensional complex vector spaces, SU(n)-representations
are “the same” as sln(C)-representations, in the sense of Proposition 4.64,
once we recall that we have a canonical isomorphism of the complexification of
Lie(SU(n)) ⊂ gln(C) with sln(C), induced by the inclusion Lie(SU(n)) ⊂ sln(C).

5 Representation theory of sl2

Throughout, we work over C. We set g := sl2 := sl2(C). We consider the
following C-basis for g:

H :=

(
1 0
0 −1

)
, E :=

(
0 1
0 0

)
, F :=

(
0 0
1 0

)
.

We have the following relations:

[H,E] = 2E, [H,F ] = −2F, [E,F ] = H. (5.1)
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5.1 Finite-dimensional irreducible modules

Lemma 5.1. Let V be a g-module.

1. Let v ∈ V and suppose that Hv = cv for c ∈ C. Then HEv = (c+ 2) ·Ev
and HFv = (c − 2) · Fv. In other words, E and F shift us between
eigenspaces of H.

2. Suppose that V is finite-dimensional and non-zero. There exists v ∈ V
which is both a non-zero eigenvector of H and satisfying Ev = 0.

Proof.

1. Immediate, using the relations of (5.1).

2. There exists some non-zero eigenvector of H, say w ∈ V satisfying Hw =
dw for some d ∈ C. Considering (Enw)n∈Z≥0

, the non-zero vectors in
this list are linearly independent, since those are eigenvectors of H with
different eigenvalues c + 2n. Thus, there are only finitely many non-zero
vectors in this list, meaning that Enw = 0 for some n ∈ Z≥1. Let n
minimal with that property. Denote v := En−1w. Then v ̸= 0, v is an
eigenvector of H, and Ev = 0.

Lemma 5.2. Let V be a g-module. Let 0 ̸= v ∈ V and c ∈ C be such that
Hv = cv and Ev = 0.

1. We have
EFnv = n(c− (n− 1))Fn−1v

for all n ∈ Z≥1.

2. Suppose that V is finite-dimensional. Then c ∈ Z≥0, Fnv ̸= 0 for 0 ≤
n ≤ c and F c+1v = 0.

3. Suppose again that V is finite-dimensional. Let W ⊂ V be the subspace
spanned by {Fmv}0≤m≤c. Then W is a g-submodule of V which is irre-
ducible.

Proof.

1. Let us denote vn := 1
n!F

nv. We calculate

Ev1 = EFv = FEv +Hv = cv0,

Ev2 =
1

2
EFv1 =

1

2
(FEv1 +Hv1) =

1

2
(c+ (c− 2))v1 = (c− 1)v1.

Guessing
Evn = (c− (n− 1))vn−1, (5.2)
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we inductively then verify:

Evn+1 =
1

n+ 1
EFvn =

1

n+ 1
(FEvn+Hvn) =

1

n+ 1
((c−(n−1))Fvn−1+(c−2n)vn) =

=
1

n+ 1
(n(c− (n− 1)) + (c− 2n))vn = (c− n)vn.

This is equivalent to EFnv = n(c− (n− 1))Fn−1v for all n ∈ Z≥1.

2. From (5.2) we find

1

n!
EnFnv =

 ∏
0≤i≤n−1

(c− i)

 · v. (5.3)

Let now n0 ∈ Z≥1 be such that Fn0v = 0 (such n exists because V is
finite-dimensional and the non-zero elements in {Fnv}n∈Z≥0

are linearly
independent, as eigenvectors of H with different eigenvalues). Then from
(5.3) we obtain c = i for some 0 ≤ i < n0 − 1, so c ∈ Z≥0 indeed.
Taking 0 ≤ n ≤ c, (5.3) gives Fnv ̸= 0. It remains to understand why
F c+1v = 0. Supposing the opposite, we would obtain inductively from
(5.2) that F c+nv ̸= 0 for all n ∈ Z≥1, which would contradict V being
finite-dimensional.

3. ClearlyW is a g-submodule of V , by formulas we just seen. To see thatW
is an irreducible g-module, we consider a non-zero g-submodule U ⊂ W .
Since the action of H on W is diagnolizable, so is the action of H on U .
Therefore U contains Fmv for some 0 ≤ m ≤ c. Then U also contains
F ℓFmv for any ℓ ∈ Z≥0, and also U contains EℓFmv for any ℓ ∈ Z≥0, and
from formulas we have seen this clearly shows that U contains Fm

′
v for

all 0 ≤ m′ ≤ c, so U =W .

Corollary 5.3. Let V be an irreducible f.d. g-module. There exist v ∈ V and
m ∈ Z≥0 such that v, Fv, F 2v, . . . , Fmv is a basis for V , we have

HFnv = (m− 2n)Fnv ∀0 ≤ n ≤ m

and
EFnv = n(m− (n− 1))Fn−1v ∀0 ≤ n ≤ m.

Proof. This follows from the above lemmas.

Corollary 5.4. For every m ∈ Z≥0 there is precisely one, up to isomorphism,
irreducible g-module of dimension m+1, and we wrote above explicitly its “mul-
tiplication table”.
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Proof. In view of the above, the uniqueness is clear, but still need to see exis-
tence. One possible approach is simply to define a module dictated by Corollary
5.3 and check that it is well-defined. Another approach is to consider the repre-
sentation, say of SU(2), or of SL2(R), or of SL2(C) on the space of homogeneous
polynomials of degree m in two variables, as we did before, and differentiate it
to obtain a module as desired. We basically already did it before, but the
“problem” with that is that it does not work if we replace C with an arbitrary
algebraically closed field of characteristic 0. But, in fact, if we do the version
with SL2(C), we can make sense of it over any such field (but we don’t do it
here).

Recall that we saw that f.d. sl2-modules are “the same” as f.d. SU(2)-
representations. Since every f.d. SU(2)-representation, as a f.d. representation
of a compact group, is completely reducible, i.e. can be written as the direct
sum of irreducible subrepresentations, we deduce that every f.d. sl2-module
is completely reducible, i.e. can be written as the direct sum of irreducible
submodules. This is a “transcendental” approach, involving analysis (another
way to say it is that this approach is not algebraic, in the sense that it does not
carry over to working over an arbitrary algebraically closed field of characteristic
0 instead of C). It is sometimes called “Weyl’s unitary17 trick”. We next want
to give a purely algebraic approach to this complete reducibility.

5.2 Detour 1 - tensor products

We fix a field k.

Definition 5.5. Let V and W be k-vector spaces. The tensor product of
V and W (over k) is a pair (U,B) consisting of a k-vector space U and a k-
bilinear map B : V ×W → U , satisfying the following universal property:
Given a pair (U ′, B′) consisting of a k-vector space U ′ and a k-bilinear map
B′ : V ×W → U ′, there exists a unique k-linear map T : U → U ′ such that
T ◦B = B′.

Exercise 5.1. Let V and W be k-vector spaces. Let (U1, B1) and (U2, B2) be
two tensor products of V and W . By the definition, there exists a unique k-
linear map T12 : U1 → U2 such that T12 ◦ B1 = B2 and there exists a unique
k-linear map T21 : U2 → U1 such that T21 ◦B2 = B1. Show that T21 ◦T12 = IdU1

and T12◦T21 = IdU2
, so that we have a canonical isomorphism of k-vector spaces

between U1 and U2.

In view of the exercise, we can talk about the tensor product of V and W -
if a tensor product exists. The notation for the vector space is V ⊗W (or V ⊗

k
W

in a more complete notation) and for the bilinear form it is (v, w) 7→ v⊗w (the
bilinear form itself is not given a name usually).

17Serre writes that Weyl used the “more theological” word “unitarian”.
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Exercise 5.2. Let V and W be k-vector spaces. Show that the tensor product
of V and W exists as follows. For each element (v, w) ∈ V ×W create a formal

symbol δ(v,w) and create formally the k-vector space Ũ with basis the elements

{δ(v,w)}(v,w)∈V×W . Let U denote the quotient of Ũ by the k-linear subspace
generated by elements of the form

δ(v1+v2,w)−δ(v1,w)−δ(v2,w), δ(cv,w)−cδ(v,w), δ(v,w1+w2)−δ(v,w1)−δ(v,w2), δ(v,cw)−cδ(v,w).

Consider the map B : V × W → U given by sending (v, w) to the image of

δ(v,w) ∈ Ũ under the quotient map Ũ → U . Show that (U,B) is a tensor
product of V and W .

Exercise 5.3. Let V and W be k-vector spaces. Show that the tensor product of
V and W exists as follows. Choose a k-basis {ei}i∈I of V and a k-basis {fj}j∈J
of W . For each element (i, j) ∈ I × J create a formal symbol δ(i,j) and create
formally the k-vector space U with basis the elements {δ(i,j)}(i,j)∈I×J . Consider
the map B : V ×W → U characterized by sending (ei, fj) to δ(i,j). Show that
(U,B) is a tensor product of V and W .

Exercise 5.4. Deduce from the previous exercise that given k-vector spaces V
and W and k-bases {ei}i∈I of V and {fj}j∈J of W , we have a k-basis of V ⊗W
given by {ei ⊗ fj}(i,j)∈I×J .

5.3 Detour 2 - the Casimir element

Given a group G and an abstract G-representation V , the correct structure of
an abstract G-representation on V ∗ is given by (gζ)(v) := ζ(g−1v). Given two
abstract G-representations V and W , the correct structure of G-representation
on HomC(V,W ) is given by (gT )(v) := gT (g−1v). The correct structure of
G-representation on V ⊗W is characterized by g(v ⊗ w) = gv ⊗ gw.

Given a Lie algebra g and a g-module V , the correct structure of a g-module
on V ∗ is given by (Xζ)(v) := −ζ(Xv). Given two g-modules V and W , the
correct structure of g-module on HomC(V,W ) is given by (XT )(v) := XT (v)−
T (Xv). The correct structure of g-module on V ⊗W is characterized by X(v⊗
w) = Xv ⊗ w + v ⊗Xw.

Suppose now that g is a finite-dimensional Lie algebra and that we are given
a g-invariant non-degenerate symmetric bilinear form B : g × g → C. The
condition of g-invariancy conforms with the above constructions, concretely it
means that

B([X,Y ], Z) +B(Y, [X,Z]) = 0

for all X,Y, Z ∈ g. The form B induces an isomorphism of g-modules ιB :
g→ g∗ given by ιB(X)(Y ) := B(X,Y ). We can construct the following isomor-
phisms

EndC(g)
∼←− g⊗ g∗

∼←− g⊗ g.
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Here the left isomorphism is characterized by sendingX⊗ζ to the endomorphism
sending Y to ζ(Y )X. The right isomorphism is characterized by sending X⊗Y
to X ⊗ ιB(Y ). Let us take the image on the right of the element Idg on the left
- call it C. Since Idg is g-invariant, so is C. If we want a concrete description, let
X1, . . . , Xn be a basis for g and let X∗1 , . . . , X

∗
n the basis for g which is dual to

this basis with respect to B, i.e. we have B(Xi, X
∗
j ) = δi,j for all 1 ≤ i, j ≤ n.

Then we see that C =
∑

1≤i≤nXi ⊗X∗i .

Now, suppose that we are given a g-module V . Denoting the corresponding
morphism of Lie algebras π : g→ EndC(V ), we have a morphism of g-modules
g⊗ g→ EndC(V ) characterized by X ⊗Y 7→ π(X) ◦π(Y ). Calling the image of
C under this map C, we obtain an endomorphism of g-modules C ∈ Endg(V ).
It is called the Casimir operator (corresponding to B).

A standard way to produce a g-invariant symmetric bilinear form is given
by the Killing form. It is the form B : g × g → C given by B(X,Y ) :=
Tr(ad(X) ◦ ad(Y )). It is indeed g-invariant:

B([Z,X], Y )+B(X, [Z, Y ]) = Tr(ad([Z,X])◦ad(Y ))+Tr(ad(X)◦ad([Z, Y ])) =

= Tr([ad(Z), ad(X)]ad(Y ) + ad(X)[ad(Z), ad(Y )]) =

= Tr(ad(Z)ad(X)ad(Y )−ad(X)ad(Y )ad(Z))+Tr(−ad(X)ad(Z)ad(Y )+ad(X)ad(Z)ad(Y )) = 0.

One of the characterizations of g being semisimple is that the Killing form B
is non-degenerate.

Let us now realize this for g := sl2. First, we see that the Killing form B is
non-degenerate. We work with the basis H,E, F of g, and compute the matrices
representing in this basis:

ad(H) :

 0 0 0
0 2 0
0 0 −2

 , ad(E) :

 0 0 1
−2 0 0
0 0 0

 , ad(F ) :

 0 −1 0
0 0 0
2 0 0


and then we compute

B :

 8 0 0
0 0 4
0 4 0

 .

Thus indeed B is non-degenerate. Next, we compute the basis dual to (H,E, F )
with respect to B:

(H∗, E∗, F ∗) = (
1

8
H,

1

4
F,

1

4
E).

Hence

C = H ⊗H∗ + E ⊗ E∗ + F ⊗ F ∗ = 1

8
H ⊗H +

1

4
E ⊗ F +

1

4
F ⊗ E.

Therefore given a g-module V , the Casimir operator C ∈ Endg(V ) is given by

C =
1

8
(H2 + 2EF + 2FE) =

1

8
(H2 + 2H + 4FE).
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It is interesting, I think, to notice how C can’t be seen “inside” SU(2), or even
inside sl2, one has to extend the scope of possible operators in order to discover
it.

5.4 Complete reducibility of finite-dimensional modules

Definition 5.6. Given a vector space V , an operator T : V → V and c ∈ C, we
will denote by VT,c ⊂ V the eigenspace of T with eigenvalue c and by V(T,c) ⊂ V
the generalized eigenspace of T with eigenvalue c.

Lemma 5.7. Let V be a f.d. g-module.

1. If V is irreducible, of dimension m + 1, then C acts on V by the scalar
1
8 (m

2 +m).

2. The generalized eigenvalues of the action of C on V lie in { 18 (m
2 +

m)}m∈Z≥0
, and if some 1

8 (m
2+m) is indeed a generalized eigenvalue then

V(H,m) ̸= 0.

3. If the only generalized eigenvalue of C acting on V is 1
8 (m

2 + m), for
some m ∈ Z≥0, then the generalized eigenvalues of H acting on V lie in
{m,m− 2, . . . ,−m+ 2,−m}.

Proof. Let us first show that (2) and (3) follow from (1). Using dimension
reasoning, we can always find a chain of g-submodules

0 = K0 ⊂ K1 ⊂ . . . ⊂ Kr = V

such that Ki+1/Ki is an irreducible g-module. This clearly shows that (2)
follows from (1). In the case (3), all these irreducible g-modules must be (m+1)-
dimensional, by (2), and since the generalized eigenvalues of H acting on an
(m + 1)-dimensional irreducible g-module lie in {m,m − 2, . . . ,−m + 2,−m},
we also get (3).

Let thus V be irreducible, of dimension m + 1, and let 0 ̸= v ∈ V be such
that Ev = 0 and Hv = mv. We calculate:

Cv =
1

8
(H2v +Hv + 4FEv) =

1

8
(m2 +m)v.

Then CFnv = FnCv = 1
8 (m

2+m)Fnv for all n ∈ Z≥0 and so, since {Fnv}n∈Z≥0

spans V , we indeed obtain that C acts on V by the scalar 1
8 (m

2 +m).

Lemma 5.8. Let V be a f.d. g-module. Let n ∈ Z≥0. The operator

Fn : V(H,n) → V(H,−n)

is injective.
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Proof. Let us argue by induction on the dimension of V . If V = 0 then the
claim is clear. so assume V ̸= 0. By dimension reasoning there exists a maximal
proper g-submodule K ⊂ V ; then V/K is necessarily an irreducible g-module.
Denote by [−] : V → V/K the quotient map. Let 0 ̸= v ∈ V(H,n). If v ∈ K
then by the induction hypothesis applied to K we have Fnv ̸= 0 and we are
done. Otherwise, we have [v] ̸= 0. If K ̸= 0 then we can apply the induction
hypothesis to V/K and obtain [Fnv] = Fn[v] ̸= 0 and so Fnv ̸= 0. So it
remains to consider the case when K = 0, i.e. V is irreducible. But then the
claim follows from direct observation, using Corollary 5.3.

Lemma 5.9. Let V be a f.d. g-module. Suppose that the only generalized
eigenvalue of C acting on V is 1

8 (m
2 +m), for some m ∈ Z≥0. Then V(H,m) =

VH,m.

Proof. As operators on V , we have

[H,Fn] = [H,F ]Fn−1 + F [H,F ]Fn−2 + . . .+ Fn−1[H,F ] = −2n · Fn.

Then
[E,Fn] = [E,F ]Fn−1 + F [E,F ]Fn−2 + . . .+ Fn−1[E,F ] =

= HFn−1 + FHFn−2 + . . .+ Fn−1H =

=
(
[H,Fn−1] + Fn−1H

)
+
(
F [H,Fn−2] + Fn−1H

)
+ . . .+

(
Fn−1H

)
=

= −(2(n− 1) + 2(n− 2) + . . .+ 2 + 0)Fn−1 + nFn−1H =

= nFn−1(H − (n− 1)).

Since Fm+1 and E act by zero on V(H,m) (by Lemma 5.7(3), because Fm+1

and E send V(H,m) to V(H,−m−2) and to V(H,m+2) respectively), we obtain that
Fm(H −m) acts by zero on V(H,m). Since, by Lemma 5.8, Fm acts injectively
on V(H,m), we obtain that H − m acts by zero on V(H,m), implying V(H,m) =
VH,m.

Lemma 5.10. Let V be a f.d. g-module. Suppose that the only generalized
eigenvalue of C acting on V is 1

8 (m
2 +m), for some m ∈ Z≥0. Then V is a

direct sum of irreducible g-submodules of dimension m+ 1.

Proof. We first claim that VH,m generates V as a g-module. LetW ⊂ V be the g-
submodule generated by VH,m. Since the projection map V(H,m) → (V/W )(H,m)

is surjective and, by Lemma 5.9, we have V(H,m) = VH,m ⊂ W , we deduce
(V/W )(H,m) = 0. Since the only generalized eigenvalue of C acting on V/W is
1
8 (m

2 +m), by Lemma 5.7(2) we see that we must have V/W = 0, i.e. W = V
as desired.

Let now e1, . . . , er be a basis for VH,m. Denote by Li the span of ei, F ei, . . . , F
mei.

Notice that Eei = 0. Therefore, by Lemma 5.2, we know that Li is an irreducible
g-submodule of V of dimension m+ 1. Since VH,m generates V as a g-module,
we have V =

∑
i Li. It is left to see that {Li}i is a linearly independent family.

Indeed, {Li}i is linearly independent if {Li∩V(H,c)}i is linearly independent for
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every c ∈ C. For c /∈ {m,m−2, . . . ,−m+2,m} this is clear, while otherwise, de-
noting n := (m− c)/2, this is equivalent to the linear independence of {Fnei}i.
The latter linear independence would follow from the linear independence of

{EnFnei}i. But we saw that EnFnei =
(
n!
∏

0≤i≤n−1(m− i)
)
ei, so that the

linear independence of {EnFnei}i is equivalent to the linear independence of
{ei}i, and we are done.

Corollary 5.11 (Complete reducibility). Every f.d. g-module can be written
as a direct sum of irreducible g-submodules.

Proof. Let V be a f.d. g-module. By Lemma 5.7, the generalized eigenval-
ues of C acting on V lie in { 18 (m

2 + m)}m∈Z≥0
. We can decompose V =⊕

m∈Z≥0
V(C, 18 (m2+m)), and this is a decomposition into g-submodules. By

Lemma 5.10, each V(C, 18 (m2+m)) can be written as a direct sum of irreducible
g-submodules of dimension m+ 1.

From the discussion we have:

Corollary 5.12. The action of H on a f.d. g-module is diagnolizable. The
eigenvalues of H acting on a f.d. g-module are in Z.

Claim 5.13. Let V be a f.d. g-module. Let n ∈ Z≥0. The linear maps

Fn : VH,n → VH,−n

and
En : VH,−n → VH,n

are isomorphisms.

Proof. By Corollary 5.11 we reduce to the case when V is an irreducible g-
module. Then the claim follows by direct observation, using Corollary 5.3.

6 The universal enveloping algebra

In the previous section we have used C = 1
8 (H

2 + 2H + 4FE), as well as
calculations involving terms like [E,Fn+1] = EFn+1 − Fn+1E and so on. We
had a formal meaning for those only after having a g-module at hand, computing
then with operators on that module. The universal enevloping algebra is a
“home” for expressions like 1

8 (H
2 + 2H + 4FE) which is “abstract”, in the

sense that, in order to have meaning for the expression, we do not require a
“realization” on a module.

6.1 Algebras and modules

Definition 6.1.

• A (associative and unital) k-algebra is a k-vector space A equipped with a
k-bilinear map A×A→ A (which we simply denote (a, b) 7→ ab) satisfying:
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– (a1a2)a3 = a1(a2a3) for all a1, a2, a3 ∈ A.
– There exists an element 1 ∈ A such that 1a = a and a1 = a for all
a ∈ A.

• Let A and B be k-algebras. A morphism of k-algebras from A to B is a
k-linear map ϕ : A→ B satisfying ϕ(a1a2) = ϕ(a1)ϕ(a2) for all a1, a2 ∈ A
and ϕ(1) = 1.

Remark 6.2. In other words, a k-algebra is a ring which also has the structure
of a k-vector space and for which the multiplication map is k-bilinear.

Definition 6.3. Let A be a k-algebra.

• An A-module is a k-vector space M equipped with a k-bilinear map
A×M →M (which we simply denote (a,m) 7→ am) satisfying:

– (ab)m = a(bm) for all a, b ∈ A and m ∈M .

– 1m = m for all m ∈M .

• Let M and N be A-modules. A morphism of A-modules from M to
N is a k-linear map ϕ : M → N satisfying ϕ(am) = aϕ(m) for all a ∈ A
and m ∈M .

6.2 The universal eneveloping algebra

Exercise 6.1. Let A be a k-algebra. Show that [−,−] : A × A → A given by
[a, b] := ab − ba is a Lie bracket. Thus A equipped with [a, b] := ab − ba is a
k-Lie algebra, which we denote ALie.

The idea of the universal enveloping algebra is that given a k-Lie algebra
g, we want to find a morphism of k-Lie algebras ι : g → ALie “as efficient as
possible”. This means that we want to “artificially” manufacture a place larger
than g, where we can form expressions such as XY + 2XY 2 − Y XY +X3Y Z
for X,Y, Z ∈ g (where here the product is associative), with the rule that XY −
Y X is equal to [X,Y ]. Here, “efficient” has a “surjective” and an “injective”
meaning. As for the first, if we have some g → ALie we can always embed
A ↪→ B into some bigger k-algebra and consider the composition g → BLie,
and this is wasteful, so we want A to be “as small as possible”. On the other
extreme, we can take 0 : g→ ALie and this “loses information”.

An important idea is that the universal enveloping algebra is given by a
universal property:

Definition 6.4. Let g be a k-Lie algebra. The universal eneveloping alge-
bra of g is a pair (A, ι) consisting of a k-algebra A and a morphism of k-Lie
algebras ι : g → ALie, satisfying the following property (called a universal
property):
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• Let (B, ϵ) be a pair consisting of a k-algebra B and a morphism of k-Lie
algebras ϵ : g→ BLie. Then there exists a unique morphism of k-algebras
ϕ : A→ B such that ϵ = ϕ ◦ ι.

Remark 6.5. To reformulate the above definition, The pair (A, ι) is universal
if for every pair (B, ϵ) the map

Homk-algebras(A,B) −→ Homk-Lie algebras(g, B
Lie)

is a bijection. One usually says in words “to give a Lie algebra morphism from
g is the same as to give an algebra morphism from A”.

So (ι, A) of the definition above is a “universal solution” to the problem
of finding a k-algebra with a morphism of k-Lie algebras from g, in the sense
that all other solutions factor uniquely via it. The next important part of this
pattern is to explain in which sense it is unique:

Lemma 6.6. Let g be a k-Lie algebra. Let (A1, ι1) and (A2, ι2) be two universal
enveloping algebras of g. Then there exists a unique isomorphism of k-algebras
ϵ12 : A1 → A2 satisfying ϵ12 ◦ ι1 = ι2.

Proof. There exists a unique morphism of k-algebras ϵ12 : A1 → A2 satisfying
ϵ12◦ι1 = ι2 by the universal property of (A1, ι1). On the other hand, there exists
a unique morphism of k-algebras ϵ21 : A2 → A1 satisfying ϵ21 ◦ ι2 = ι1 by the
universal property of (A2, ι2). Notice that ϵ12◦ϵ21◦ι2 = ι2 but also idA2 ◦ι2 = ι2
and therefore by the uniqueness part of the universal property of (A2, ι2) we
must have ϵ12 ◦ ϵ21 = idA2

. Symmetrically, we find that ϵ21 ◦ ϵ12 = idA1
.

Therefore, it is justifiable to speak about the universal enveloping algebra
of g, if it exists. We denote it by (U(g), ι) (but one usually keeps ι implicit,
especially after seeing that it is injective). We have:

Proposition 6.7. Let g be a k-Lie algebra. Then the universal enveloping
algebra of g exists.

Proof. Not difficult, but omitted (one takes a quotient of the tensor algebra of
g, killing expressions XY − Y X − [X,Y ]).

Lemma 6.8. Let g be a k-Lie algebra. The k-span of elements in U(g) of the
form

ι(X1) · . . . · ι(Xm)

for various sequences X1, . . . , Xm ∈ g is the whole U(g).

Proof. Let us denote by U(g)′ the k-span as in the formulation of the lemma.
It is clear that U(g)′ is a k-subalgebra of U(g) (notice that it contains 1 as the
empty product of ι(Xi)’s). Also, the image of ι lies in U(g)′; Let us denote by
ι′ : g → (U(g)′)Lie the corestriction (it is a k-Lie algebra morphism). By the
universal property of (U(g), ι), there exists a k-algebra morphism e : U(g) →
U(g)′ satisfying e◦ι = ι′. Let us denote by f : U(g)′ → U(g) the inclusion. Then
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we have f ◦ ι′ = ι and therefore f ◦ e : U(g) → U(g) is a k-algebra morphism
satisfying (f ◦ e) ◦ ι = ι. Since also idU(g) ◦ ι = ι, by the uniqueness part of the
universal property of (U(g), ι) we obtain f ◦ e = idU(g). This implies that f is
surjective, meaning U(g) = U(g)′.

Next, assume for simplicity that g is finite-dimensional and let Y1, . . . , Yn be
a k-basis for g. Then clearly Lemma 6.8 shows that elements of the form

ι(Yi1) · . . . · ι(Yim), 1 ≤ i1, . . . , im ≤ n

k-span U(g). However, clearly those are generally not linearly independent:
Write [Y2, Y1] =

∑
1≤i≤n ciYi. Then

ι(Y2)ι(Y1) = ι(Y2)ι(Y1)− ι(Y1)ι(Y2) + ι(Y1)ι(Y2) = [ι(Y2), ι(Y1)] + ι(Y1)ι(Y2) =

= ι([Y2, Y1]) + ι(Y1)ι(Y2) =
∑

1≤i≤n

ciι(Yi) + ι(Y1)ι(Y2).

More generally, ι(Yi)ι(Yj) is expressible as a k-linear combination of ι(Yℓ)’s and
ι(Yj)ι(Yi). Similarly, one can convince oneself that elements of the form

ι(Yi1) · . . . · ι(Yim), 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n

k-span U(g) - if we are given a product with a “non-correct” order, by opera-
tions as above, relying on the swapping possibility Y X = XY + [Y,X], we can
eventually rewrite it in terms of products in the “correct” order. Those already
are linearly independent, i.e. form a k-basis for U(g), as given by the PBW
theorem:

Theorem 6.9 (PBW theorem). Let g be a k-Lie algebra, let us say finite-
dimensional for simplicity of formulation. Let Y1, . . . , Yn be a k-basis for g.
Then

{ι(Y1)m1ι(Y2)
m2 · . . . · ι(Yn)mn}(m1,...,mn)∈(Z≥0)n

is a k-basis for U(g).

Proof. Omitted.

Exercise 6.2. See that the PBW theorem in particular shows that ι is injective.

Finally, let g be a k-Lie algebra and let M be a k-vector space. A g-action
on M is encoded by a k-Lie algebra morphism g → (Endk(M))Lie. An U(g)-
action on M is encoded by a k-algebra morphism U(g) → Endk(M). But by
the universal property, those two are in bijection. In words, “to give a g-module
is the same as to give a U(g)-module”. To repeat, this can be reformulated as
saying that given a g-module M , there exists a unique U(g)-action on M , for
which ι(X)m = Xm given X ∈ g,m ∈ M . The identification also applies to
morphisms - if M and N are two g-modules (and thus U(g)-modules) then a
k-linear map T : M → N is a g-morphism if and only if it is a U(g)-morphism
- this follows easily from Lemma 6.8.
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6.3 The universal enveloping algebra as a “deformation”

Definition 6.10. A grading on a k-algebra A is a linearly independent se-
quence of k-linear subspaces of A

A0, A1, . . .

such that:

• 1 ∈ A0.

• An ·Am ⊂ An+m for all n,m ∈ Z≥0.

•
⊕

n∈Z≥0
An = A.

We for convenience always denote An := 0 for n ∈ Z<0. A k-algebra equipped
with a grading is called a graded k-algebra. As an exercise, figure out what is
a morphism of graded k-algebras.

Example 6.11. A polynomial algebra A := k[x1, . . . , xr] is naturally graded, by
letting An be the subspace of homogeneous polynomials of degree n.

The example has the following more abstract incarnation. We will work with
infinite fields for simplicity (one can formulate things so that this will not be
required).

Example 6.12. Assume that k is infinite. Let V be a finite-dimensional k-
vector space. We can consider the k-algebra k[V ] of polynomial functions on V ,
graded by taking k[V ]n to be the subspace of homogeneous polynomials of degree
n. When we choose coordinates, it becomes isomorphic to k[x1, . . . , xr], where
r := dimk V .

Exercise 6.3. Assume that k is infinite. Let x1, . . . , xr be a k-basis for V ∗.
Then a k-basis for k[V ]n is given by xm1

1 · . . . ·xmr
r , for (m1, . . . ,mr) ∈ Zr≥0 and

m1 + . . .+mr = n.

We have the following:

Claim 6.13. Assume that k is infinite. Let V be a finite-dimensional k-vector
space. Note that k[V ]1 is equal to V ∗, the dual space. We have the following
universal properties:

• Let A be a commutative k-algebra. Then

Homk-algebras(k[V ], A) −→ Homk-vector spaces(V
∗, A),

given by restricting to k[V ]1 = V ∗, is a bijection.

• Let A be a commutative graded k-algebra. Then

Homgraded k-algebras(k[V ], A) −→ Homk-vector spaces(V
∗, A1),

given by restricting to k[V ]1 = V ∗, is a bijection.

67



Definition 6.14. A filtration on a k-algebra A is an increasing sequence of
k-linear subspaces of A

A≤0 ⊂ A≤1 ⊂ . . .
such that:

• 1 ∈ A≤0.

• A≤n ·A≤m ⊂ A≤n+m for all n,m ∈ Z≥0.

• ∪n∈Z≥0
A≤n = A.

We for convenience always denote A≤n := 0 for n ∈ Z<0. A k-algebra equipped
with a filtration is called a filtered k-algebra. As an exercise, figure out what
is a morphism of filtered k-algebras.

Example 6.15. The universal enevloping algebra U(g) is naturally filtered.
Namely, we define U(g)≤n to be the k-span of expressions ι(X1) · . . . · ι(Xm) for
X1, . . . , Xm ∈ g and m ≤ n.

Definition 6.16. Let A be a filtered k-algebra. The associated graded k-
algebra, denoted gr(A), is the graded k-algebra constructed as follows:

gr(A) :=
⊕
n∈Z≥0

(A≤n/A≤n−1) · tn

where tn is just a dummy which will prevent possible ambiguity. The product
is given as follows. Given a ∈ A≤n and b ∈ A≤m, we let

((a+A≤n−1) · tn)((b+A≤m−1) · tm) := (ab+A≤n+m−1) · tn+m.

The grading is given by (gr(A))n := (A≤n/A≤n−1) · tn.

We now ask what is the associated graded of U(g). Notice first that gr(U(g))
is commutative. Indeed, this follows from the following property

[ι(X1) · . . . ι(Xn), ι(Y1) · . . . · ι(Ym)] ⊂ U(g)≤n+m−1.

This property follows by induction from the property [ι(X), ι(Y )] ⊂ U(g)≤1,
which is clear since [ι(X), ι(Y )] = ι([X,Y ]). Next, let us notice that U(g)≤0 =
k · t0 while U(g)≤1 = (k ⊕ ι(g)) · t1, and so U(g)≤1/U(g)≤0 ∼= g (via (ι(X) +
U(g)≤0) · t1 ← [ X). Therefore, by Claim 6.13, we obtain a morphism of graded
k-algebras

k[g∗]→ gr(U(g)), (6.1)

the unique one whose pre-composition with the natural g → k[g∗] is equal to
the map g→ gr(U(g)) given by X 7→ (ι(X) + U(g)≤0) · t1.

Exercise 6.4. Deduce (assuming that k is infinite) from the PBW theorem that
the map (6.1) is an isomorphism.

Therefore, we can think of U(g) as a “non-commutative deformation” of
k[g∗].
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7 Representation theory of sln

Throughout, we work over C. We set g := sln := sln(C). We denote by h ⊂ g
the Lie subalgebra of diagonal matrices. We denote by n ⊂ g the Lie subalgebra
of nilpotent upper-triangular matrices and by n− ⊂ g the Lie subalgebra of
nilpotent lower-triangular matrices.

7.1 Weights

Our main tool in visualizing g-representations is by considering h-eigenspaces.
Here the common terminology is “weights” rather than “eigenvalues” etc.

Definition 7.1. Let V be a g-module.

1. Let v ∈ V and let λ ∈ h∗. We say that v is a weight vector with weight
λ if Hv = λ(H)v for all H ∈ h.

2. Let v ∈ V . We say that v is a weight vector if for some λ ∈ h∗ it is a
weight vector with weight λ.

3. Let λ ∈ h∗. We denote

Vh,λ := {weight vectors with weight λ in V } ⊂ V.

This is a linear subspace of V , called the λ-weight space.

4. We say that λ ∈ h∗ is a weight of V if Vh,λ ̸= 0. We denote by wt(V ) ⊂ h∗

the subset consisting of weights of V .

Exercise 7.1. Let V be a g-module. The family of subspaces {Vh,λ}λ∈h∗ is
linearly independent.

Definition 7.2. A g-module is said to be a weight module if it is spanned
by weight vectors.

Exercise 7.2. Let V be a g-module. Then V is a weight module if and only if
V = ⊕λ∈h∗Vh,λ (and of course we can then also write V = ⊕λ∈wt(V )Vh,λ).

7.2 Roots

Definition 7.3. Considering g as a g-module via the adjoint representation,
the set of non-zero weights wt(g) is called the set of roots of g. Let us denote
it by R.

Let us see more precisely what are the roots of g. For 1 ≤ i, j ≤ n with
i ̸= j, denote by Ei,j ∈ g the matrix whose (i, j)-entry is 1 and all other entries
are 0. Then one calculates:

Exercise 7.3. We have

[diag(h1, . . . , hn), Ei,j ] = (hi − hj)Ei,j .
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Thus, denoting by αi,j ∈ h∗ the functional given by sending diag(h1, . . . , hn)
to hi − hj , we see that αi,j ∈ R. Notice that

g = h⊕
⊕
i̸=j

C · Ei,j .

Since clearly h ⊂ gh,0, we deduce by linear independence of weight spaces that
h = gh,0, R = {αi,j}i ̸=j and gh,αi,j = C · Ei,j . Given α ∈ R, let us also denote
Eα := Ei,j for the pair (i, j) such that α = αi,j .

Using root vectors and weight spaces, we can imagine “geometrically” how
g acts on weight modules:

Exercise 7.4. Given a g-modules V and α, λ ∈ h∗ we have

gh,α · Vh,λ ⊂ Vh,λ+α.

Given α, β ∈ h∗ we have
[gh,α, gh,β ] ⊂ gh,α+β .

Using the previous exercise, we can do the following exercise:

Exercise 7.5. Let V be a g-module. Let S ⊂ V be a subset consisting of weight
vectors, and suppose that S generates V as a g-module. Then V is a weight
module.

Definition 7.4. The roots αi,j with i < j are called the positive roots. We
denote By R+ ⊂ R the subset of positive roots. Similarly, the roots αi,j with
i > j are called the negative roots and we denote by R− ⊂ R the subset of
negative roots. We have R− = −R+. The roots αi,j with j = i + 1 are called
the simple roots. We denote by Rs ⊂ R+ the subset of simple roots.

Exercise 7.6. We have R = R+
∐
R−. The subset Rs ⊂ h∗ is a basis. The

coefficients in an expression of an element of R+ as a linear combination of
elements in Rs are non-negative integers.

Notice that
n =

⊕
α∈R+

gh,α

and
n− =

⊕
α∈R−

gh,α.

Let us also write, for α ∈ R+, Fα := E−α.

Definition 7.5. Let α ∈ R+ be a positive root, write α = αi,j for 1 ≤ i < j ≤ n.
The corresponding co-root Hα ∈ h is defined as having the entry 1 at the i-
place, the entry −1 at the j-place and entries 0 at all other places.

Exercise 7.7. Let α ∈ R+. Check that we have

[Hα, Eα] = 2Eα, [Hα, Fα] = −2Fα, [Eα, Fα] = Hα.
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Definition 7.6. Let α ∈ R+. Let us denote by gα ⊂ g the Lie subalgebra
spanned by Hα, Eα, Fα. Notice that, by Exercise 7.7, gα is indeed a Lie sublage-
bra, and it is isomorphic to sl2 by sending Hα, Eα, Fα to H,E, F respectively.

We can now show:

Proposition 7.7. Let V be a f.d. g-module. Then V is a h-weight module.

Proof. One possible proof is again via Weyl’s “unitary trick”, considering on
V the SU(n)-action corresponding to the g-action, and noticing that, denoting
by T ⊂ SU(n) the subgroup of diagonal matrices as before, the eigenspaces of
T are eigenspaces of h, since h is the complexification of the Lie algebra of T .
Again, this proof is not algebraic.

An algebraic proof is given as follows. For α ∈ Rs, consider V as a gα-
module. Then we have already seen (Corollary 5.12) that the action of Hα on
V is diagnolizable. Since the Hα’s, for α ∈ Rs, span h (and h is abelian) this
implies that h acts on V diagonlizably as well.

We again consider the Weyl group W := Sn acting (linearly) on h by
permuting the entries:

σ(diag(x1, . . . , xn)) := (xσ−1(1), . . . , xσ−1(n)).

We get an induced (linear) action of W on h∗.

Definition 7.8. Let α ∈ R. Write α = αi,j for 1 ≤ i, j ≤ n with i ̸= j. We
define sα ∈ W to be the permutation sending i to j and j to i and fixing all
other elements.

Exercise 7.8. Recall that the group W is generated by {sα}α∈Rs .

We have the following formula for the action of sα:

Lemma 7.9. Let α ∈ R. Then

sα(λ) = λ− λ(Hα)α

for all λ ∈ h∗.

Proof. Notice that α(Hα) = 2 and both sides are seen to send α to −α. If
λ ∈ h∗ is such that λ(Hα) = 0 then it is easy to see that both sides send λ to
itself.

7.3 Highest weights

Definition 7.10. Let V be a g-module.

1. A vector v ∈ V is called a extremal if v is a weight vector and nv = 0.
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2. λ ∈ h∗ is called an extremal weight of V if there exists a non-zero
extremal vector in V with weight λ. We denote by ext(V ) ⊂ h∗ the set of
extremal weights of V .

3. A vector v ∈ V is called a highest weight vector if v is an extremal
vector and v generates V as a g-module.

4. V is called a highest weight module if it is non-zero and it has a highest
weight vector.

5. If V is a highest weight module then the weight of a highest weight vector
in V is called a highest weight of V .

Lemma 7.11. Let V be a g-module. A weight vector v ∈ V is extremal if and
only if Eαv = 0 for all α ∈ Rs.

Proof. Since n is spanned by vectors Eα for α ∈ R+, it is enough to see that if
Eαv = 0 for all α ∈ Rs then also Eαv = 0 for all α ∈ R+. A calculation gives
that, given 1 ≤ i < j < k ≤ n, we have

[Eαi,j
, Eαj,k

] = Eαi,k
.

Thus we obtain

Eαi,j = [Eαi,i+1 , [Eαi+1,i+2 , [. . . [Eαj−2,j−1 , Eαj−1,j ] . . .]].

Notice that if Xv = 0 and Y v = 0 for some X,Y ∈ g then also [X,Y ]v = 0,
since [X,Y ]v = XY v − Y Xv, and hence the claim is clear.

Definition 7.12. We define a partial order on h∗ as follows. We set λ ≤ µ if
µ− λ ∈

∑
α∈R+ Z≥0 · α.

Lemma 7.13. Let V be a highest weight g-module, with highest weight λ ∈ h∗.

1. V is a weight g-module, and all weight spaces of V are finite-dimensional.

2. We have wt(V ) ⊂ {λ′ ∈ h∗ | λ′ ≤ λ}.

3. λ is the unique highest weight of V (so that we can speak of the highest
weight of a highest weight module).

4. We have dimC Vh,λ = 1.

Proof. By the PBW theorem V is spanned by vectors of the form

Fβm
· . . . · Fβ1

·Hl · . . . ·H1 · Eαk
· . . . · Eα1

· v.

Those are scalar multiples of

Fβm
· . . . · Fβ1

v.

Those vectors have weight λ−
∑

1≤i≤m βi, which sits in {µ ∈ h∗ | µ ≤ λ}. Only
one of them has weight λ, namely v.
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Claim 7.14. Every irreducible f.d. g-module is a highest weight module.

Proof. Let E be an irreducible f.d. g-module. The set wt(E) is finite and non-
empty and hence contains maximal elements with respect to the partial order
≤. Let λ ∈ wt(E) be such a maximal element. Let 0 ̸= v ∈ Eh,λ. As E is
irreducible, v generates E as a g-module. We claim that v is extremal. Indeed,
we want to see that Eαv = 0 for α ∈ R+. But Eαv ∈ Eh,λ+α and by the
maximality of λ we have λ+ α /∈ wt(E), i.e. Eh,λ+α = 0 and so Eαv = 0.

7.4 Irreducible highest weight modules

Lemma 7.15. The highest weights of non-isomorphic irreducible highest weight
g-modules are non-equal.

Proof. Let E and F be irreducible highest weight g-modules, both with highest
weight λ ∈ h∗. We want to see that E and F are isomorphic.

Let v1 ∈ E and v2 ∈ F be non-zero highest weight vectors (with weight λ).
Let us consider the g-module E ⊕ F and the vector (v1, v2) ∈ E ⊕ F . Let us
consider the g-submodule M ⊂ E ⊕ F generated by (v1, v2). We claim that
(0, v2) /∈ M (and analogously (v1, 0) /∈ M). Indeed, M is generated by the
highest weight vector (v1, v2) with highest weight λ and therefore by Lemma
7.13 we have dimMh,λ = 1 (soMh,λ is spanned by (v1, v2)). Since (0, v2) ∈ E⊕F
is also a highest weight vector with highest weight λ, would it lie in M it would
be a scalar multiple of (v1, v2), which is of course not correct. Thus (0, v2) /∈M .

Let us now consider the projection ϕ :M ↪→ E⊕F → E. We have Im(ϕ) ̸= 0
since v1 = ϕ(v1, v2) and therefore, since E is irreducible, we have Im(ϕ) = E.
We also have Ker(ϕ) = M ∩ F (where we identify F ∼= 0⊕ F ⊂ E ⊕ F ). Since
(0, v2) /∈M , we have Ker(ϕ) ̸= F and therefore, since F is irreducible, we have
Ker(ϕ) = 0. Thus, we have obtained that ϕ is an isomorphism from M to
E. Completely analogously we obtain that ϕ is an isomorphism from M to F ,
deducing that E and F are isomorphic.

We therefore see that irreducible highest weight g-modules are classified by
their highest weights. We still don’t know whether, given λ ∈ h∗, there exists
an irreducible highest weight g-module with highest weight λ - we will see later
that the answer is indeed positive. We also don’t know yet for which λ ∈ h∗ an
irreducible highest weight g-module with highest weight λ is finite-dimensional
- we will see later the answer to that also.

7.5 Verma modules

To exhibit the existence of highest weight modules with a given highest weight,
we exhibit a univeral one. Let λ ∈ h∗. The Verma g-module Mλ is charac-
terized by a universal property:
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Definition 7.16. Let λ ∈ h∗. A pair (M, v) consisting of a g-module M and
an extreme vector v ∈ Mh,λ is a Verma module corresponding to λ if the
following universal property holds:

• For every g-module N the map

Homg(M,N)→ {w ∈ Nh,λ | nw = 0}

given by ϕ 7→ ϕ(v) is a bijection.

Remark 7.17. In words, “to give a morphism from the Verma module corre-
sponding to λ is the same as to specify an extremal vector with weight λ”.

Exercise-Definition 7.18. Show that given two Verma modules (M,v) and
(M ′, v′) corresponding to λ, there exists a unique isomorphism of g-modules
ϵ : M → M ′ satisfying ϵ(v) = v′. In this sense, we can speak of the Verma
module corresponding to λ, if it exists. We always denote it by (Mλ, vλ).

Exercise 7.9. Given a Verma module (Mλ, vλ), show that vλ generates Mλ as
a g-module (by abstract reasoning using the universal property). However, we
don’t know at the moment (but will know in a moment) whether vλ ̸= 0 - this is
equivalent to the existence of some module admitting a non-zero extreme vector
with weight λ. Once we will know that (Mλ exists and) vλ ̸= 0, we will know
that Mλ is a highest weight module with highest weight λ.

Lemma 7.19.

1. For every λ ∈ h∗ there exists the Verma module corresponding to λ - we
denote it always by (Mλ, vλ).

2. The map
U(n−)→Mλ

given by d 7→ dvλ is an isomorphism of n−-modules. Equivalently, choos-
ing an ordering α1, . . . , αr of R+,{

Fm1
α1
· . . . · Fmr

αr
· vλ
}
(m1,...,mr)∈Zr

≥0

is a basis for Mλ.

3. The vector vλ is non-zero and it generates Mλ as a g-module, i.e. it is
a highest weight vector. Thus Mλ is a highest weight module with highest
weight λ.

Proof. Consider the left ideal Iλ in U(g) generated by elements X for X ∈ n and
by elements H − λ(H) for H ∈ h. Consider the U(g)-module Mλ := U(g)/Iλ
and the element vλ ∈ Mλ given as [1] where [−] : U(g) → U(g)/Iλ = Mλ is
the canonical projection. We leave the reader the tautological verification that
(Mλ, vλ) is indeed a Verma module corresponding to λ.
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Let us leave the following as an exercise (in invertible triangular changes of
basis): Choose an ordering α1, . . . , αr of R+ and choose a basis H1, . . . ,Hk for
h. Then{
Fm1
α1
· . . . · Fmr

αr
· (H1 − λ(H1))

ℓ1 · . . . · (Hk − λ(Hk))
ℓk · En1

α1
· . . . · Enr

αr

}
(m1,...,mr)∈Zr

≥0

(n1,...,nr)∈Zr
≥0

(ℓ1,...,ℓk)∈Zk
≥0

(7.1)
is a basis for U(g) (when λ = 0 this is just given by the PBW theorem, and
otherwise we need to relate to that case by an invertible triangular change of
basis).

Now, in fact, Iλ is the span of basis elements in (7.1) for which (ℓ1, . . . , ℓk, n1, . . . , nr) ̸=
0 (we leave this as an exercise). We thus have U(g) = U(n−)⊕ Iλ. The rest of
the claims of the Lemma follow from this.

Example 7.20. Let us consider g = sl2. Let us identify C with h∗, be sending
c ∈ C to the functional in h∗ which maps H to c. The Verma module Mc has
a vector vc, and vc, Fvc, F

2vc, . . . forms a basis for Mc. We have HFnvc =
(c − 2n)Fnvc. We have Evc = 0, and using Lemma 5.2 we obtain EFnvc =
n(c− (n− 1))Fn−1vc for all n ∈ Z≥1.

Exercise 7.10. Let us continue with Example 7.20. Show that if c /∈ Z≥0
then Mc is an irreducible g-module. If c ∈ Z≥0, notice that, defining Nc ⊂ Mc

as the span of the vectors Fnvc for n ∈ Z≥c+1, Nc is a g-submodule of Mc,
(Nc, F

c+1vc) is a Verma module with highest weight −c − 2, and Mc/Nc is an
irreducible g-module of dimension c+ 1.

7.6 Irreducible highest weight modules - existence

Claim 7.21. Let M be a highest weight g-module. Then M admits a unique
irreducible quotient g-module. In other words, M admits a unique maximal
proper g-submodule. The image in this irreducible quotient of a highest weight
vector in M is again a highest weight vector.

Proof. In general, given a ring R and a non-zero R-moduleM , let us notice that
M admits a unique maximal proper R-submodule if and only if the sum of all
proper R-submodules in M is not equal to M .

Given a highest weight g-moduleM with highest weight λ ∈ h∗, let us denote

M◦ :=
⊕

λ′∈wt(M)∖{λ}

Mh,λ′ ⊂M.

Then M◦ is a C-linear subspace of M , and even a b−-submodule (where we
denote b− := h ⊕ n−, this is a Lie subalgebra of g), but not a g-submodule in
general. We have clearly M◦ ̸=M .
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Now it is straight-forward that in order to prove the claim it is enough to
see that every proper g-submodule of M is contained in M◦.

Thus, let N ⊂M be a proper g-submodule. Notice that λ /∈ wt(N), because
otherwise we would have Mh,λ ⊂ N then M = N (as any non-zero vector in
Mh,λ generates M as a g-module). Thus (recall that a g-submodule of a weight
module is a weight module),

N =
⊕

λ′∈wt(M)∖{λ}

Nh,λ′ ⊂M◦.

Definition 7.22. Let λ ∈ h∗. We denote by Lλ the unique irreducible quotient
g-module of Mλ.

Corollary 7.23. Let λ ∈ h∗. There exists an irreducible highest weight g-
module with highest weight λ. It is unique up to an isomorphism. Our concrete
model for it is Lλ.

7.7 When is Lλ finite-dimensional?

Definition 7.24. Let λ ∈ h∗.

1. We say that λ is integral if λ(Hα) ∈ Z for all α ∈ Rs.

2. We say that λ is dominant if Re(λ(Hα)) ∈ R≥0 for all α ∈ Rs.

Remark 7.25. Thus, λ ∈ h∗ is integral and dominant if λ(Hα) ∈ Z≥0 for all
α ∈ Rs.

Remark 7.26. Sometimes a different condition in the definition of dominant
λ ∈ h∗ is more appropriate. Namely, the condition that λ(Hα) /∈ Z<0 for all
α ∈ Rs. But we will not use it.

Exercise 7.11. Let λ ∈ h∗. Let us write

λ(diag(x1, . . . , xn)) = c1x1 + . . .+ cnxn

for c1, . . . , cn ∈ C. Denote di := ci − ci+1. Then λ is integral if and only if
d1, . . . , dn−1 ∈ Z. Also, λ is dominant if and only if Re(d1), . . . ,Re(dn−1) ∈
R≥0. Given λ ∈ h∗, there exists a unique dominant λ′ ∈Wλ.

We want to prove the following proposition:

Proposition 7.27. Let λ ∈ h∗. Then Lλ is finite-dimensional if and only if λ
is integral and dominant.

Proof (of “only if” part of Proposition 7.27). Let λ ∈ h∗ and suppose that Lλ
is finite-dimensional. Fix α ∈ Rs and consider Lλ as a finite-dimensional gα-
module. Taking 0 ̸= v ∈ (Lλ)h,λ, we have Hαv = λ(Hα)v and Eαv = 0. Hence,
by Lemma 5.2, we obtain λ(Hα) ∈ Z≥0.
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Definition 7.28. Let k be a Lie algebra and M an k-module. We say that
a vector v ∈ M is k-finite if the k-submodule of M generated by v is finite-
dimensional. We say that M is a locally finite k-module if every v ∈ M is
k-finite.

Lemma 7.29. Let h be a finite-dimensional Lie algebra and k ⊂ h a Lie subal-
gebra. Let M be a h-module. The subset of M consisting of k-finite vectors is a
h-submodule of M .

Proof. Let us denote the subset ofM consisting of k-finite vectors by N . Clearly
N is a linear subspace of M . We want to see that given X ∈ h and v ∈ N we
have Xv ∈ N . Let L ⊂M be the k-submodule generated by v. By assumption
L is finite-dimensional. Consider L′ := hL (the linear span in M of the subset
of element of the form Zw where Z ∈ h and w ∈ L). Then clearly L′ is finite-
dimensional and Xv ∈ L′. So it is left to check that L′ is a k-submodule of
M . Given Y ∈ k and Z ∈ h and w ∈ L, we have Y Zw = [Y, Z]w + ZY w ∈
hL+ hkL ⊂ hL+ hL = L′.

Lemma 7.30. Given α ∈ Rs, let M be a locally finite gα-module. Then the
action of Hα on M is diagnolizable, with eigenvalues lying in Z. Let n ∈ Z≥0.
Then Fnα :MHα,n →MHα,−n and Enα :MHα,−n →MHα,n are isomorphisms of
vector spaces.

Proof. The statements hold whenM is finite-dimensional by Corollary 5.12 and
Claim 5.13. It is easy to see that this implies the statements in general.

Lemma 7.31. Let M be a g-module. If M is locally finite as a gα-module, then
sα(wt(M)) = wt(M).

Proof. Let λ ∈ wt(M). Let 0 ̸= v ∈ Mh,λ. Denote n := λ(Hα). Then n ∈ Z
by Lemma 7.30. Suppose that n ≥ 0. Consider w := Fnα v. By Lemma 7.30
we have w ̸= 0. Also, w ∈ Mh,λ−nα. But sα(λ) = λ − λ(Hα)α = λ − nα and
so Mh,sα(λ) ̸= 0 i.e. sα(λ) ∈ wt(M). Suppose now that n < 0. Then similarly
w := Enαv satisfies w ̸= 0 and w ∈Mh,sα(λ), so sα(λ) ∈ wt(M).

Lemma 7.32. Let λ ∈ h∗ and let α ∈ Rs be such that n := λ(Hα) ∈ Z≥0. Then
Fn+1
α vλ ∈Mλ is a non-zero extremal vector with weight λ− (n+ 1)α.

Proof. Clearly, Fn+1
α vλ is a weight vector with weight λ− (n+1)α. By Lemma

7.19 it is non-zero. To see that it is extreme, by Lemma 7.11 it is enough to
check that EβF

n+1
α vλ = 0 for all β ∈ Rs. Let us first consider β ̸= α. Since

in that case β − α /∈ R, we have [Eβ , Fα] ∈ gh,β−α = 0 i.e. [Eβ , Fα] = 0.
Working inside U(g) this means that EβFα = FαEβ . Iterating, this gives also
EβF

m
α = Fmα Eβ for every m ∈ Z≥0. Thus

EβF
n+1
α vλ = Fn+1

α Eβvλ = 0.

Now, we consider β = α. We have

[Eα, Fα] = Hα
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i.e. (working in U(g))
EαFα = FαEα +Hα.

Assuming
Eα(Fα)

mvλ = cm · (Fα)m−1vλ
for some cm ∈ C we find

Eα(Fα)
m+1vλ = FαEα(Fα)

mvλ+Hα(Fα)
mvλ = Fα(cm·(Fα)m−1vλ)+(λ−mα)(Hα)·(Fα)mvλ =

= (cm + λ(Hα)− 2m)(Fα)
mvλ.

Thus we get the recursive relation

cm+1 = λ(Hα) + cm − 2m,

where c0 = 0. One deduces

cm = m · λ(Hα)− 2
m(m− 1)

2
= m (λ(Hα)− (m− 1)) = m(n− (m− 1))

for all m ∈ Z≥0. Thus, cn+1 = 0 and therefore we have EαF
n+1
α vλ = 0.

Corollary 7.33. Let λ ∈ h∗ and let α ∈ Rs be such that n := λ(Hα) ∈ Z≥0.
Then, denoting by [−] :Mλ → Lλ the canonical projection, we have Fn+1

α [vλ] =
0.

Proof. Denote by N ⊂ Mλ the g-submodule generated by Fn+1
α vλ. Then N is

a highest weight g-module, with highest weight λ − (n + 1)α. By Lemma 7.13
we have wt(N) ⊂ {µ ∈ h∗ | µ ≤ λ − (n + 1)α} and in particular λ /∈ wt(N).
Therefore vλ /∈ N and so N ̸= Mλ. Thus, since the kernel of the projection
[−] : Mλ → Lλ is the unique maximal proper g-submodule of Mλ, we must
have N sitting in this kernel. Since Fn+1

α vλ ∈ N , we obtain 0 = [Fn+1
α vλ] =

Fn+1
α [vλ].

Definition 7.34. Let us call a subset S ⊂ h∗ conical if there exists a finite
subset S0 ⊂ h∗ such that S ⊂ S0 −

∑
α∈Rs Z≥0 · α.

Exercise 7.12. Let V be a highest weight g-module. Then wt(V ) ⊂ h∗ is
conical.

Lemma 7.35. A conical W -invariant subset of h∗ is finite.

Proof. We will show that given a conical subset S ⊂ h∗, the subset S0 ⊂ S
consisting of dominant elements is finite. Then, if S is W -invariant, we have
S =WS0 (by Exercise 7.11) and therefore S is finite as well. It is enough to fix
λ ∈ h∗ and show that the subset of λ −

∑
α∈Rs Z≥0 · α consisting of dominant

elements is finite. Denote H := 1
2

∑
α∈R+ Hα. Notice that if µ ∈ h∗ is dominant

we have Re(µ(H)) ∈ R≥0. Also, notice that, given α ∈ Rs, we have α(H) = 1.
Therefore, considering collections (mα)α∈Rs of elements in Z≥0, only for finitely
many of them we have Re((λ −

∑
α∈Rs mα · α)(H)) ∈ R≥0 and therefore only

for finitely many of them can λ−
∑
α∈Rs mα · α be dominant.
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Proof (of “if” part of Proposition 7.27). Let λ ∈ h∗ and suppose that λ is inte-
gral and dominant. We would like to see that, given α ∈ Rs, Lλ is a locally finite
gα-module. Given that, by Lemma 7.31 we obtain that wt(V ) is sα-invariant,
and since {sα}α∈Rs generates W , we deduce that wt(V ) is W -invariant. Then
Lemma 7.35 shows that wt(V ) is finite, and hence V is finite-dimensional, as
desired.

By Lemma 7.29 it is enough to check that vλ is a gα-finite vector. Since
we have Eαvλ = 0 and Hαvλ = λ(Hα)vλ, by what we have learned about
highest weight modules, applied to gα, the gα-submodule of Lλ generated by
vλ coincides with the span of {Fmα vλ}m∈Z≥0

. But, by Corollary 7.33 we have
Fn+1
α vλ = 0 and therefore the gα-submodule of Lλ generated by vλ is spanned

by {Fmα vλ}0≤m≤n, and so is finite-dimensional. So vλ is a gα-finite vector.

8 Formal character

8.1 Convolution

We denote by Fun(h∗) the vector space of functions on h∗. Given ϕ ∈ Fun(h∗)
we denote by supp(ϕ) ⊂ h∗ the support, i.e. the subset consisting of λ for which
ϕ(λ) ̸= 0. Given µ ∈ h∗ let us define eµ ∈ Fun(h∗) by eµ(µ) = 1 and eµ(λ) = 0
if λ ̸= µ.

Given ϕ, ψ ∈ Fun(h∗), let us say that ϕ and ψ are convolutionable if for
every λ ∈ h∗ there exists finitely many µ ∈ h∗ for which ϕ(λ + µ) ̸= 0 and
ψ(−µ) ̸= 0. Given two convolutionable ϕ, ψ ∈ Fun(h∗) define the convolution
ϕ ⋆ ψ ∈ Fun(h∗) by

(ϕ ⋆ ψ)(λ) :=
∑
µ∈h∗

ϕ(λ+ µ)ψ(−µ).

For example, eµ and every other function are convolutionable, and we have
(eµ ⋆ ϕ)(λ) = ϕ(λ − µ), i.e. convolution by eµ shifts functions by µ. We have
eµ1 ⋆ eµ2 = eµ1+µ2 .

We denote by Funfin(h
∗) ⊂ Funcon(h

∗) ⊂ Fun(h∗) the linear subspaces
consisting of functions ϕ for which supp(ϕ) is, respectively, finite or conical.

Exercise 8.1.

1. Check that the convolution of two convolutionable functions in Fun(h∗) is
well-defined.

2. Check that convolution is C-bilinear, associative and commutative when-
ever defined, and that e0 is a neutral element with respect to convolution.

3. Check that every two functions in Funcon(h
∗) are convolutionable. De-

duce that Funcon(h
∗) is a commutative unital C-algebra with respect to

convolution.
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8.2 Formal character

Definition 8.1. Let us say that a g-module M is conical if M is a weight
module, wt(M) ⊂ h∗ is conical, and Mh,λ is finite-dimensional for all λ ∈ h∗.

Example 8.2. Finite-dimensional g-modules are conical, as well as highest
weight g-modules.

Definition 8.3. LetM be a conical g-module. We define its formal character

fchM ∈ Funcon(h
∗)

by
fchM (λ) := dimCMh,λ.

Our goal, Weyl’s character formula, is a formula for fchLλ
for a f.d. Lλ. We

have a linear W -action on h, which induces a linear W -action on h∗, which in
its turn induces a W -action on Fun(h∗). Notice that this W -action preserves
Funfin(h

∗), but does not preserve Funcon(h
∗).

Claim 8.4. Let M be a finite-dimensional g-module. Then fchM ∈ Funfin(h
∗)

is W -invariant.

Proof. Using the SU(n)-action onM corresponding to the g-action, the claim is
clear by what we saw about finite-dimensional SU(n)-representations. However,
we can also give an algebraic proof. Namely, fixing α ∈ Rs, it is enough to check
that fchM is sα-invariant. In other words, we want to check that dimMh,λ =
dimMh,sαλ for all λ ∈ h∗. By symmetry, it is enough to check that dimMh,λ ≤
dimMh,sαλ for all λ ∈ h∗. Fix λ ∈ h∗. If λ /∈ wt(M) the claim is clear, so we
assume λ ∈ wt(M). We again consider the gα-action on M . If Since λ(Hα)
is an eigenvalue of Hα acting on M , by what we saw on finite-dimensional sl2-
modules, we have λ(Hα) ∈ Z. We assume λ(Hα) ≥ 0, as the other case is
analogous. Denote n := λ(Hα). We have λ−nα = sα(λ) and thus the action of
Fnα onM sendsMh,λ intoMh,sα(λ). Recall that we saw that the action of Fnα on
M , restricted to MHα,λ(Hα), is injective. Since Mh,λ is contained in MHα,λ(Hα),
we obtain that the action of Fnα on M , restricted to Mh,λ, is injective. Hence
dimMh,λ ≤ dimMh,sαλ as desired.

Now, let us study fchMλ
.

Definition 8.5. Define the Kostant function K ∈ Funcon(h
∗) by

K(λ) =

∣∣∣∣∣
{
m : R+ → Z≥0 | λ = −

∑
α∈R+

m(α) · α

}∣∣∣∣∣ .
In other words, K(λ) is the number of ways that λ can be written as a Z≥0-linear
combination of negative roots. We can also write:

K =
∑

m:R+→Z≥0

e−
∑

α∈R+ m(α)·α.
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Exercise 8.2. We have

K =
∏
α∈R+

(
e0 + e−α + e−2α + . . .

)
(an expression similar to the Euler product one encounters when studying L-
functions) where the product is the convolution product ⋆. Here

(
e0 + e−α + e−2α + . . .

)
has the obvious meaning - it is the function which is equal to 1 on one of the
elements 0,−α,−2α, . . . and to 0 elsewhere.

Claim 8.6. Let λ ∈ h∗. We have

fchMλ
= eλ ⋆ K.

Proof. Recall that a basis for Mλ is given by

{Fm · vλ}m:R+→Z≥0
,

where the notation Fm is as follows. We choose an ordering of R+, and then

define Fm to be
∏
α∈R+ F

m(α)
α , where the product is taken in the order we chose

(this depends on the order, but we fix it). Therefore

fchMλ
=

∑
m:R+→Z≥0

eλ−
∑

α∈R+ m(α)·α = eλ ⋆
∑

m:R+→Z≥0

e−
∑

α∈R+ m(α)·α = eλ ⋆K.

Definition 8.7. We define

D :=
∏
α∈R+

(eα/2 − e−α/2) ∈ Funfin(h
∗),

where the product is the convolution product ⋆.

Definition 8.8. We define

ρ :=
1

2

∑
α∈R+

α ∈ h∗.

Claim 8.9. Let λ ∈ h∗. We have

K ⋆D = eρ,

and so
fchMλ

⋆ (D ⋆ e−(λ+ρ)) = e0.

In other words, fchMλ
, which lies in Funcon(h

∗), is the inverse with respect to
the convolution product ⋆ of an element in Funfin(h

∗), namely of D ⋆ e−(λ+ρ).

Proof. Notice that

(e0 + e−α + e−2α + . . .) ⋆ (eα/2 − e−α/2) = eα/2.

Therefore
K ⋆D =

∏
α∈R+

eα/2 = eρ.
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8.3 Expressing the formal character of an irreducible mod-
ule in terms of formal characters of Verma modules,
given a fact

Definition 8.10 (Dot action). We define a new action of W on h∗ by w • λ :=
w(λ+ ρ)− ρ. Thus, it is no more linear.

Definition 8.11. A subquotient of a module is a quotient module of a sub-
module or, which is the same, a submodule of a quotient module.

The following fact we will explain later.

Fact 8.12. Let M be a highest weight g-module with highest weight λ ∈ h∗.
Then ext(N) ⊂W • λ for any subquotient g-module N of M .

We will prove Weyl’s character formula, granted this fact.

Exercise 8.3. A non-empty conical subset in h∗ has maximal elements w.r.t.
our partial order ≤. As a corollary, given a non-zero conical g-module M we
have ext(M) ̸= ∅.

Claim 8.13. Let S ⊂ h∗ be a finite subset. Let M be a conical g-module such
that ext(N) ⊂ S for any subquotient g-module N of M . Then there exists a
collection (nµ)µ∈S ⊂ Z≥0 such that

fchM =
∑
µ∈S

nµ · fchLµ
.

Proof. The proof will be by induction on

n(M) :=
∑
µ∈S

dimCMh,µ.

If n(M) = 0 then we obtain ext(M) = ∅ and hence by Exercise 8.3 we obtain
M = 0, and the claim is clear. Assume now n(M) > 0, and so M ̸= 0 and
hence ext(M) ̸= ∅. If M is irreducible, then take µ ∈ ext(M) and take an
extremal vector 0 ̸= v ∈ Mh,µ Then v generates M as a g-module (since M
is irreducible) and therefore we see that M is a highest weight module with
highest weight µ, i.e. M is isomorphic to Lµ, and hence the claim is clear in
this case. If M is not irreducible, let N ⊂ M be a submodule with N ̸= 0 and
N ̸=M . Then n(M) = n(N)+n(M/N) and we deduce that n(N) < n(M) and
n(M/N) < n(M), and therefore we can write fch(N) and fch(M/N) as desired,
by induction. Since

fch(M) = fch(N) + fch(M/N),

the claim is clear.

Claim 8.14. The elements
(fchLµ)µ∈h∗

in Funcon(h
∗) are linearly independent.
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Proof. Suppose given a finite subset S ⊂ h∗ and scalars (cµ)µ∈S such that∑
µ∈S cµ · fchLµ = 0. Let us order S = {µ1, . . . , µn} in such a way so that

µi < µj implies i > j. Fix 1 ≤ i ≤ n and suppose that we have already showed
that cµj

= 0 for j < i - we want to show that cµi
= 0 as well. Plugging in µi in

our relation, we obtain then∑
i≤j≤n

cµj
· dimC(Lµj

)h,µi
= 0.

However, wt(Lµj ) ⊂ {µ ∈ h∗ | µ ≤ µj} and therefore µi /∈ wt(Lµj ) for
j > i. Therefore the equality becomes just cµi

· dimC(Lµi
)h,µi

= 0, and since
dimC(Lµi

)h,µi
= 1 we obtain cµi

= 0.

Claim 8.15. Let λ ∈ h∗.

1. We can write
fchMλ

=
∑

µ∈W•λ

nµ · fchLµ

for nµ ∈ Z≥0. We have nµ = 0 unless µ ≤ λ and nλ = 1.

2. There exist integers mµ ∈ Z for µ ∈W • λ such that

fchLλ
=

∑
µ∈W•λ

mµ · fchMµ .

We have mµ = 0 unless µ ≤ λ and mλ = 1.

Proof.

1. Let us denote byK ⊂Mλ the kernel of the canonical projectionMλ → Lλ.
Then

fchMλ
= fchK + fchLλ

.

Let us set
S := (W • λ) ∩ {µ ∈ h∗ | µ < λ}.

Clearly, taking Fact 8.12 into consideration, we have ext(N) ⊂ S for any
subquotient g-module N on K. Therefore Claim 8.13 shows that

fchK ∈
∑
µ∈S

Z≥0 · fchLµ

and the claim is clear.

2. This part follows from the previous part, by inverting a triangular matrix
with 1’s on the diagonal (as an exercise, formulate the precise claim and
proof).
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8.4 Proof of Weyl’s character formula (given the fact)

We are now ready to prove Weyl’s character formula (conditional on Fact 8.12).
Let λ ∈ h∗ be integral and dominant, so that Lλ is finite-dimensional.

Lemma 8.16. Let λ ∈ h∗ be integral and dominant. Then

{w ∈W | w • λ = λ} = {1},

or in other words

{w ∈W | w(λ+ ρ) = λ+ ρ} = {1}.

Proof. Let us write λ(diag(x1, . . . , xn)) = c1x1 + . . .+ cnxn. That λ is integral
and dominant means that ci − ci+1 ∈ Z≥0 for all 1 ≤ i < n. We have

ρ(diag(x1, . . . , xn)) =
n− 1

2
x1 +

n− 3

2
x2 + . . .+

−(n− 1)

2
xn.

Therefore, writing (λ + ρ)(diag(x1, . . . , xn)) = d1x1 + . . . + dnxn we have di −
di+1 = (ci − ci+1) + 1 for all 1 ≤ i < n and thus di − di+1 ∈ Z≥1 for all
1 ≤ i < n. Thus, we have d1 > d2 > . . . > dn. Clearly, any non-trivial re-
ordering of (d1, . . . , dn) does not satisfy this monotonicity property, and thus
can’t be defining the same functional on h∗ as (d1, . . . , dn).

From this lemma we have a bijection W → W • λ given by w 7→ w • λ. By
Claim 8.15 we have m :W → Z so that

fchLλ
=
∑
w∈W

m(w) · fchMw•λ .

By 8.6 we get

fchLλ
=

(∑
w∈W

m(w) · ew•λ
)
⋆ K.

By Claim 8.9 we get

fchLλ
⋆ D =

(∑
w∈W

m(w) · ew•λ
)
⋆ eρ =

∑
w∈W

m(w) · ew(λ+ρ). (8.1)

We will use now the following lemma:

Lemma 8.17. For every w ∈W we have wD = sgn(w) ·D.

Proof. Since {sα}α∈Rs generate the group W , it is enough to show the equality
for w being sα for some α ∈ Rs, i.e. to show that sαD = −D. We have

sαD = sα

 ∏
β∈R+

(eβ/2 − e−β/2)

 =
∏
β∈R+

(esα(β)/2 − e−sα(β)/2) =
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= (esα(α)/2 − e−sα(α)/2) ·
∏

α ̸=β∈R+

(esα(β)/2 − e−sα(β)/2) =

= (e−α/2 − eα/2) ·
∏

α̸=β∈R+

(eβ/2 − e−β/2) = −
∏
β∈R+

(eβ/2 − e−β/2) = −D.

We continue. Note that we should be careful that the W -action on Fun(h∗)
does not preserve Funcon(h

∗). However, it is straightforward that if ϕ, ψ ∈
Fun(h∗) are convolutionable, then wϕ,wψ are also convolutionable, and we have
w(ϕ⋆ψ) = (wϕ)⋆(wψ). We now see what we get when we apply some w ∈W to
both sides of (8.1). The left side satisfies w(LEFT) = sgn(w) · (LEFT). Hence
also for the right side we have w(RIGHT) = sgn(w) · (RIGHT). This gives:∑

w′∈W
m(w′) · eww

′(λ+ρ) = sgn(w) ·
∑
w′∈W

m(w′) · ew
′(λ+ρ).

Comparing coefficients we obtain m(ww′) = sgn(w)m(w′) for all w,w′ ∈ W .
Recall that m(1) = 1 and therefore we deduce m(w) = sgn(w) for all w ∈ W .
We have obtained:

Theorem 8.18 (Weyl’s character formula). Let λ ∈ h∗ be integral and domi-
nant. Then

fch(Lλ) ⋆
∏
α∈R+

(eα/2 − e−α/2) =
∑
w∈W

sgn(w) · ew(λ+ρ).

Exercise 8.4. Understand how all what we saw regarding Lλ’s recovers the
classification of irreducible finite-dimensional SU(n)-representations and their
Weyl character formula.

8.5 The center of the universal enveloping algebra

Definition 8.19. We denote by Z(g) the center of U(g). It is a commutative
C-algebra.

Remark 8.20. It will turn out that Z(g) is not too small, and useful. We could
not quite grasp it when looking “inside” g itself, and had to consider U(g).

Definition 8.21. Let A be a commutative C-algebra. We denote by Sp(A) the
set of morphisms of C-algebras from A to C, and call it the spectrum of A.
We also refer to elements of Sp(A) as characters of A.

Exercise-Definition 8.22. Let ζ ∈ Sp(A). Let M be a g-module. We say
that M has infinitesimal character ζ if for all D ∈ Z(g) and v ∈M we have
Dv = ζ(D) ·v. If M ̸= 0 then clearly M has at most one infinitesimal character,
and if it has an infinitesimal character we denote it by ζM .

Exercise 8.5. Let M be a g-module. If every D ∈ Z(g) acts on M by a scalar
then M has infinitesimal character.
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Lemma 8.23. A highest weight g-module has infinitesimal character.

Proof. Let M be a highest weight g-module, and let v ∈M be a highest weight
vector, with weight λ ∈ h∗. Let D ∈ Z(g). Then, since DX = XD for all X ∈ g,
Dv is also a vector of weight λ. Since Mh,λ is one-dimensional, we must have
Dv = cv for some c ∈ C. Now, if we consider the subspace N ⊂ M consisting
of w for which Dw = cw, notice that N is a g-submodule of M , and it contains
v. Since v generates M as a g-module, we obtain N = M . ThusD acts on M
by a scalar. By Exercise 8.5 we obtain that M has infinitesimal character.

Let us denote by Fun(h∗) the C-algebra of C-valued functions on h∗ (with
multiplication being pointwise). We define a map

S : Z(g)→ Fun(h∗)

by
D 7→ ζMλ

(D).

It is clearly a C-algebra morphism. Let us denote by Pol(h∗) ⊂ Fun(h∗) the
C-subalgebra consisting of polynomial functions.

Lemma 8.24. The image of S lies in Pol(h∗).

Proof. Notice that from the PBW theorem we see that, inside U(g), we can
write

U(g) = U(h) + U(g)n+ n−U(g).

Let us also choose a basis H1, . . . ,Hr for h. Given D ∈ Z(g) we can write

D ∈
∑
i

ci ·H
m1

i
1 · . . . ·Hmr

i
r + U(g)n+ n−U(g)

where ci ∈ C and mp
i ∈ Z≥0. Next, recall that we have a decomposition

Mλ = C · vλ ⊕M◦λ
where

M◦λ :=
∑

µ∈wt(Mλ)∖{λ}

(Mλ)h,µ,

and notice that
n−U(g)vλ ⊂M◦λ .

Also, notice that U(g)nvλ = 0. Hence we obtain

Dvλ =
∑
i

ci ·H
m1

i
1 · . . . ·Hmr

i
r vλ =

(∑
i

ci · λ(H1)
m1

i · λ(Hr)
mr

i

)
· vλ.

In other words, we obtain

S(D)(λ) =
∑
i

ci · λ(H1)
m1

i · λ(Hr)
mr

i ,

and this is indeed polynomial in λ.
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Recall that W acts linearly on h, and therefore acts linearly on h∗. Recall in
addition that we defined the dot action of W on h∗ by w • λ := w(λ+ ρ)− ρ.
It is no more linear (just affine). We obtain an induced dot action on Fun(h∗)
and on its subalgebra Pol(h∗). This is an action by algebra automorphisms. We
denote by Pol(h∗)W• ⊂ Pol(h∗) the subalgebra of W -invariants with respect to
this dot action.

Claim 8.25. The image of S lies in Pol(h∗)W•.

Proof (of Claim 8.25). Since {sα}α∈Rs generatesW , it is enough to check that,
fixing D ∈ Z(g) and α ∈ Rs, we have sα • S(D) = S(D), i.e. S(X)(sα • λ) =
S(X)(λ) for all λ ∈ h∗. Let us first assume that λ is such that λ(Hα) ∈ Z≥0. In
Lemma 7.32 that, denoting n := λ(Hα), we have that Fn+1

α vλ ∈ Mλ is a non-
zero extremal vector with weight λ− (n+ 1)α. Therefore we obtain a non-zero
morphism of g-modulesMλ−(n+1)α →Mλ. Denoting by N the (non-zero) image
of this morphism, it is both a quotient module of the source and a submodule
of the target. Therefore Z(g) acts on it both by ζMλ−(n+1)α

and by ζMλ
. Thus

we must have ζMλ−(n+1)α
= ζMλ

, and so S(D)(λ − (n + 1)α) = S(D)(λ). Now,
notice that

sα • λ = ((λ+ ρ)− (λ+ ρ)(Hα)α)− ρ = λ− (n+ 1)α

(where we have used ρ(Hα) = 1 - check this). Hence the required.

Thus, we have obtained S(D)(sα • λ) = S(D)(λ) for all λ ∈ h∗ satisfying
λ(Hα) ∈ Z≥0. Since S(D) is a polynomial on h∗, this implies the equality for
all λ ∈ h∗ - by an easy lemma: Let V be a f.d. C-vector space and let f be
a polynomial on V . Let 0 ̸= ℓ ∈ V ∗. If f(v) = 0 for all v ∈ V satisfying
ℓ(v) ∈ Z≥0, then f = 0.

The following is a fundamental theorem:

Theorem 8.26 (Harish-Chandra). The C-algebra morphism

S : Z(g)→ Pol(h∗)W•

is an isomorphism.

Proof. Omitted.

Let us now see how this material establishes Fact 8.12. Let λ ∈ h∗ and let
N be a non-zero subquotient of Mλ. We want to see that ext(N) ⊂ W • λ.
Let µ ∈ ext(N). We obtain a non-zero morphism of g-modules Mµ → N .
Now, since N is a subquotient of Mλ, Z(g) acts on N by ζMλ

. Since we have
a non-zero morphism of g-modules Mµ → N , reasoning as above we see that
the operators in Z(g) act on Mµ by the same scalars with which they act on
N , and hence ζMµ

= ζN = ζMλ
. In other words, for any D ∈ Z(g) we have

S(D)(λ) = S(D)(µ). By Theorem 8.26 we see that all the polynomials on h∗

which are invariant under the dot-action ofW have the same values on λ and on
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µ. It is left to see that this implies that µ ∈W • λ. Indeed, let us suppose that
µ /∈ W • λ and show that then there exists a polynomial f ∈ Pol(h∗) which is
invariant under the dot-action ofW and such that f(µ) ̸= f(λ). Clearly, for any
disjoint finite subsets S, T ⊂ h∗ we can find a polynomial f0 ∈ Pol(h∗) such that
f0(ν) = 0 for all ν ∈ S and f0(ν) ̸= 0 for all ν ∈ T . We apply this to S :=W •λ
and T := W • ν and then define f ∈ Pol(h∗) by f(ν) :=

∏
w∈W f0(w • ν) for

ν ∈ h∗. Then clearly f is invariant under the dot-action of W , and we have
f(λ) = 0 and f(µ) ̸= 0, so that f(µ) ̸= f(λ), as desired.

Example 8.27. Let us see what Harish-Chandra’s theorem says for g := sl2.
We identify h∗ with C by sending λ to λ(H). This gives an identification of
Pol(h∗) with the algebra of polynomials C[z]. The dot-action of the non-trivial
element s ∈ W is given by s • c = −2 − c. Then Pol(h∗)W• ⊂ Pol(h∗) gets
identified with C[(z + 1)2] ⊂ C[z]. Recall the Casimir element

C =
1

8
(H2 + 2H + 4FE) ∈ Z(g).

We have

Cvλ =

(
1

8
(λ(H)2 + 2λ(H))

)
· vλ.

Therefore, under our identification,

S(C) =
1

8
(z2 + 2z) =

1

8
((z + 1)2 − 1).

Thus we see that
1, C, C2, . . .

is a basis for Z(g).
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