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Symmetry, as wide or as narrow
as you may define its meaning, is
one idea by which man through
the ages has tried to comprehend
and create order, beauty, and

perfection.
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®
DX
‘7 . 3
X
1 AS VI RN |
)X 8
® . bR @ . .
cm’x “
@X
. . . -
. DK
B



Contents

I —Sources| 3
|2 Topological groups, actions and representations| 3
2.1 Topological groups| . . . . ... ... o000 3
B27ACHONT .« -« o o v e e e e e 4
2.3 Harmonic analysis| . . . ... ... ... ... .. ... ... ... 7
2.4 Representations|. . . . . . .. .. ... ... ... ... ... 10
13 Basic representation theory of compact groups| 14
BI Haarmeasurel . . . . . ... ... oo 14
13.2  Complete reducibility, Schur’s lemma, multiplicities|. . . . . . . . 16
B3 Character] . . . . ... ... ... ... 18
3.4 Character in the case of SU(n)| . . . . . ... ... ... ... .. 21
3.5 Example: Irreps of SU(2)| . . . .. ... ... .. L 23
3.6 A glimpse at Weyl’s integration formulal . . . . . . ... ... .. 24
[3.7 Classification of irreps of SU(n) and Weyl’s character formula |
| (without proofs)| . . . . ... ... ... . oL 27
3.8 Some illustrations for Weyl’s character formula for SU(3)| . . .. 30
3.9  Some further notes regarding Weyl’s character formulal . . . . . . 33
4 Manifolds, Lie groups and Lie algebras| 35
ET Manifolds . . .« o v v o o o e e 35
4.2 Tangent spaces and tangent maps|. . . . . . . ... ... ... .. 37
M3 Vector fieldsand flows . . . . . . .. ... 39
4.4 Groups| . . . . . . 40
4.5  The exponential map|. . . . . . .. ... oL 41
4.6 The Lie algebra of a Lie group| . . ... .. ... .. ... .. .. 43
[4.7 _Proof of the Jacobi identity] . . . . . .. ... ... ... ... .. 47
M8 Proofof Theorem M3 . . . . .« vt v i i 49
4.9 Some of Lie’s theorems|. . . . . . . .. ... ... L. 51
4.10 Representations of Lie groups versus representations of Lie algebras| 51
4.11 The case of SU(n)| . . . . . . o o oo i 54
[ Representation theory of sl 55
5.1 Finite-dimensional irreducible modulesf . . . . ... ... ... .. 56
5.2 Detour 1 - tensor products|. . . . . . .. ... ... ... ..... 58
0.3 Detour 2 - the Casimir element] . . . .. .. ... .. ... .... 59
b.4  Complete reducibility of finite-dimensional modules|. . . . . . . . 61
|6 The universal enveloping algebral 63
[6.1 Algebras and modules| . . . . ... ... ... ... ... 63
[6:2 The universal eneveloping algebral. . . . . . . ... ... .. ... 64
[6.3 The universal enveloping algebra as a_“deformation’] . . . . . . . 67




|7 Representation theory of sl,| 69
................................ 69
2 Rootd . . .. .. 69
[7.3  Highest weights| . . . . . . ... ... ..o 0o 71
[7.4 _Irreducible highest weight modules| . . . . .. .. .... ... .. 73

............................ 73
7.6 Irreducible highest weight modules - existence|. . . . . . . . . .. 75
7.7 When 1s Ly finite-dimensional?| . . . . . . . .. ... ... .... 76

I8 _Formal character| 79
BI Convolutionl . . . . . . . . . . . . 79
8.2 Formal character] . . . . . ... ... ... L. 80
18.3  Expressing the formal character of an irreducible module in terms |

| of formal characters of Verma modules, given a fact|. . . . . . . . 82
8.4 Proof of Weyl’s character formula (given the fact). . . . . . ... 84
8.5 'The center of the universal enveloping algebraf. . . . . . . . . .. 85

1 Sources

Some of the sources:

e “Complex Semisimple Lie Algebras” by J. P. Serre

e “Lectures on Lie Algebras” by J. Bernstein

2 Topological groups, actions and representa-

tions

2.1 Topological groups

Definition 2.1.

e A topological group is a set G equipped with both a group structure
and a topology, such that the multiplication map G x G — G and the

inverse map G — G are continuous.

e Given topological groups G and H, a morphism of topological groups
from G to H is a map ¢ : G — H which is both continuous and a group

homomorphism.

Example 2.2. Here are some examples of topological groups.

o Any group, given the discrete topology, becomes a topological group.

e R, with the group operation of addition and its standard topology, is a
topological group. So is C. Another example is Qp, the additive group of

the field of p-adic numbers.



e We have the topological groups R*, C* and Q, - the multiplicative groups
of the fields, i.e. the sets of non-zero elements, with group operation being
multiplication and the topology on F* being inherited from F', the former
being an open subset in the latter.

e The group GL,(R) of invertible matrices over R of order n, with the op-
eration of multiplication of matrices and the topology inherited to it as an
open subset of the R-vector space M,(R). Again, we have also GL,(C)
and GL,(Q,).

o The next example is essentially the same as previous one. If we have a
finite-dimensional vector space V' over R, we have the topological group
GL(V) = GLgr(V) of invertible R-linear transformations from V to V,
with the operation of composition. Similarly, for vector spaces over C or
Qyp (the reader is welcome to describe the topology).

o Various closed subgroupﬂ of GL,(R), GL,(C) and GL,(Qp). For ex-
ample, the subgroups SL,(F) C GL,(F) consisting of matrices of de-
terminant 1. Or, the subgroups O(n) C GL,(R) and U(n) C GL,(C)

consisting of orthogonal, respectively unitary, matrices. We also have
SO(n) := O(n) NSL,(R) and SU(n) := U(n) N SL,,(C).

e There are also natural topological groups which are not locally compact.
For example, Given a topological group G we can consider the topological
space of continuous maps Map(S*, G) from the circle S* to G, equipped
with the compact-open topology, and define the group operation pointwise.
This is a “loop group”.

Remark 2.3. Except those of the last items, all the groups in Example are
locally compact.

Exercise 2.1. Show that the topological groups O(n) and U(n) are compact.

2.2 Actions
Definition 2.4. Let G be a topological group.

e Let X be a set. An abstract G-action on X is a map (with no require-
ment of continuity what-so-ever) a : G x X — X satisfying

(1) a(lg,z) =« for all x € X.
(2) a’(glua’(g?a‘r)) = a(91927x) for all 91,92 € G and = € X.

e Let X be a topological space. A G-action on X is an abstract action
a: G x X — X which is continuous.

LAlthough any subgroup of a topological group becomes itself a topological group with
the subspace topology, it is most natural to look at closed subgroups, because those are the
subgroups for which the quotient G/H will be a T}-space.



e A GG-space is a topological space X equipped with a G-action.

Given a G-space X, we almost always keep the action map a implicit,
writing gz or g - x instead of a(g, x)lﬂ

e Given G-spaces X and Y, a morphism of G-spaces from X to Y is a

map ¢ : X — Y satisfying ¢(gz) = go(x) for all g € G and =z € X.

Example 2.5.

1.

Let G be a topological group. There are three strandard actions of G on
itself. The left regular action is given by a(g,g’) := gg’. The right
regular action is given by a(g,g’) == g'g~'. The conjugation action

is given by a(g, ') :== gg'g~".

Let G be a topological group and let H C G be a closed subgroup. We have
a canonical surjective map 7w : G — G/H (sending g to gH ) and we give
G/H the corresponding quotient topology, i.e. U C G/H s defined to be
open if T Y (U) C G is open. Then we make G/H a G-space by setting

a(g,g'H) := gg'H.

We have the standard action of GL,(R) on R™ given by multiplying a
vector by a matrix.

. Consider S"~! C R™, the closed subspace consisting of vectors of length

1 with respect to the standard inner product (the "unit sphere”). Then
SO(n) acts on S™~1 by multiplying a vector by a matriz.

Let H C C consist of complex numbers z for which Im(z) > 0 (the "upper
half plane”). Let G := SLy(R). We have an action of G on H (“by Mébius
transformations”), given by setting

a b az+b
C 2= .
c d cz+d

Consider the symmetric R-bilinear form on R* given by

Q((l’l,lﬂg, CESat)a (xllaxéa :Cé,t/)) = xlx/l + :EQ$/2 + ngﬂé - ttl

(appearing in special relativity). Consider the “light cone” X = {v €
R* | Q(v,v) = 0}. Consider the closed subgroup SO(3,1) C GL4(R) con-
sisting of matrices A which preserve @, i.e. which satisfy Q(Av, Aw) =
Q(v,w) for all v,w € R*. Then we have an action of SO(3,1) on X by
multiplying a vector by a matrix.

Definition 2.6. Let G be a topological group and let X be a G-space.

2In the same way as when given a group G, we keep the multiplication map, say m, implicit,
don’t give it a name, and write g1 g2 instead of m(g1, g2).



e X is said to be transitive if X is non-empty and for every z1,29 € X
there exists g € G such that gz, = zs.

e X is said to be homogeneous if it is isomorphi(ﬂ to the G-space G/H
for some closed subgroup H C G.

Clearly, a homogeneous G-space is transitive. To check whether the converse
holds, let X be a transitive G-space. Choose some zg € X. Denote

Gz ={9€ G| gro =20} CG.

Then G,, is a closed subgroup of G, called the stabilizer of x5. We have a
map
¢:G/Gyy = X, ¢Gyy — gTo.

Check, that ¢ is a morphism of G-spaces. Check, that ¢ is bijective. Thus, the
only problem that might be is that ¢ is not a homeomorphism, i.e. that the
inverse of ¢ is not continuous. This is equivalent to the map G — X given by
g — gxo not being an open map.

Lemma 2.7. Let G be a topological group and let X be a G-space. Suppose that
G and X are locally compact and that G is sepamblrﬁ. Then if X is a transitive
G-space it is also homogeneous.

Proof. Fix xg € X. Asjust explained, we want to check that themap ¢ : G — X
given by g — gxg is open. Let U C G be a non-empty open subset. We want
to see that ¥(U) C X is an open subset. To that end, fix ug € U, and we want
to see that 1(ug) is an interior point of 1 (U). Translating everything by ug*,
we can assume without loss of generality that 1o € U and ug = 1g. Let us
pick a compact neighbourhood of 14 lying in U, call it 1 € V' C U, such that
V-1.V C U. It is enough to show that (V) contains some interior point.
Indeed, if v € V is such that 9 (v) is an interior point of ¥(V), ¥(1g) = v~ (v)
will be an interior point of v~1¢(V) = ¥ (v=1V), and since vV C U, ¢¥(1g)
will also be an interior point of ¢ (U), as desired. Thus, we want to see that (V)
contains some interior point. Since G is separable, we can find a countable subset
{g;} € G which is dense in G. Then it is immediate to see that U;g;V = G.
Hence U;g;4(V) = X. By Baire’s category theoremEl7 for some i the subset
9:¥(V) of X has an interior point. Translating, the subset (V) of X has an
interior point, as desired. O

In our practice we will only deal with second countableﬁ locally compact
spaces, and hence the last lemma shows that there is no difference between
transitive and homogeneous G-spaces.

3An isomorphism is a morphism which admits an inverse morphism - so we can speak of
an isomorphism of topological groups, an isomorphism of G-spaces, etc.

1A topological space is separable if it contains a countable subset which is dense in it.

5Baire’s category theorem says, in particular, that if a locally compact space is pre-
sented as a countable union of closed subsets, then one of these closed subsets has an interior
point.

6A topological space is second countable if it has a countable base for the topology.
Second countable topological spaces are separable.



Exercise 2.2. Check which of the examples in Exzample [2.5 are homogeneous.

2.3 Harmonic analysis

Let X be a topological space. We can ask a basic question in harmonic analysis:
How to study a, say continuous, function f : X — C? The basic idea is that we
want a systematic way of writing such an f as some (infinite) sum of “simple”
functions which we can understand. When having a G-action on X, the basic
idea is that those “simple” functions should be functions that “transform simply
under the G-action”. What does it mean more precisely?

First, denoting by C'(X) the C-vector space of continuous functions from X
to C, let us notice that we have an abstradﬂ action of G on C(X): Given g € G
and f € C(X), we set gf to be the function sending = to f(g~ '), i.e. we set

(9f)(@) = fg~ a).

The simplest behaviour is of being G-invariant: A function f € C(X) is
G-invariant if gf = f for all g € G, ie. f(g~tx) = f(z) for all g € G and
z € X. In other words, given g € G denote by T, : C(X) — C(X) the linear
operator given by f — ¢gf. Then f is G-invariant if it is an eigenvector of all
the operators Ty, with eigenvalue 1.

A generalization is as follows. Let x : G — C* be a function. A function
f € C(X) is x-equivariant, or a G-eigenfunction with eigencharacter Yy,
if gf = x(g)- f forall g € G,i.e. f(g7tx)=x(g9) f(z)forallge Gandz € X.
In other words, f is x-equivariant if, for every g € G, f is an eigenvector of T
with eigenvalue x(g). We have the following exercise:

Exercise 2.3. If f # 0, then x is in fact a morphism of topological groups.

Because of the exercise, we only consider x’s which are morphisms of topo-
logical groups.

Definition 2.8. Let GG be a topological group. A quasi-character of G is a
morphism of topological groups G — C*. A character of GG is a morphism of
topological groups G — C\X_|:1- Let us denote by qCh(G) (resp. Ch(G)) the
abelian group of quasi-characters of G (resp. characters of ), where the group
operation is pointwise multiplication. So Ch(G) is a subgroup of qCh(G).

Exercise 2.4. Let G be a topological group. Show that if G is compact, then
every quasi-character of G is a character of G.

Remark 2.9. Often in harmonic analysis one is interested in y-eigenfunctions
only when x is a character, rather than merely a quasi-character. But, this
is not always to case, for example the Laplace transform involves also quasi-
characters. Anyway, our focus in this course will be compact groups, for which,
in view of Exercise there is no difference.

7One can give C(X) a topology so that this abstract action will be an action, i.e. it will
be continuous, but we don’t want to discuss this now.




Example 2.10. Let us illustrate. Consider the unit circle S' C R?, and the
action of SO(2) on it, multiplying a vector by a matrix, as in one of the examples
above. Here, it is convenient to identify both S* and SO(2) with R/Z as follows.
Notice that R/Z is a topological group naturally (R is a topological group with
respect to addition, and the quotient by the closed normal subgroup Z is again
a topological group naturally). Let us abbreviate [x] := x + Z. We have an
isomorphism of topological groups

R/Z = SO(2)

cosx —sinx
[z] — . .
sinx cosx

We have an isomorphism of topological spaces

R/Z = S*

cosw

sinz
Under these isomorphisms, our action becomes the action of R/Z on R/Z given
by a([z],[y]) := [z + y], i.e. simply translation (or what we called the regular
(left or right) action). What characters of R/Z do we have? Given n € Z, we
have x, € Ch(R/Z) given by x,([z]) := €*™™*. One checks that Z — Ch(R/Z)
given by n — X, is an isomorphism of abelian groups. Now, what are the

eigenfunctions? One immediately sees that, setting f, := X _n, we have that f,
1S Xn-equivariant, i.e.

fn([x] - [y]) = eQTrmyfn([x])7 Vz,y € R,

and all x,-equivariant functions are scalar multiples of fy.

given by

given by

Let us continue with this example. As we said, the idea is that we want to
write any function f € C(R/Z) as an infinite sum of functions which behave
simply under the translation action. So, we want to write any function f €
C(R/Z) as an infinite C-linear combination of the f,,’s. More explicitly, we can
think of continuous functions on R/Z as continuous functions on R which are
periodic, with period 1. So given f € C(R) which is 1-periodic, we want to
write (yet non-formally, heuristically)

f(ﬁ) _ ch . g~ 2min
nez

This is the subject of classical Fourier theory - the subject of Fourier series.
First, one needs to guess what should be the coefficients ¢,,. For this, we inte-
grate (yet non-formally, heuristically):

1 1
/ f(l’) . 627rzmz cdr = E Cn - / 6727r7,n93627mmz cdr = Com-
0 0

ne”Z

Now, one can formulate various formal claims, for example:



Theorem 2.11. Given n € Z, denote by f, € C(R) the 1-periodic function
x> e 2% Let f € C(R) be 1-periodic and smooth. Define

o= / f@) - fon(a) - de

Then
f= Z cnfn
neZ
absolutely and uniformly.
Proof. Omitted. O

Remark 2.12. In this course, we concentrate on compact groups. Already
now we can see how non-compact groups provide more complication. Namely,
consider the group R instead of R/Z. Explicitly this has the meaning that we
now consider continuous functions in C(R) which are not necessarily 1-periodic.
This time, we have R =+ Ch(R), given by ¢ — x¢, where x;(z) := e2™*. So the
“space of parameters” is now not discrete. Therefore, we will expect a general
function to not decompose as an infinite sum of simple functions, but rather as
an integral of simple functions. Namely, we have f;(z) := e =27 as before, but
now we will want to write

+oo
f(z) = / cp - €2 Lt
— 00

Remark 2.13. Complete harmonic analysis of functions on X in terms of G
is, generally speaking, impossible, unless X is a homogeneous G-space. For
example, imagine R acting on R? by 2’ - (x,y) := (z + 2’,y). Functions which
“transform simply” under the action in that case will be functions of the form
(z,y) = h(y) - e 2™ for u € R and g € C(R), i.e. “in the y-direction” we
are completely unrestrained. Thus, the action has not helped us to gain any
simplification “in the y-direction”. To gain simplification in “all directions”, the
action needs to be homogeneous]

Finally, let us illustrate how such harmonic analysis can be used.
Theorem 2.14. Let o € R be an irrational number. Let (a,b) C [0,1] be a

subinterval. Then

1
lim N~(numberof0§n§N—1 for which na € (a,b) +Z) =b—a.

N—o00
In words, {[na]}n>o is equidistributed in R/Z.

Proof. Notice that if consider a function f on R/Z to be the characteristic
function of (a,b), then the statement of the theorem is formulated as

N-1 1

tim + 3" f(nal) = [ f(i))d. (2.1)

N—oco N 0
n—

80r, maybe, just having a dense orbit also sometimes allows for “complete analysis”.



Next, we would like to understand that it is enough to estbalish for all
smooth functions f on R/Z - this is a small exercise, approximating the charac-
teristic function by smooth functions from below and above. Now, notice that
the equality is stable under linear combinations and under passage to a
limit of a uniformly convergent sequence. Hence, in view of Theorem [2.11] in
order to establish for all smooth functions f it is enough to establish it for
the functions f := f,,, for m € Z. To that end, let us calculate:

1 m =
j : 2 : 2mimna __ N
N fm na - { 1 27r'L7nNa -1 m # 0

N 627r17na 1

N—o0o 1 m=0
—_—
0 m=#0

o
=
J
8

and since we also have

we are done. O

2.4 Representations

Representations naturally arise when we consider more complicated examples
than the one above. Namely, let us consider SO(3) acting on S? as we had some-
where above. So, attempting to do as above, we again first ask about Ch(SO(3)).
However, it turns out that Ch(SO(3)) = {1} (this is an exercise whose solution
we omit currently). The SO(3)-eigenfunctions with trivial eigencharacter are
the constant functions. So, we need to somehow extend our understanding of
“functions which transform simply under the action”. A simple thing to notice
is that if we consider functions in C'(S?) which are of the form

x
y | mazx+by+cz
z

for some a, b, ¢ € C, those form a 3-dimensional C-linear subspace of C'(5?), call
this subspace L, and we notice that L is SO(3)-invariant, i.e. gf € L whenever
g € SO(3) and f € L. So we have now a hint regarding what to “transform
simply” could mean more generally - a (non-zero) SO(3)-eigenfunction is sim-
ply a function spanning a SO(3)-invariant 1-dimensional subspace, and we can
generalize, and search for SO(3)-invariant f.d. subspaces.

Thus, let us try to formulate abstractly what we are aiming at currently.
Let G be a topological group and let X be a G-space. Let L C C(X) be a
f.d. C-linear subspace which is G-invariant, i.e. gf € L whenever g € G and
f € L. We have an abstract action a : G x L — L inherited from the abstract
action of G on C(X).

10



Exercise 2.5. Let M be a f.d. C-vector space. Choose an isomorphism of C-
vector spaces M = C", and using it transport the standard topology of C" to
M. Show that the resulting topology on M does not depend on the choice of
isomorphism. Thus a f.d. C-vector space has a well-defined topology - we will
always consider them with that topology.

Exercise 2.6. Show that the abstract action a above is, in fact, an action, i.e.
it is continuous (where we have explained in Exercise what is the topology
to be taken on L).

Furthermore, clearly this action a is C-linear in the second variable, i.e. for
any g € G the map L — L given by v — a(g,v) is C-linear. What replaces the
eigenvalue prescription x € Ch(G) in our current generalization is an “abstract
model” for our L, i.e. a f.d. C-vector space M, equipped with a G-action which
is C-linear in the second variable (and M has nothing to do with X - that is
the meaning of the adjective “abstract”). So we define:

Definition 2.15. Let GG be a topological group.

e Let V be a C-vector space. A C-linear abstract G-action on V is an
abstract action G x V — V which is C-linear in the second variable.

e An abstract G-representation is a C-vector space V equipped with a
C-linear abstract G-action.

e Let V be a f.d. C-vector space. A C-linear GG-action on V is a G-action
on V which is C-linear as an abstract action, i.e. the abstract action
G x V — V should be continuous and C-linear in the second variable.

e A f.d. G-representation is a f.d. C-vector space M equipped with a
C-linear G-action.

e Let V] and V5 be abstract G-representations. A morphism of G-representations
from V7 to V4 is a C-linear map T : V; — V4 satisfying T'(gv) = gT'(v) for
all g € G and v € V;. We denote by Homg(V7, Va) the C-vector space of
morphisms of G-representations from V; to V, (the structure of C-vector
space on this set is just by it being a C-vector subspace of Homg(V1, V2)).

Thus, our L of before is a 3-dimensional SO(3)-representation, which we
have found inside C'(S?), which itself is an abstract SO(3)-representation.

Exercise 2.7. Here is a basic reformulation of what a f.d. representation is.
Let G be a topological group and let M be a f.d. C-vector space. Show that
the set of C-linear G-actions on M 1is in bijection with the set of topological
group morphisms G — GL(M), by sending a : G x M — M to the morphism
p: G — GL(M) defined by p(g)(v) := a(g,v). We will swap freely between these
two equivalent formulations.

However, a f.d. G-representation is still not the precise generalization of
a quasi-character of G. To explain this, let us consider the following simple
notions:

11



Remark 2.16.

e Let V be a f.d. G-representation. Let W C V be a G-invariant C-
linear subspace (i.e. for ¢ € G and v € W we have gv € W). Then
W itself, with the G-action gotten by restriction of that on V, is a f.d.
G-representation. For that reason, a G-invariant C-linear subspace is also
called a G-subrepresentation.

e Recall first some notions for vector spaces. There is the notion of an
(external) direct sum: Let W and U be C-vector spaces. Then we
construct a new C-vector space W @ U as the Cartesian product of W and
U, with addition and multiplication by scalar performed element-wise.
There is also the notion of an internal direct sum: If V is a C-vector
space and W, U C V are C-vector subspaces, then V is said to be the direct
sum of W and U if the C-linear map W@ U — V given by (w,u) — w+u
is an isomorphism of C-vector spaces. Equivalently, if V = W 4+ U and
W NU = {0}. One then also writes V = W @ U (causing a very slight
abuse of notation).

e Let V and W be two f.d. G-representations. We construct a f.d. G-
representation V @ W, called the (external) direct sum of V and W,
as follows. As a C-vector space it is the direct sum of V and W. The
G-action is given by g(v,w) := (gv, gw).

e Let V beaf.d. G-representation. Let W, U C V be two G-subrepresentations
such that V' = W @ U (internal direct sum). Then the (external) direct
sum W @ U of W and U is isomorphic as a G-representation to V via
(w,u) = w + u.

We don’t want to look for things isomorphic to a direct sum M; & My
inside C(X) - it is inefficient once we have already looked for things which are
isomorphic to M; and things which are isomorphic to Ms. Thus, we in some
sense want to only consider “smallest possible” G-representations. One arrives
to the following definition:

Definition 2.17. Let G be a topological group and let M be a f.d. G-
representation. We say that M is irreducible if M # 0 and the only G-
subrepresentations of M are 0 and M. The term “irreducible representation” is
often abbreviated as “irrep”.

Remark 2.18. One can also define M to be indecomposable if given G-
subrepresentations My, My C M such that M = M;@® M, one has either M; =0
or My = 0. Then clearly an irreducible representation is indecomposable. We
will see later that if G is compact then the converse also holds.

We can now state a theorem for the action of SO(3) on 5%
Theorem 2.19. For everyn € 2Z>o+1 there exists a unique SO(3)-invariant n-

dimensional subspace L,, C C(S?%) which is irreducible as an SO(3)-representation.

12



Given a smoot}ﬂ f € C(S?) there exists a unique collection (frn)ne2zso+1 with

fn € Ly such that

nGQZZOJrl

absolutely and uniformly.
Proof. Omitted. O

Definition 2.20. Let G be a topological group. We denote by Irr(G) the set
of isomorphism classes of irreducible f.d. G-representations. Given an irre-
ducible f.d. G-representation M, we denote by [M] € Irr(G) the corresponding
isomorphism class.

Irr(QG) is our generalization of qCh(G) - this is what replaces eigencharacters.
Given [M] € Irr(G), one looks for G-invariant f.d. C-linear subspaces L C
C(X) which are isomorphic, as G-representations, to M - this is what replaces
eigenfunctions.

How is this related to the previous search for G-eigenfunctions? A quasi-
character y € qCh(G) gives rise to an irreducible 1-dimensional G-representation
which we denote by C,. It is constructed as follows. As a C-vector space, it
is simply C itself. The G-action is given by g - ¢ := x(g)c. Now, a G-invariant
C-linear subspace L C C'(X) which is isomorphic to C,, as a G-representation is
simply a 1-dimensional subspace all of whose vectors are G-eigenfunctions with
eigencharacter y (check this!).

Exercise 2.8. Show that every 1-dimensional G-representation is irreducible,
and is isomorphic to C,, for some quasi-character x € qCh(G). Show also
that given two quasi-characters x1,x2 € qCh(G) such that x1 # X2, the 1-
dimensional G-representations Cy, and C,, are non-isomorphic. In other words,
we have an injection qCh(G) — Irr(G) given by x — [Cy], whose image is the
set of isomorphism classes of 1-dimensional G-representations.

Example 2.21. One can show that every irreducible f.d. SO(3)-representation
is isomorphic to L, for some n € 2Z>¢ + 1 (in the notation of Theorem .
Of course, this is a very nice situation - in general, there can be irreducible
f.d. G-representations which do not appear in a certain C(X), and there can
be irreducible f.d. G-representations which appear in a certain C(X) more than
once.

90ne of the characterizations of a function f € C(S?) being smooth is that for every p € S?
there exists an open p € U C R? and a smooth function f € C(U) such that f|,ng2 = f-
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3 Basic representation theory of compact groups

3.1 Haar measure

By a locally compact space we will always mean a second countable locally
compact spac By C.(X) C C(X) we denote the subspace of functions with
compact suppor

Definition 3.1. Let X be a locally compact topological space. A signed
Radon measure on X is a functional [ : C.(X) — C with the following

property:

e (continuity) Given a sequence {f,} C C.(X) converging uniformly to
f € C.(X), such that there exists a compact subset K C X with the
property that f,|x.x = 0 for all n, the sequence { [ f,,} converges to [ f.

The set of signed Radon measures is naturally a C-vector space, and we
denote it by M(X). We say that a signed Radon measure [ : C.(X) — C is a
Radon measure if it satisfies in addition the following property:

o (positivity) Given f € C.(X) such that f(xz) > 0 for all z € X, we have
Jr>o.

Example 3.2.

e On R we have the Radon measure sending f € C.(R) to the usual Riemann
integral fjoos f(x) - dx.

e Generalizing the previous example, given a continuous function g € C(R),
we have on R the signed Radon measure sending f € C.(R) to ffooo g(x) f(x)
dx. It is a Radon measure if and only if g(z) > 0 for all x € R.

e On R we have the Radon measure §y (the Dirac delta) sending f € C.(R)
to f(0).

e Given a (countable) set X, considering X as a discrete topological space
we have the counting Radon measure on X given by [ f := Yowex f().

Exercise 3.1. Let X be a locally compact space and V a f.d. C-vector space.
We denote by C.(X,V) the C-vector space of continuous functions from X to
V' which have compact support. Let [ € M(X). Then we can naturally define
an “extension” of [ to a C-linear map Co(X,V) — V, which by abuse of nota-
tion we also call f It is the unique C-linear map which sends any expression
Y i<i<n fivi (where f; € Co(X) andv; € V) to Y e, (f f,») v;. We have some

natural properties. For example, given a C-linear operator T : V. — W between

two f.d. C-vector spaces, we have T ([ F) = [(T o F) where F € Co(X,V).

10T assume second countability to be on the safe side and not think about technicalities
(and, since most spaces in practice are second countable, this is not very restrictive).

" The support of a function f € C(X) is defined as the closure in X of the subset of X
consisting of # € X for which f(z) # 0.
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Let G be a topological group and let X be a G-space, which is locally
compact. Recall that we have on the C-vector space C(X) the structure of
an abstract G-representation - given g € G and f € C(X) we define gf € C(X)
by (gf)(z) := f(g ). It is clear that C.(X) C C(X) is a G-subrepresentation.
Now, on the C-vector space M(X) of signed Radon measures we also have the
structure of an abstract G-representation - given ¢ € G and [ € M(X) we
define g [ € M(X) by (¢ [)(f) := [¢g~'f. In general, given an abstract G-
representation V', a vector v € V is said to be G-invariant if gv = v for all
g € G. So, we can speak about G-invariant signed Radon measures on X.

Remark-Notation 3.3. Let G be a topological group. Recall the left regular
action of G on G given by a(g,g’) := g¢g’ and the right regular action of G
on G given by a(g,g’) := g'g~*. We correspondingly get two abstract C-linear
actions of G on C.(G) and on M(G), as described above. Given g € G, we denote
by Ly : Co(G) — Co(G) and Ry : Co(G) — C.(G) the corresponding C-linear
operators of acting by g, so concretely (L,f)(g") = f(g7'g’) and (R, f)(¢") =
f(gg’). Also, we denote (slightly abusing notation) by L, : M(G) — M(G) and
R, : M(G) — M(G) the corresponding C-linear operators of acting by g, so
(Lg [) (f) = [ Lg-1f and (Ry [) (f) = [ Ry f.

Theorem-Definition 3.4 (Haar). Let G be a locally compact group.

e (existence) There exists a non-zero Radon measure [ € M(X) which is
right G-invariant (i.e. G-invariant w.r.t. the right regular action), i.e.
satisfying Ry [ = [ for all g € G.

e (uniqueness) Any two non-zero right G-invariant signed Radon measures
on X differ by a scalar.

A right G-invariant non-zero Radon measure on X is called a right Haar
measure. Thus, any two right Haar measures differ by a scalar in RZ,.

Proof. Omitted. O

Remark 3.5. Of course, by considering the left regular action, we analogously
obtain the notion of a left Haar measure.

Exercise 3.2. Let G be a discrete group. Show that the counting measure on G
s both a left and a right Haar measure. In particular, for that class of groups
there is a canonical choice for a right Haar measure (which in general is only
defined up to a positive scalar).

Example 3.6. A Haar measure on R (clearly on an abelian group there is no
difference between right and left Haar measures) is given by the usual Riemann

integral f — fj;: f(x)-dx.

Exercise 3.3. Let G be a locally compact group and let [ be a right Haar
measure on G. Let f € C.(G) satisfy f(g) > 0 for all g € G and suppose that
[#0. Then [ f>0.

15



Remark 3.7. Let us see that right Haar measures coincide with left Haar
measures for compact groups as well. Let [ € M(G) be a right Haar measure.
Let ¢ € G. One immediately sees that L, [ is again a right Haar measure.
By the uniqueness of a right Haar measure, there exists ¢ € R-( such that
Ly [ = c- [. Notice that (Ly [)(1) = [(Ly-1(1)) = [1 (where 1 € C.(G) is
the function which is equal to 1 everywhere - it has compact support since G is
compact!) and on the other hand (L, [)(1) = (¢ [)(1) = ¢- [ 1. Comparing, we
obtain ¢ = 1, and so L, [ = [. Since this holds for every g € G, by definition
J is a left Haar measure.

Let us here also notice that the right Haar measure [ € M(G) for our
compact group G can be always normalized so that [1 = 1. We can say that
such a right Haar measure has total mass 1.

3.2 Complete reducibility, Schur’s lemma, multiplicities

Definition 3.8. Let G be a topological group. Let V be a f.d. G-representation.
An inner product (—,—) on V is said to be G-invariant if

<gv1791)2> = <’l}1,'l}2>, v.g € G; V1,2 € V.

Lemma 3.9. Let G be a compact group. Let V be a f.d. G-representation.
Then there exists a G-invariant inner product on V.

Proof. Let (—, —)¢ be any inner product on V. Denoting by [ a Haar measure
on G, let us define a function (—, =) : V. x V — C by

(o1, v2) = / (g {gor, gua)).

Then clearly (—, —) is an inner product on V (the strict positivity is a conse-
quence of Exercise [3.3)), and it is G-invariant, since given h € G we have

(hvy, hug) = /(g — (ghvy, ghve)) = /(g — (gu1, gva)) = (v1, va).
O

Claim 3.10. Let G be a compact group. Let 'V be a f.d. G-representation. Let
W C V be a G-invariant C-linear subspace. Then there exists a G-invariant

C-linear subspace U C'V such that V=W ® U.

Proof. Let (—, —) be a G-invariant inner product on V' (which exists by Lemma
. Consider W+ C V - the orthogonal complement to W w.r.t. (—, —). We
have V = W @ W+, so it is enough to check that W+ is G-invariant. Thus,
given v € W+ and g € G, we want to check that gv € W+. For this, we need
to check that (w, gv) = 0 for all w € W. But we have

(w, gvy = (g7 w, g7 (gv)) = (g7 w,v)

and since g~ 'w € W, this is 0, as desired. O
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Corollary 3.11. Let G be a compact group. Every f.d. G-representation is the
direct sum of irreducible f.d. G-representations.

Proof. We continue breaking the representation into direct sum of smaller ones
using Claim until we hit irreducible representations. O

Example 3.12. Let us consider the representation of S3 on V := C3, given by

Tl xo-—l(l)
g xTo = $0—1(2)
I3 $0—1(3)
1
The C-span of | 1 |, denote it by L, is an Ss-subrepresentation of V.. Notice
1

that the standard inner product on V. = C? is in fact Sz-invariant. Hence L
is an Ss-subrepresentation of V as well. It is an exercise to see that Lt is
an irreducible Ss-representation, which simply means in this case that there are
no non-zero vectors in L+ which are eigenvectors for all operators from the
Ssz-action.

Exercise 3.4. Let V and W be abstract G-representations and let T : V — W
be a morphism of G-representations. Show that Ker(T') is a G-subrepresentation
of V and Im(T) is a G-subrepresentation of W.

Claim 3.13 (Schur’s lemma). Let G be a topological group. Let E and F be
two irreducible f.d. G-representations. Then Homg(E,F) =0 if E and F are
not isomorphic and dimc Homg(F, F) = 1 if E and F are isomorphic.

Proof. Let T : E — F be a non-zero morphism of G-representations. Consider
Ker(T). Since it is a G-subrepresentation of E and since E is irreducible we
have either Ker(T) = 0 or Ker(T) = E. In the latter case we have T = 0,
so we must be in the former case, i.e. T is injective. Similarly, Im(7) is a G-
subrepresentation of F' and therefore Im(7") = 0 or Im(7") = F. In the former
case T'= 0 and so we must be in the latter case, i.e. T is surjective. Thus T is
bijective, and hence an isomorphism of G—representationﬂ

We have shown that if F and F are non-isomorphic then Homg(E, F) = 0.
Now assume that E and F are isomorphic, and we want to see that Homg (E, F')
is 1-dimensional. It is enoug}B to check that Homg(F, E) is 1-dimensional. Of
course, the 1-dimensional subspace of scalar operators lies in Homg(E, E), so
we need to check that given T' € Homg (FE, E) in fact T is a scalar operator. Let
A € C be an eigenvalue of T'. Since Ker(T' — X - Idg) is a non-zero G-invariant
C-vector subspace of E, we must have Ker(T'— A-Idg) = E. So T = A-Idg, as
desired. O

12This is a very small exercise - a bijective morphism of G-representations is an isomoprhism

of G-representations, i.e. its inverse is also a morphism of G-representations.
13That it is enough is a very small exercise.
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Corollary-Definition 3.14. Let G be a compact group. Let V be a f.d. G-
representation and let E be an irreducible f.d. G-representation. Decomposition
V =FE®...®&F, as a direct sum of irreducible f.d. G-representations, the num-
ber of 1 <1 < n for which E; is isomorphic to E is equal to dim¢ Homg(E, V),
and in particular it does not depend on the decomposition. It is called the mul-
tiplicity of E in V and denoted [V : E].

Proof. We have
Homg(E,V) =Homg(E,E1®...® E,) 2 Homg(E,E1) ® ... »Homg(E, E,)

and by Schur’s lemma the i-th summand is 1-dimensional if F; is isomorphic to
E and 0 otherwise. From this the claim is clear. O

Corollary 3.15. Let G be a compact group. LetV and W be f.d. G-representations.
Suppose that for every irreducible f.d. G-representation E we have [V : E] =
[W : E|. ThenV is isomorphic to W.

Proof. We write V and W as direct sums of irreducible representations, and
construct an isomorphism by adding isomorphisms between the various sum-
mands. O

3.3 Character

Let us fix a compact group G, and let us fix the Haar measure [ € M(G)
normalized to have total mass 1.

Definition 3.16. Let V be a f.d. G-representation. The character of V is the
function chy € C(G) given by

chy(g) :=Tr (V—=>V: v gv).
Example 3.17. The character of C, is x.

Claim 3.18. Let V be a f.d. G-representation.

1. The character chy is a class function, which means chy (hgh™!) =
chy (g) for all g,h € G.

2. We have chy (g~1!) = chy (g) for all g € G.

Proof. The first item follows immediately from the property Tr(STS™!) = T
for C-linear endomorphisms 7,5 : V — V of a f.d. C-vector space. As for
the second item, let (—, —) be a G-invariant inner product on V" and denote by
T € Endc (V) the operator T'(v) := gv. We know that 7' is a unitary operator
w.r.t. the inner product (—.—) and we want to see that Tr(7~') = Tr(T). This
is an exercise in linear algebra (recall that a unitary operator is diagnolizable
with all eigenvalues being complex numbers of absolute value 1). O
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Given a f.d. G-representation V, let us denote by V& C V the C-linear
subspace of G-invariants:

Ve .={veV |gv=uv, Vge G}

Lemma 3.19. Let V be a f.d. G-representation. We have
/ chy = dime VE.

Proof. Denote by m(g) € Endc(V) the operator given by m(g)v := gv. Let
us define P € Endc(V) by (see Exercise for integration of vector-valued
functions)

P = /(9 = m(g)).

We claim that P is a projection operator onto V. Notice that for every v € V
we have P(v) = [(g + gv). First, let us check that for any v € V we have
P(v) € VE. Indeed, let g € G. Then gP(v) = g [(h +— hv) = [(h — ghv) =
J(h — hv) = P(v), where in the third equality we used [ being a Haar measure.
Next, let us check that for v € V¢ we have P(v) = v. Indeed, P(v) = [(g
gv) = [(9 = v) = (J(g = 1))v = v. Thus indeed P is a projection operator
onto V&, Therefore, Tr(P) = dimc V. But, on the other hand, we also have

() =T [t 7(a) ) = [ (o> i) = [ ehw.
O

Given two f.d. G-representations V' and W, we construct a linear G-action
on Homg (V, W) as follows:

(9T)(v) := gT (g~ v).

In this way we make Homg (V, W) a G-representation. Notice that the subspace
of G-invariants, Homg (V, W)€ is equal to Homg(V, W), the space of morphisms
of G-representations from V to W.

Lemma 3.20. Let V and W be f.d. G-representations. We have

htome(v,w) (9) = chw (g) - chy (¢7") = chw (g) - chy (9) Vg € G.

Proof. The second equality is just item (2) of Claim The first equality
follows from the following exercise in linear algebra: Let T" € End¢(V) and
S € End¢(W). Define R € Endc(Home (V, W)) by

R(A):=So0AoT.

Then
Tr(R) = Tr(S) - Te(T).
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Definition 3.21. We define an inner product (—, —)g on C(G) by:

U fo)e = / (9 f1(9) - To(9)).

Corollary 3.22. Let V and W be f.d. G-representations. Then
(chw, chy) = dim¢c Homg (V, W).
Proof. We have

dim¢ Homeg (V, W) = dim¢ (Home(V, W)G) = /(g = chiome(v,w)(9)) =

- / (g chuy(9) - Ay (g)) = (chwy, chy ).
O

Corollary 3.23 (Orthogonality relations). The functions chgy € C(G) as E
runs over non-isomorphic irreducible f.d. G-representations form an orthonor-
mal set, and thus in particular a linearly independnt set.

Proof. By the previous corollary and by Schur’s lemma (Claim |3.13)) we have
for an irreducible f.d. G-representation F

(chg,chg) = dim¢ Homg(E, E) =1
and for non-isomorphic irreducible f.d. G-representations E and F we have
(chg,chp) = dimc Homg(E, F) = 0.
O

Remark 3.24. It is also true that {chg }(gjemnr(a) form a “complete” orthonor-
mal system in the space of class functions on G, that is, given f € C(G) which
is a class function, if (f,chg) = 0 for all [E] € Irr(G) then f = 0. In a different
terminology, {chg }(gjenr () forms a Hilbert basis for the Hilbert space L*(@)¢
of square-integrable class functions on G.

Claim 3.25. Let V and W be f.d. G-representations. If chy = chy then V is
(non-canonically) isomorphic to W.

Proof. As explained above, to see that V is isomorphic to W it is enough to see
that [V : E] = [W : E] for all irreducible f.d. G-representations E. We saw that
[V : E] = dimc Homg (E, V) = (chg, chy) and from this the claim follows. O

Thus, at least in some basic sense, the problem of finding all irreducible f.d.
G-representations up to isomorphism can be thought of as solved once we are
able to write down all their characters.

Remark 3.26. We calculate easily that given a f.d. G-representation V', we
have that V is irreducible if and only if (chy,chy) =1, i.e. the character of V'
has length 1.
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3.4 Character in the case of SU(n)

In this course we will focus on the representation theory of the groups SU(n).
The difference with U(n) is not big, but SU(n) has a finite center, making things
a bit more tidy. Also, one could study SO(n) instead, but, again, things will be
a bit more tidy for SU(n).

We denote by T' C SU(n) the subgroup consisting of diagonal matrices. We
have an isomorphism of topological groups

(Cr

|-I=1

~

ymt 4

given by
. 1
(tl, e ;tn—l) — dlag (tl, .. atn—h )
t oty

(where diag(as, ..., a,) stands for the diagonal matrix with values aq,...,a, on
the diagonal).

Claim 3.27. Every element in SU(n) is conjugate to an element in T.

Proof. Let g € SU(n). By linear algebra (every unitary transformation is uni-
tarily diagnolizable) there exists h € U(n) such that ¢’ := hgh™! is diagonal.
Since det(g’) = 1, i.e. ¢’ € SU(n), we have ¢’ € T. Denote ¢ := det(h). Then
ce (C|X_\:1~ Denote i/ := ¢ /" . h. Then det(h’) = 1, i.e. h' € SU(n), and still
Wg(h)~t =g O
Corollary 3.28. Let V and W be f.d. SU(n)-representations. If (chy)|r =
(chw)|r then chy = chy and thus V is isomorphic to W.

Therefore, a uniquely determining attribute of a f.d. SU(n)-representation
V is (chy)|r. Let us recall some linear algebra:

Exercise-Definition 3.29. Let V' be a f.d. C-vector space. Let S C Endc(V)
be a subset comsisting of pairwise commuting diagnolizable operators. Then,
giwven a function x : S — C denoting

Vosyx ={veV | Tv=x(T)v VT € S},

V=P Vs

x:S—C

we have

In fact, if for some x we have Vg, # 0 then x is continuous and also whenever
11,15, ThTo € S we have x(T1T2) = x(T1)x(T2). In particular, if S is a subgroup
in GLc(V) then if for some x we have Vs, # 0 then x must be a topological
group morphism S — C* and therefore we have

V= P Vsx
x€qCh(S)

Let us denote by wtg(V) C qCh(S) the subset of x’s for which Vs, # 0 (the
subset of weights).
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Exercise-Definition 3.30. Let S be an abelian toploogical group. Show that
every irreducible f.d. S-representation is 1-dimensional. Thus given a f.d. S-
representation V. we can write V.= Ly @& ... ® L, where L; are 1-dimensional
S-subrepresentations. So each L; is isomorphic to C,, for some x; € Ch(S).
See that for every x € Ch(S) we have

Vor= P L

1<i<n
[Li]=[Cx]

Now let us go back to a f.d. SU(n)-representation V. Since the operators
by which elements of G act on V are unitary w.r.t. some inner product, they
are all diagnolizable. In particular, the operators by which elements of T act on
V form a subgroup of GL¢ (V) consisting of pairwise commuting diagnolizable
operators. Hence we can write

V= P Vi,

XE€Ch(T)

and we have, for t € T,

chy(t)= Y (dimc Vry) - x(t)

Xx€Ch(T)

Hence a uniquely determining attribute of a f.d. SU(n)-representation V' is the
vector of dimensions

(dime (Vo)) eoncr) -

The vector of dimensions recovers chy|r and, conversely, chy |r recovers the
vector of dimensions:

Exercise 3.5. Using C’orollary notice that Ch(T) is a linearly independent
subset of C(T).

Another important piece of symmetry we have is as follows. Let W denote
the group S, of permutations on {1,...,n}. In this context it is called the
Weyl group. We have an action of W on T by:

w - diag(tl, cee ,tn) = diag(twq(l), ce ,tw—l(n)).

It is an action by topological group automorphisms. In the following exercise
we give another way to look at W.

Exercise 3.6. Consider Ngy(n)(T), the normalizer of T' in SU(n). Show that
it is equal to subgroup of “permutation matrices”, i.e. matrices whose every row
contains exactly one non-zero entry. Consider Zsy(y)(T'), the centralizer of T
in SU(n). Show that Zsy)(T) = T. In general, recall that given a subgroup
H C G then Zg(H) is normal in Ng(H), and we have a natural action of
N¢(H)/Zg(H) on H by group automorphisms, via conjugation. This action is
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faithful, in the sense that if an element acts trivially then it is trivial. Back
to our case, identify Nsun)(T)/Zsvu(m)(T) with W wvia their actions on T (i.e.
both identify with the same subgroup of the group of automoprhisms of the group
T).

Given w € W, we will denote w € Ngy(,)(T') an element such that wtw ™! =
wt for all t € T (all what we will say will not depend on this choice). The action
of W on T induces an action of W on Ch(T), by (wx)(t) := x(w™'t). Now,
given a f.d. G-representation V', notice that we have

> dime Vi ex(t) = chy () = chy (it™") = > dime Vi x (it ™) =
XxECh(T) R (T)

= Z dim¢ VT.,X . (wilx) (t) = Z dimg VT,wx ' X(t)

XxECh(T) XECh(T)

and therefore dimec Vi, = dime Vi, for all w € W and x € Ch(T'). Another
way to explain this equality is to notice that wVr = Vr iy

3.5 Example: Irreps of SU(2)
Let us consider SU(2). Then matrices in T look like

(o)

and every character of T' looks like

t 0 .
0 1 )7t

for some uniquely defined m € Z. Let us also denote by x; the character

forteC_,,

corresponding to m := 1. The non-trivial element in W sends ( é t91 ) to

-1
< to 2 >, and therefore sends x7* to x; ™.

Let m € Z>(. Consider the space P,, of homogeneous complex polynomials
in two variables x,y, of degree n. So:

Po = spanc{1},

P1 = spanc{z,y},
Py = spanc{z*, zy,y°}

and so on. The natural action of SU(2) C GL2(C) on C? (by multiplying a
vector by a matrix) gives rise to a natural C-linear action of SU(2) on P,, given

T w6
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Let us calculate the character of P,,. For 0 < ¢ < m, denote by f}n € P
the polynomial fi, (( ; )) = 2'y™~* (those form a C-basis for P,,). Notice
that

(Co ) m) ()= (C 2) ()= (")

= (t a)i (ty)™ Tt = g iyt g2 gl (( €z ))
i.e. we got
(5 )=,
This shows that

Chg)m (( t 0 )) :t_m+t_m+2+.--+tm_2+tm

<

0 ¢!

ie.
(chop e =x7"+x1™ 7+ X 2HxT

Claim 3.31. Each P, is an irreducible f.d. SU(2)-representation. Every irre-
ducible f.d. SU(2)-representation is isomorphic to some P, .

Proof. We will explain it later. O

3.6 A glimpse at Weyl’s integration formula

In this subsection, we abbreviate G := SU(n). When we speak of an action of
G on G, we always mean the conjugation action. Also, we denote by fG the
Haar measure of mass 1 on G and by fT the Haar measure of mass 1 on 7.

Claim 3.32. Restriction of functions from G to T yields an isomorphism of
C-vector spaces
Res: C(Q)Y = c(m™.

Proof. Clearly the restriction of a G-invariant function on G is a W-invariant
function on T'. Let us see that Res is bijective. Let us consider the orbit spaces
G\G (under conjugation action) and W\T. Then we can interpret C(G)% as
C(G\G) and C(T)V as C(W\T), and Res is given by precomposing with the
natural map W\T — G\G. Therefore, it is enough to see that this last map is
an isomorphism of topological spaces. This map is continuous. It is surjective by
Claim [3.27] and injective because if two elements in T are conjugate in G then
they have the same multisets of eigenvalues and therefore the same diagonal
values up to permutation. Recall that a bijective continuous map between
compact spaces is a homeomorphism. Hence, it is enough to check that W\T
and G\G are compact. If we can show those are Hausdorff, then those are
compact as Hausdorff quotients of the compact spaces G and T. To show that
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WAT is Hausdorff, we need to take ¢1,ts € T such that Wt; # Wts and find
disjoint W-invariant open subsets Uy,Us C T such that t; € Uy and to € Us.
Take U{,US C T be disjoint open subsets such that Wt; € U] and Wty € Uj.
Set U; := NyewwU] (those are open subsets(!) as the intersections of finitely
many open subsets). Those are as required. To show that G\G is Hausdorff,
notice that it is enough to produce a continuous map ¢ : G — X to some
Hausdorff topological space X, which is G-invariant (i.e. ¢(gg’g~') = ¢(g’) for
all g, ¢’ € G) and with the property that given g1, g2 € G such that Gg; # Ggs
we have ¢(g1) # ¢(g2). Consider the characteristic polynomial map ¢ : G —
Pol,,(C) where Pol,, (C) is the (n+1)-dimensional C-vector space of polynomials
of degree < n. It has the desired properties (we could also use it for W\T', but
wanted to demonstrate another principle there, when a finite group acts). O

Now, let us define a C-linear map
Avy : C(T) —» Cc(T)V

by .
Avw(N(0) = i 3 fwt)

(i.e. it is the averaging map).

Claim 3.33. Let I be a G-invariant signed Radon measure on G. There exists
a unique W -invariant signed Radon measure I'T) on T such that

I(f) = I (Res(f)) Vf € C(G)°.
Also, I'T) is a Radon measure if I is.

Proof. Let us show uniqueness first. If we have two such Ji, Ja, then Ji(h) =
Jo(h) for all h € C(T)"W. But then for any h € C(T) we obtain J;(h) =
Jl(AVW(h)) = JQ(AVW(h)) = JQ(h) and so J1 = JQ.

Let us show existence now. Define I(T) by
ID(h) == I(Res™*(Avy (h))).
It is clearly a W-invariant functional on C(T'), and it satisfies the desired prop-
erty: For f € C(G)¢ we have
I (Res(f)) = I(Res™ (Avw (Res(f)))) = I(Res™" (Res(f))) = I(f)-

So it only is left to see that IT) satisfies the continuity property required from
a Radon measure. For this it is enough to check that if {h,,} is a sequence in
C(T) converging uniformly on T to h € C(T) then Res ' (Avyy (h,)) converges
uniformly on G to Res™'(Avy (h)). This is immediate to see.

That I™ is a Radon measure if I is a Radon measure is immediate to see.
O
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Applying the claim to I := fG, we obtain a W-invariant Radon measure

C(;T) on T satisfying

Tef =D flr ¥fec@)C©

Weyl’s integration formula gives a formula for that | éT). Let us state it for
SU(2). In the statement we use a general notation - if 4 € M(X) and h € C(X)
then hp € M(X) denotes the signed Radon measure given by (hu)(f) := p(hf).

Theorem 3.34 (Weyl’s integration formula for SU(2)). Assume G = SU(2).

We have (T)
‘X - X1 |fT

Proof. Omitted. O

Let us now use this theorem to see that the SU(2)-representations P,, we
constructed are irreducible. For that, it is enough to see that (chp, ,chp ) = 1.
And indeed, we calculate:

(chy,, ,chp, ) = /G chy, |2 = / X P 2 ™ P =

m m 1 m —(m —(m m
/Ix xR = 2/(><1 o ) g Y -t =

1
= / (2 F2m ) g 2(m+1)) 1.
2 Jr

Here we used the orthogonality relations

_ 1 m=0
m o= 1= (1 .
/TX1 /TX1 X1 > {0 m#0

In fact, we can also use the formula to see that there are no irreducible f.d.
SU(2)-representations except from the P,,’s. To that end, let us consider an
irreducible f.d. SU(2)-representation E and try to see what it means for it to be
different from all the P,,’s. This means that (chg,chp, ) = 0 for all m € Z>o.
Let us write (chg)|lr = >, dm - x{* for d,, € Z>(. Here, as we remember,
dm = dimg E7 ym. The sum is finite (i.e. d,,, = 0 except for finitely many m’s),
and we have the symmetry property d_,, = d,, for all m. We have:

- 1 _ . A2 L
(chg,chyp,) :/ chg-chyp,, :/ ha=xa P (ehe) e (T G ) =
G T

1

m - m —(m 1
=3 /T(chE)\T(Xl xRy ) = 5 (dm + dm — d_(ni2) = dmy) -

Thus, the condition (chg, chp, ) =0 for all m € Zx( translates into:

dnl+2 + d,(m+2) =dpn+d-m
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for all m € Z>¢ or, by the W-symmetry,
dm+2 =dn

for all m € Z>(. This implies that d,,, = 0 for all m € Z, because otherwise we
would have infinitely many m’s for which d,, # 0.

3.7 Classification of irreps of SU(n) and Weyl’s character
formula (without proofs)

Remark 3.35. Let us say that an abelian group A is a lattice if it is isomorphic
to Z" for some n € Z>(. Since Z" is not isomorphic to Z™ whenever n # m,
the number n does not depend on the choice of an isomorphism; It is called
the rank of the lattice A. Recall that an abelian group is a lattice if and only
if it is finitely generated and torsion-free. A list ey, ..., e, of elements in A is
said to be a Z-basis for A if the morphism of abelian groups Z"™ — A given
by (di,...,d,) — die; + ...+ dye, is an isomorphism (in other words, every
element in A can be expressed as a Z-linear combination of the list eq, ..., e,,
uniquely so).

We can always think of Z" as sitting inside R"™, giving us a geometric pic-
ture (for example, we can picture whether an element in Z” sits in the convex
hull of some set of elements in Z™). In fact, for any lattice A, of rank n, we
can construct an n-dimensional R-vector space Ar together with a morphism
of abelian groups ¢ : A — Ag with the property that given a Z-basis {e;}1<i<n
of A, {¢(e;)}1<i<n is an R-basis of Ag. In other words, instead of only linear
combinations of eq,...,e, with integer coefficients, we now allow linear com-
binations of eq,...,e, with real coefficients. To construct Ag, just choose an
isomorphism e : A = Z", take Ar := R" and set ¢ to be the composition of the
isomorphism e with the natural embedding of Z™ in R”. If the reader knows
tensor products, a description of Ag which does not depend on choices is as
R % A (another description is Homz(Homy(A,Z), R)).

Another way to describe the pair (Ag,¢) is via a universal property.
Namely, given any pair (V,u) consisting of a R-vector space V and a mor-
phism of abelian groups i : A — V, there exists a ungiue morphism of R-vector
spaces ¢, : Ag — V such that ¢, ot = p.

In particular, one sees that given an automorphism (of abelian groups) T :
A — A, there exists a unique automorphism (of R-vector spaces) Tg : Ag — Ag
extending it (i.e. Twr(t(a)) = ¢«(T(a)) for all @ € A). This yields in fact a
group homomorphism Aut(A4) — Aut(Ag), where Aut(A) denotes the group of
automorphisms of A as an abelian group, while Aut(Agr) denotes the group of
automorphisms of Ag as an R-vector space (i.e. another name for Aut(Ag) is
GLg(4R)).

The action of W on Ch(T') induces an action of W on Ch(T')g. Let us fix a
W-invariant inner product (—, —) on Ch(7T)g.
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Definition 3.36. Let V be a f.d. SU(n)-representation. We say that y €
wtr (V) is extremal if, working in Ch(T)g, every 6 € wtr(V) belongs to the
convex hull of {wx}wew.

Lemma 3.37. LetV be a f.d. SU(n)-representation. If x € wtr (V) is extremal,
then 6 € wtr (V) is extremal if and only if @ = wy for some w € W.

Proof. Tt is clear that wy is also extremal for each w € W. Given 0 € wtp(V),
consider the length ||0|| (with respect to our W-invariant inner product (—, —))
on Ch(T)r). Notice that, since [|wx|| = ||x|| for all w € W and @ lies in
the convex hull of {wx}wew, we have ||0]] < ||x||. If [|0]] < ||x||, then the
convex hull of {wh},ew clearly does not contain x, and so 6 is not extremal.
If ||6]] = ||x|| then, since 8 lies in the convex hull of the points wyx which all lie
on the sphere of radius ||x|| around the origin, an exercise shows that we must
have 6 = wx for some w € W (the exercise is that if a point on the sphere is a
convex combination of a finite collection of points on the sphere, then it must
be equal to one of them). O

‘We have:

Proposition 3.38. Every irreducible f.d. SU(n)-representation admits extremal
weights.

Proof. Omitted. O

Denote by W\Ch(T) the orbit space, i.e. the quotient of Ch(T) by the
equivalence relation y ~ 6 if there exists w € W such that y = wf. The above
shows that we have a map

& : Irr(SU(n)) — W\CK(T)

given by sending the isomorphism class of an irreducible f.d. SU(n)-representation
V' to the orbit of an extremal weight of V.

Theorem 3.39. The map € is a bijection.

In other words, the theorem classifies irreducible f.d. representations of
SU(n). Given x € Ch(T), by V, we will denote an irreducible f.d. SU(n)-
representation such that E([V,]) = Wyx. Next, after we have parametrized
irreducible f.d. SU(n)-representations, we would like to describe their charac-
ters.

It is convenient to choose representatives for W-orbits in Ch(T'):

Definition 3.40. Let us say that xy € Ch(T") is dominant if, writing
x(diag(ty, ..., t,)) =" -t
we have mi1 > mo > ... > m,,.

Exercise 3.7. Any W-orbit in Ch(T) contains a unique dominant element.
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We have a bijection
(Zs0)" ' = {x € Ch(T) | x is dominant}

which we denote by (d1,...,dn-1) — Xdy....d,_., given by

.....

. . di+do+...4+dn_1 dp_o+dn_1 ,dn_1
Xdu,....dn_, (diag(te, ..., tn)) =1 SR s A

We will also have some special characters we will need:
Exercise-Definition 3.41. Givenl < i < j < n, let us denote by o; ; € Ch(T)
the character given by

i j(diag(ty, ... tn)) == —.

Let A € Ch(T) be given by

Show that there exists a unique character VA € Ch(T) satisfying \/Z2 = A.
Namely, VA = X1,...,1-

Theorem 3.42 (Weyl’s character formula). Let x € Ch(T') be dominant. We
have (fort € T for which the denominator does not vanish, which happens on the
dense subset of T' consisting of elements whose entries are pairwise non-equal)

> wew sen(w) - (w(xvA))(t)
VAR TTicicjen(l =i (6)7h)
Example 3.43. Let us see what the above means for SU(2). Dominant char-

acters are x4 for d € Zso. Notice that v/A(diag(t,t=")) = t. The character of
Via 18 given by:

chy, (t) =

td 't—t_d 't_l B dl _t—2(d+1) B
t(1—t-2) 1—-t2

chy, , (diag(t, t7h) =

=ttt 2 = 2l
Deduce from this that V., is isomorphic to Pq that we had above.

Another way to interpret the deduction of the previous example is
chy, (diag(t,t™")) =t —t" ") (A+t2+t71+..) =

=t ) (e ) =t 2 e

In other words, we have two infinite series, whose difference happens to be finite
(there are a lot of cancellations). This hints at the approach to the proof of
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Weyl’s character formula we want to take in this course eventually - that V,,
itself is, in some sense, the “difference” of two infinite-dimensional represen-
tations with “characters” our two infinite series. Let us again emphasize the
issue of cancellations of infinities, for the general case of SU(n). We can rewrite
Weyl’s character formula in the following way, operating formally at least:

wyv A _ _
chy = Z sgn(w) - wy - T H (I+o;,; +a7+...). (3.1)
weW 1<i<j<n

This is an alternating sum of shifts of some “cone-like” expression. Somehow,
everything cancels except things lying inside the convex hull of finitely many
points {wy }wew. We will illustrate this in the next subsection.

3.8 Some illustrations for Weyl’s character formula for
SU(3)

Let us consider SU(3) now. Let us define wy,ws € Ch(T) by
w1 (diag(tl, tQ, tg)) = tl, wz(diag(tl, tg, tg)) = tQ.

Then wy,ws is a Z-basis for Ch(T). In order to understand how to draw, we
need to understand a W-invariant inner product on Ch(7T)g. Since the lengths
of wy, wy and —(w; + we) are equal, we see that the angle between w; and we
should be 27/3. An element wi" wy"? is dominant if and only if m; > mg > 0.
Let us also denote a := a2 and 8 := g 3. The product appearing in is
in our case seen to be:

(I+a+a2+.) (1487 +872+..) - (I+a '8 +a a2+ ..) =

= Y (L+min{my,me})-a ™" (3.2)

m1,m22>0

We depict all this information as follows:
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The black points represent elements of Ch(T"). The yellowed points represent
dominant elements. The blued elements represent elements appearing in ,
and I also put in a circle their multiplicity. The green lines form the boundary
of the “cone-like” area defined by the blue points. Let us now choose some
dominant character, for example y := wjw3. Consider the following illustration:
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We drew the six points wy for w € W, and in grey we drew the convex hull
of these points. The six points in violet are the points wy - % for w e W.
We then in green emphasized the cones which appear in the formula. Thus, the
formula has the sum of elements in three cones minus the difference of elements
in three cones, and somehow everything cancels except from, potentially, things
in the grey area.
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3.9 Some further notes regarding Weyl’s character for-
mula

Exercise 3.8. By plugging in 1 in place of x in Weyl’s character formula,
obtain Weyl’s denominator formula

Y sen(w) VA@ ) =VAQL) J] 1-ai)7)

weW 1<i<j<n
or, plugging in t2 in place of t,
> sen(w) Aw )= [ (i) —aii(0)7).
weWw 1<i<j<n
Writing this concretely gives
S sentw) i otV = I (B2
MW by hw() " Tty T o
weWw 1<i<j<n J v

Recall that we work under the condition ty - ...-t, = 1, but it is immediate to
see that our current equation bears multiplying all t;’s by some fized t, hence we
can drop the condition t1 - ...-t, = 1. Clearing denominators our equation is
rewritten as

Z sgn(w) - (E2,0))" H(ta)" 2 ()’ = H (&7 - 13).

weWw 1<i<j<n

Setting s; := t2, recognize this as the Van-der-Monde determinant equality

n—1 n—2
sy X EH , s1 1

n— n—
s s ... S 1

2 2 2 _

= JI Gi—s))

........................ \<isi<n

n—1 n—2 = =
Sy sh sp 1

Exercise 3.9. Given x € Ch(T), we would like to find a formula for dimc V.
Notice that dimc V, = chy, (1). We can assume that x is dominant. Let us

denote
Ay(t) == sgn(w) - (wx)(t).
weWw

Weyl’s character formula can be written, in view of Ezercise|3.8, as

chy, () = AXLA(ZE)

A x(t)

Let us now denote by my > mo > ... > my, a sequence such that

x(diag(ty, ..., tn)) =t .. -ty
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and by k1 > ke > ... > k, a sequence such that
VA(diag(ty, ... t,)) =t ..tk

ForteC* we have

-l=17

Ax(diag(T’“, e ,Tk")) = Z sgn(w) - rhe@mi L pRwmmae —
weWw

= Z sgn(w) .Tklmw—l(l) R Tk?nmw—l(n) — A\/Z(diag(Tm17. » ,Tmn)).
weWw

Therefore, noticing that for T close to 1, but not equal to it, the components of
(rF1, ..., 7Fn) are pairwise non-equal, we have

Axﬂ(diag(rkl R 2D B A\/Z(diag(Tml‘H“g .. TR )

hy. (diag(7*,...,7%)) = =
chy, (diag(7™, ..., 7)) A\/Z((diag(fkl, D) A\/Z(diag(Tkl, D))

— \/E(dia’g(Tml+kl Yoy Tm”+k")) H 1— T(mj*mi)*F(k?jfk:i)
VA(diag(rh, ..., 7h)) 1<i<j<n L—rhih

Hence

i i S~ ! . 1 — p(mj—mi)+(ky—k:)
dime(Vi) = by, (1) = lim ch, (ing(7, ... ) = iy [T ==
AYAG AN ¢

Since 1 — 7N ~ N(1 —7) as 7 — 1, we can continue

L g ()

1<i<j<n

to conclude:

. di+...+d;_
dime Vg, ,...d, ., = H (1 T jzjl) .

1<i<j<n
For example, let us consider SU(2). We obtain
dimc Vg =1+d.

Considering SU(3), we obtain

dy + ds
2

dime Vg, 4, = (14 dr)(1 4+ d2)(1 + ).
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4 Manifolds, Lie groups and Lie algebras
4.1 Manifolds

To minimize background, we will only deal with embedded manifolds in this
course. We assume that the reader knows, given f.d. R-vector spaces E and F
and open subsets U C F and V C F, what a smooth map from U to V is. We
also assume that given a smooth map f: U — V and a point p € U, the reader
knows what is the differential D,f : E — F of f at the point p (it is an R-
linear maﬂz[). We recall that a smooth map ¢ : U — V is a diffeomorphism
if there exists a smooth map ¢ : V' — U such that ¢ oy = idy and ¢ o ¢ = idy.

Definition 4.1.

e An embedded manifold is a pair (E, M) consisting of a f.d. R-vector
space E and a subset M C E, such that for every p € M there exist
0 <m < dimg E, an open subset p € U C E, an open subset 0 € V C R”
and a diffeomorphism ¢ : V' — U, such that

N M) ={(z1,...,2,) €V | Tppy1 = ... =2, = 0}.

To abbreviate, we will often-times call an embedded manifold simply a
manifold, and will write M instead of (E, M) (i.e., E is implicit). We
also say that M is a manifold embedded into F.

e Let (Eq,M;) and (E2, M3) be embedded manifolds. A morphism of
manifolds (or simply a smooth map) from (E;, M) to (Es, M) is a
map ¢ : My — M> satisfying the following condition: For every f.d. R-
vector space F' and every open subset U C F' and every map ¢ : U —

M such that the composition U i) M, C E; is smooth, we have that

the composition U & My i> My C Ej is smooth. An isomorphism of
manifolds is also called a diffeomorphism.

Definition 4.2. Let M be a manifold. A smooth map M — C is called
a smooth function on M and we denote by C°(M) the C-vector space of
smooth functions on M.

Remark 4.3. Given an embedded manifold (E, M), we always treat M as a
topological space, with the subspace topology induced by the inclusion M C E.

Example 4.4.
e (E,U) is an embedded manifold whenever U is an open subset in E.

e Given an embedded manifold (E, M) and an open subset U C M, (E,U)
s also an embedded manifold.

4D, f is the unique R-linear map from E to F satisfying f(p+x)— f(p)—(Dpf)(x) = o(||z||)
as z — 0.
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e (E,D) is an embedded manifold whenever D is a discrete subset in E.

e Given embedded manifolds (Ey, My) and (E2, M), we have an embedded
manifold (E1 X Ea, My x Ms).

Claim 4.5 (Implicit function theorem). Let E and F be f.d. R-vector spaces.
Let U C E be an open subset. Let q € F. Let ¢ : U — F be a smooth map.
Assume that D,¢ : E — F is surjective for every p € ¢~'(q). Then (E, ¢~ 1(q))
is an embedded manifold.

Proof. Omitted. O

Example 4.6. (R",S""1) is an embedded manifold. Indeed, let us consider
the smooth map f : R® — R given by (x1,...,2,) = 23 + ...+ x2. Then
Sl = f=1(1). So, by Claim we will know that (R™, S™~1) is an embedded
manifold if we will show that D,f : R™ — R is non-zero (and hence surjective)
for every p € S"~1. The matriz representing this D,f in the standard basis is
(221, ...,2x,), where p = (1,...,2,). Clearly (2z1,...,2x,) # 0 if and only
if p# 0, in particular when p € S*1.

Example 4.7. The requirement of surjectivity in Claim [{.5 is necessary. For
exzample, we can consider ¢ : R> — R given by (z,y) — xy. Then (R% ¢~1(0))
s mot an embedded manifold.

Remark 4.8. One should be careful that, for example, a bijective smooth map
is not necessarily a diffeomorphism. A standard example is the map R — R
given by x +— z5.

If (E,M) is an embedded manifold and N C M is an open subset, then
as we mentioned above (E, N) is an embedded manifold - we say that N is an
open submanifold of M. If N C M is a closed subset, then in general (E, N)
is not an embedded manifold. If it is, we say that N is a closed submanifold
of M. One can show that if N C M is a subset such that (F, N) is an embedded
manifold then IV is locally closed in M, meaning that there exists an open
subset U C M such that N C U and N NU is closed in U. If N C M is such
a locally closed submanifold, then one sees that the inclusion map N — M is
smooth and given a manifold L and a smooth map L — M whose image lies in
N, its corestriction L — N is a smooth map.

Remark 4.9. Let M be a manifold and let p € M. Then there exist an open
peUC M,anopen0 €V C R” (for some n € Z>() and a diffeomorphism of U
and V. In other words, manifolds “look locally” like open subsets in Euclidean
spaces.

Exercise 4.1. Let (E, M) be an embedded manifold. Let f € C(M) and let
p € M. Then there exists an open subset p € U C E and f € C>°(U) such that

fluoam = fluam-
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4.2 Tangent spaces and tangent maps
Recall directional derivatives:

Definition 4.10. Let E be a f.d. R-vector space. Let p € E and let f be
a smooth function on an open neighbourhood U of p in E. Given v € E the
directional derivative of f at p in the direction of v is:

1
Ouf = lim =(f(p+e-v) — f(p)) € C.
Exercise 4.2. Recall that the assignment v — O, f is R-linear.

Definition 4.11. Let (E, M) be an embedded manifold and let p € M.

e A vector v € E is said to be a tangent vector to M at p if for ev-
ery smooth function f on an open neighbourhood U of p in E satisfying
flarnu = 0 we have 9, f = 0.

e The tangent space to M at p is the set of tangent vectors to M at p,
which is an R-linear subspace of E. It is denoted T}, M.

Example 4.12. Let (E,U) be an embedded manifold with U open in E. Then
for every p € U we have T, U = E.

Remark 4.13. Let (E, M) be an embedded manifold and let p € M. A “ge-
ometric” description of T, M is as follows. A vector 0 # v € I lies in T, M if

and only if we can find a sequence p,, of points in M such that p, — p and
M(pn —p) — ﬁv. Or, a vector v € F lies in T),M if and only if we can

find a smooth map g : (—¢,e) — M such that lim,_,o 1 (g(t) — g(0)) = v.
Claim 4.14. Let E and F be f.d. R-vector spaces. Let U C E be an open
subset. Let g € F. Let ¢ : U — F be a smooth map. Assume that Dpg : E — F

is surjective for every p € ¢~ 1(q). Denote M := ¢~1(q) (we saw that M is a
manifold embedded into E). Then, for every p € M, T,M = Ker(D,f).

Proof. Omitted. O

Example 4.15. Consider (R, S"~1). The tangent space to S~ 1 at (1,0,...,0)
is {(z1,...,2n) €R™ | 21 = 0}.

Example 4.16. The requirement of surjectivity in Claim 1S necessary.
For example, consider f : R — R given by f(x) := 2. Then f~1(0) = {0} is a
submanifold in R. We have To(f~1(0)) = 0 but Do f = 0 and so Ker(Dyf) = R.

Using Exercise we see that given a manifold M, a point p € M, f €
C*(M) and v € T, M we can define unambiguously 9, f € C, by locally extend-

ing f to a function f on an open neighbourhood of p in £ and defining 0, f to
be 0, f. The assignment

T,M x C*(M) =R, (v,f)~ 0,(f)
is R-bilinear and satisfies the Leibnitz rule 9, (f1 f2) = 9, (f1) f2(p)+ f1(p) 0 (f2).
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Proposition-Definition 4.17. Let My and Ms be manifolds. Let ¢ : My —
My be a smooth map and let p € M. There exists a unique R-linear map
Dy¢ - TyMy — Ty Mo satisfying:

e For every smooth function f on an open neighbourhood of ¢(p) in Ms and
every v € T, My, we have 0,(f o ¢) = 3(Dp¢)(v)(f),

We call it the tangent map of ¢ at p (or differential of ¢ at p).

Exercise 4.3. Let My,M> and M3 be manifolds and let ¢ : My — Ms and
Y1 My — M3 be smooth maps. Let p € My. Then Dy, o Dy = D, (¢ o ¢).

Remark 4.18. Let F be a f.d. R-vector space and let U C E be an open subset.
Let (F, M) be an embedded manifold. Let ¢ : E — M be a smooth map. Let
p € U. Then Dy : E — Ty,yM C F is the usual differential. Namely, we for
example can characterize

(Dy8)(v) = i (6(p + 1) — 6(0).

Remark-Definition 4.19. Let I C R be an open subset (viewed as an embed-
ded manifold (R, I)). Given ¢t € I, we have T;I = R. Given a manifold M and a
smooth map ¢ : I — M, we therefore have the tangent map D¢ : R — Ty() M.
Let us denote in such a situation di¢ := (Dy¢)(1) and call it the derivative of
¢ at t. The information of the R-linear map Dy¢ : R — T ;)M is the same
as the information of the vector di¢ € Ty M. If M is an embedded manifold
(E, M), we have:

i = lim ~(8(t +5) — 6(0))

Exercise 4.4. Let I C R be an open subset and M and N manifolds. Let
¢: I — M andp: M — N be smooth maps. Show that, for any t € I, we have

(D¢(t>1/f) (di@) = di(v o @).

Remark 4.20. Let (Ey,M;) and (E2, M) be embedded manifolds and let
¢ : M7 — Ms be a smooth map. Let p € M;. A “geometric” description of
Dypo : T,My — T,My; is as follows. Given v € T,M; we find a smooth map
g : (—€,€) = My such that v = dog. Then (Dp¢)(v) = do(p 0 g).

The following theorem gives the basic understanding of smooth maps with
surjective differential:

Theorem 4.21. Let M and N be manifolds, let p € M, let ¢ : M — N be a
smooth map, and assume that Dp¢ : TyM — Ty, N is surjecitve. Then there
exist n,m € Zxq, open subsets U C R™, V. C R™ open subsets p € U' C M,
o(p) € U’ C N, diffeomorphisms o : U”" — V and 8 : U — U x V such
that ¢(U") € U" and we have a(p(m)) = w(B(m)) for all m € U’, where
m:U xV — V denotes the projection onto the second variable.

Remark 4.22. In other words, at a neighbourhood of a point where the differ-
ential is surjective, a smooth map look like a projection.
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Let us state the inverse function theorem:

Theorem 4.23 (Inverse function theorem). Let M and N be manifolds. Let ¢ :
M — N be a smooth map, and let p € M. Suppose that Dp¢ : TyM — Ty )N
is invertible. Then there exist open subsets p € U C M and ¢(p) € V C N such
that ¢(U) C V' and the smooth map ¢|y : U =V is a diffeomorphism.

Proof. This is easy to prove given the previous theorem. O

4.3 Vector fields and flows

Definition 4.24. Let (E, M) be an embedded manifold. A vector field on
M is a smooth map & : M — E such that for every p € M we have {(p) € T, M.

Remark 4.25. So, informally a vector field on M is a collection (vp)pen with
vp € T, M which “varies smoothly with p” (here we denoted v, for the above

£(p))-

Definition 4.26. Let M be a manifold and let £ be a vector field on M. Let
I C R be an open interval and let ¢ : I — M be a smooth map. We say that ¢
obeys ¢ if for every t € T we have drp = &(¢(t)).

The basic theorem of the subject of ordinary differential equations is:

Theorem 4.27 (Uniqueness and existence of solutions of ODE’s). Let M be a
manifold and let € be a vector field on M. Let p € M.

e (uniqueness) Let I C R be an open interval and let to € I. Let ¢p,9p: I —
M be two smooth maps obeying & and satisfying ¢(to) = p and P(to) = p.
Then ¢ = .

o (existence) Let tg € R. There exists r > 0 and a smooth map ¢ : (to —
r,to+ 1) — M obeying £ such that ¢(to) = p.

Proof. Omitted. O

We also want to know that the solution in the previous theorem “varies
smoothly with a smooth parameter”. For that, we first define:

Definition 4.28. Let N be a manifold and (F, M) an embedded manifold. An
N-parametrized vector field on M is a smooth map £ : N x M — FE such
that for every (¢,p) € N x M we have £(¢,p) € T,M.

And now we can state:

Theorem 4.29 (smooth dependence of solutions of ODE’s on parameters). Let
N and M be manifolds. Let & be an N -parametrized vector field on M and let
pe M. Let I C R be an open interval and let ty € I. Let us be given, for every
n € N, a smooth map ¢, : I — M obeying &, (where §,(m) := &(n,m)) and
satisfying ¢n(to) = p. Define a map ¢ : N x I — M by ¢(n,t) := ¢n(t). Then
¢ is smooth.

Proof. Omitted. O
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4.4 Lie groups
Definition 4.30.

e A Lie group is a manifold G equipped with a group structure, such that
the multiplication map G x G — G and the inverse map G — G are
smooth maps.

e Let G; and G5 be Lie groups. A morphism of Lie groups from G;
to G2 is a map ¢ : G; — G2 which is both a smooth map and a group
morphism.

Example 4.31.

e R (a manifold embedded into R) with addition is a Lie group. Similarly,
C is a Lie group.

e R* (a manifold embedded into R) with multiplication is a Lie group. Sim-
ilarly, C* is a Lie group.

e GL,(R) (a manifold embedded into M, (R)) with matriz multiplication is
a Lie group. Similarly, GL,(C) (a manifold embedded into M, (C)) is a
Lie group.

We have the following theorem; we will prove it later.
Theorem 4.32.

1. Let G be a Lie group. Let H C G be a closed subgroup. Then H is a closed
submanifold of G, and therefore H is a Lie group itself (we say that H is
a closed Lie subgroup of G).

2. (“automatic smoothness”) Let G and H be Lie groups. Let ¢ : G — H
be a morphism of topological groups. Then ¢ is a morphism of Lie groups
(i.e. it is smooth).

Proof. Given in §4.8 O

Corollary 4.33. All the closed subgroups of GL,,(R) and GL,,(C) we considered
(such as SU(n),SL,(R) etc.) are Lie groupﬁ.

Remark 4.34. A consequence of part 2 of Theorem [£.32]is that, given a Lie
group G and a representation of G on a f.d. C-vector space V, the corresponding
morphism of topological group 7 : G — GL¢(V) is automatically a morphism
of Lie groups. In other words, defining in the obvious way smooth f.d. G-
representations, we see that in fact there is no difference between those and our
previously defined (“continuous”) f.d. G-representations.

150f course one can also check these directly.
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4.5 The exponential map

Definition 4.35. Let (F,G) be an embedded Lie group. For g € G, let us
denote by my : G — G the diffeomorphism given by x + gx. One can check
that the map A : T1G x G — E given by (X, g) — (D1mgy)(X) is smooth and
so defines an T} G-parametrized vector field on G. Given X € T1G we denote
by Ax the vector field on G given by A(X, —).

Claim 4.36. Let G be a Lie group and let X € T1G. There exists a unique
morphism of Lie groups ex : R — G satisfying dopex = X. It can also be
characterized as the unique smooth map ex : R = G obeying Ax and satisfying
€x (O) =1.

Proof. Given r > 0 denote by €’ : (—r,7) — G the smooth map obeying Ax
and satisfying e’ (0) = 1, if it exists (it is unique if exists, by the uniqueness
part of Theorem [4.27)). In particular, we can talk about ex := eS¢ (if it exists).

Let us first see that if for a given » > 0 the map e’y exists, given —r < t,s <r
such that —r < t + s < r we have ey (t)e’x(s) = € (t + s). Put differently,
we fix —r < t < r, and we want to show that given s € (—r/,r"), where
v’ := min{r,r+¢} and " := min{r,r —t}, we have e’ (t+s) = e’ (t)e’y (s). Let
us denote by f: (—r',r") — G the map f(s) := e%(t) " te (t + 5). We want to
see that f(s) = ey (s) for all s € (—/,r"). By the uniqueness part of Theorem
it is enough to show that f obeys Ax and that f(0) = 1. The second is
clear. As for the first, we notice that f : (—r/,r"”") — G can be written as the

composition
Mer (1)=1

G.
Computing using this we see that dsf = Ax(f(s)) for all s € (—r/,7").

(=, ") 222 () 25 @

Now, let again r > 0 be such that the map e’y exists. We want to show that
e;;rr/Q exists as well. Define f*: (r/2,7+7r/2) = G by fT(t) := e (r/2)e’ (t —
r/2). Similarly, define f~ : (—r —7/2,—r/2) — G by f~(t) := e’ (—r/2)e (t +
r/2). Notice that for ¢ € (r/2,r) we have f1(t) = e’ (r/2)e’x (t —r/2) = e’ (1)
in view of the established additivity property above. Similarly f~(t) = e’ (¢)
for t € (—r,—7r/2). Thus, we can patch f~, €', fT into one smooth map h :
(=r —r/2,r+r/2) = G. It is left as a small exercise to see that h suits the
conditions to be e;(+r/2.

Notice that e’y exists for some r > 0, by the existence part of Theorem
Using the above, we see that egé then exists for 7’ as large as wanted, and
therefore ex := e exists (by patching egé’s for v’ bigger and bigger). By the
additivity property above we deduce that ex is a morphism of Lie groups, and
clearly dopex = X.

It is left to see that given a morphism of Lie groups f : R — G which satisfies
dof = X, we have f = ex. Of course f(0) = 1. Let t € R. Let us notice that
f R — @ is equal to the composition

R srs—t R i} a M (t) G.
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Computing using this, we find

dif = Ax(f(2))-

Therefore we conclude that f =ex.
O

Definition 4.37. Let G be a Lie group. The exponential map exp : T1'/G — G
(or exp¢ if we want to emphasize G) is defined as sending X to ex (1), where
ex is as in Claim [£.36

Exercise 4.5. Let G be a Lie group and let X € T1G. Show that ex(t) =
exp(tX) for allt € R.

Exercise 4.6.

o Check that for the Lie group R, the exponential map is the identity map
R — R.

o Check that for the Lie group R*, the exponential map is the usual expo-
nential map R — R*.

o Check that for the Lie group C\X_|=1} the exponential map is the map iR —
C|X—|:1 given by u +— ev.

Example 4.38. Let G := GL,(R). We have T1G = M,(R). Recall that we
have the exponentiation of matrices M, (R) — GL,(R) given by

1
X X ::I+X—|—§X2+....

Let X € M,(R). Then the map ¢ : R — GL,(R) given by t — e'X is a
morphism of Lie groups, satisfying do¢ = X. Hence we have expgy,, (w) (X) =
eX.

Lemma 4.39. Let G be a Lie group. The exponential map exp : T1G — G is
smooth, and we have Dgexp = Idr, .

Proof. Let us consider the map ee : T1G x R — G given by (X,t) — ex(¢). It
obeys the T3 G-parametrized vector field A on G and therefore by Theorem [4.29]
we see that ee is smooth. Therefore the composition 77 G ﬂ TIGXxR — G
is smooth. Notice that this composition is exp.
As regarding Dy exp, fix X € T1G. Consider the smooth map ¢x : R — T1G
given by ¢x(t) :=tX. Then
X = dpex = do(expogx) = (Dgexp)(X),

as desired. 0
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Exercise 4.7. Let ¢ : H — G be a morphism of Lie groups. Then we have
poex = €(D;¢)(X) vX eThH

and
poexpy = expe o(D19).

Claim 4.40. Let G be a Lie group and let H C G be a closed Lie subgroup.
Then given X € T1G we have X € TvH if and only if exp(tX) € H for all
teR.

Proof. Suppose that X € Ty H. Denoting the inclusion i : H — G (it is a
morphism of Lie groups), notice that Di is the inclusion of T1H in T1G, and
we have

expa(tX) = expg((D11)(tX)) = i(expy (X)) € H.

Conversely, let X € T1G and suppose that exp(tX) € H for all ¢t € R. Define
a smooth map ¢ : R — H by ¢(t) := exps(tX). Then

(Dyi)(dog) = do(io¢) = X
so X is in the image of the inclusion Dqi: TYH — 11 G, ie. X € T1 H. O

Example 4.41. Let us consider SL,(R) C GL,(R). Given X € M,(R), by
Claim we have X € T1SL,(R) if and only if exp(tX) € SL,(R) for all
t € R. Recall that we have det(exp(Y)) = exp(tr(Y)) for all Y € M,(R).
Therefore

exp(tX) € SL,(R) Vt <= det(exp(tX)) =1 Vt <= exp(t-tr(X)) =1Vt <= tr(X) = 0.
Thus T1SL,(R) = {X € M,(R) | tr(X) = 0}.

4.6 The Lie algebra of a Lie group

Let G be a Lie group. Since, by Lemma exp : 791G — G has invertible
differential at 0 € T;G, by Theorem [£.23] we obtain that there exist open subsets
0eUCTiGand 1€V C G such that exp(U) CV and exp|y : U - V is a
diffeomorphism. By slight abuse of notation, let us denote by exp™! : V — U
the smooth map which is inverse to exp |y : U — V. Thus, we think of G, at the
vicinity of 1, and T1G, at the vicinity of 0, as identified. What is the relation
between the additive group structure on TG (which is “simple”) and the group
structure on G (which is, generally speaking, “complicated”)? To compare, let
us “transport” the group structure on G to T1G, locally near 0. We have an
open subset 0 € Uy C U such that exp(Uy) - exp(Uy) C exp(U) = V. We define
m: Uy XU1—)T1Gby

m(X,Y) := exp ! (exp(X) - exp(Y)).

Up to first approximation, there is no difference between the two group
structures:
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Lemma 4.42. We have (D(o,0ym)(X,Y) = X + Y. In other words,
m(X,Y)=X+Y +o(|(X,Y)]])

as (X,Y) — (0,0).

Proof. Notice that the composition

U1 —)XH(X’O) U1 X U1 i> TlG

is equal to X + X. Therefore, taking the tangent map at 0, we obtain that the

composition

76 22X raanG TG

is equal to X + X. In other words, (D,0m)(X,0) = X for all X € T1G.
Completely symmetrically we have (D(g,0ym)(0,Y) =Y for all Y € T1G. Thus

D(O‘O)m

(D0,0ym)(X,Y) = (D0,0ym)(X,0) + (D0,0ym)(0,Y) = X + Y.
O

The Lie algebra concept appears when we consider the second approxima-
tion. From multivariable calculus, there exists a unique R-bilinear symmetric
map

B : (TlG@ TlG) X (TlG@ TlG) — TG,

such that

m(X,Y) =X +Y + %B((X,Y)7(X7Y)) +o(ll(X, V)P

as (X,Y) — (0,0).

Lemma 4.43. We have B((X1,0),(X2,0)) = 0 for all X;,Xs € T1G and
B((0,Y1),(0,Y2)) =0 for all Y1,Y2 € T1G.

Proof. The second claim is analogous to the first, so let us show just the first.
By the polarization identity, it is enough to see that B((X,0),(X,0)) = 0 for
all X € T1G. We have

m(X,0) =X + %B((X, 0), (X, 0)) +o||X[[*)
and on the other hand
m(X,0) = exp ! (exp(X) - exp(0)) = exp ! (exp(X) - 1) = exp *(exp(X)) = X.
Comparing, we obtain
B((X.,0), (X,0)) = o(||X]*),

forcing the desired. O
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Thus, we have
m(X,Y) =X +Y + B((X,0),(0,Y)) +o(||(X,Y)]?)
as (X,Y) — (0,0). Let us define an R-bilinear map C' : T'G x T1'G — T1G by
C(X,Y):=2B((X,0),(0,Y)). So, we have
1
m(X,Y) :X+Y+§C(X,Y)+0(||(X,Y)||2) (4.1)

as (X,Y) — (0,0).
Claim 4.44. We have:
e (alternativity) C(X,X) =0 for all X € T1G.

o (Jacobi identity) C(X,C(Y,2)) = C((X,Y),Z2) + C(Y,C(X,Z)) for all
X,Y,Z € T\G.

Proof. Let us show alternativity. It is enough to check it for X close to 0. We
have then

m(X,—X) =exp *(exp(X) - exp(—X)) = exp!(1) = 0.

Plugging this into (4.1) we get
0=C(X,~X) +o(||X|*)
as X — 0, i.e.
C(X, X) = o(||X[1)?
as X — 0. This implies that X — C(X, X) is equal to zero, as desired.

The Jacobi identity is a little bit more complicated to establish. We will do
it in the next subsection. O

One defines:
Definition 4.45. Let k be a field.

e A Lie algebra over k (or a k-Lie algebra) is a k-vector space g equipped
with a k-bilinear map

[ —l:exg—g
satisfying:
1. (alternativity) [X,X] =0 for all X € g.
2. (Jacobi identity) [X, [V, Z]] = [[X,Y], Z]+[Y,[X, Z]] forall X, Y, Z €

g.
The map [—, —] is called the Lie bracket. One usually abuses notation
and denotes [—, —] in the same way for different Lie algebras.
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e Let g1, g2 be Lie algebras over k. A morphism of Lie algebras (or more
precisely a morphism of k-Lie algebras) from g; to go is a k-linear map
g1 — go satisfying

a([X,Y]) = [a(X),a(Y)], VX,Y €g;.

Thus, given our Lie group G, we have the structure of an R-Lie algebra on
T1G, with C being the Lie bracket. But, as we remarked, we will always denote
it by [—, -], i.e. [X,Y]:=C(X,Y).

Definition 4.46. Let G be a Lie group. We denote the R-Lie algebra which is
T1G equipped with the Lie bracket described above by Lie(G).

So, to repeat, we have the smooth map exp : Lie(G) — G which is a dif-
feomorphism onto the open image at a neighbourhood of 0 € Lie(G) and the
Lie bracket [—,—] : Lie(G) x Lie(G) — Lie(G) is characterized as the unique
R-bilinear map satisfying

exp(X) exp(Y) = exp(X +Y + %[K Y] +o([|(X,Y)I1))

when (X,Y) — (0,0).
Lemma-Definition 4.47. Let ¢ : H — G be a morphism of Lie groups.
Then D¢ : T1H — T1G is a morphism of R-Lie algebras. We denote it by
Lie(¢) : Lie(H) — Lie(G).
Proof. Let us abbreviate T := D1¢. We want to check that
[T(X),T(Y)] =T([X,Y])
for all X,Y € T1H. We have
1
exp(X) exp(Y) = exp(X +Y + S [X, Y] + o([| (X, Y)][*)-
Applying ¢ we obtain:
1
exp(T (X)) exp(T(Y) = exp(T(X) + T(Y) + 5T (X, Y]) + o([| (X, V)] [*)-
On the other hand, we have
1
exp(T(X)) exp(T(Y)) = exp(T(X) + T(Y) + 5 [T(X), T(Y)] + o[| (X, Y)I[*))-
For small enough X, Y we can therefore compare and obtain T'([X,Y])—[T(X),T(Y)] =
)

(
o(||(X,Y)||?), implying that the R-bilinear map (X,Y) — T([X,Y])—[T(X),T(Y)]
must be zero, as desired. O
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Example 4.48. Let us consider G := GL,(R). Recall that T\G = M,(R) and
that exp : M, (R) — GL,(R) is given by the usual exponentiation of matrices.
We start with

1
exp(X) exp(Y) = exp(X + Y + S[X, Y] + o([| (X, Y)[1%)
and expand both sides into power series. We obtain:

1 1
I+ X + 5 X2+ oI XN +Y + 5V +o([Y ) =

1 1 1
=T+ X +Y 4 S[X, Y]+ S (X +Y + S [X V) +o(||(X, V)[P)

and simplifying

1 1
I+X+Y+ 5X2 + 5Y‘Z+XY+0(|\(X,Y)\|2) =
1 1
=T+ X+Y + X, V] + §(X2 + XY +YX +Y?) +o(|(X,Y)|]?)

and so we obtain

[X,Y] = XY - YX +o(||(X, V)],
yielding

(X, Y]=XY -YX.

Thus, the Lie bracket in the case of Lie(GL,(R)) = M, (R) is the commutator.

Example 4.49. Similarly, Lie(GL,(C)) = M, (C) and the Lie bracket is again
the commutator. Notice here, interestingly, that we consider this as an R-Lie
algebra, but it is in fact naturally a C-Lie algebra.

Definition 4.50. Let V be a vector space over a field k. We denote the k-Lie
algebra Endy(V), equipped with the Lie bracket [T,S] := T oS — S oT, by
glx(V), or gl(V) if k is understood. One also denotes gl,, (k) := gl(k™).

Remark 4.51. If H is a closed Lie subgroup of GL,(R) by all that we have
seen we obtain that Lie(H) is a R-Lie subalgebra of M, (R), so the Lie bracket
is given by the usual commutator of matrices.

4.7 Proof of the Jacobi identity

To prove the Jacobi identity, we will use the adjoint representation. Namely,
given g € G consider the smooth map ¢, : G — G given by cy4(h) := ghg™'. It
sends 1 to 1 and hence we obtain an R-linear map

Ad(g) := Dicy : Lie(G) — Lie(G).

We obtain thus a map Ad : G — Endg(Lie(G)).
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Lemma 4.52. The map Ad is a morphism of Lie groups
Ad: G — Autg(Lie(Q)).

Proof. 1t is easy to see that Ad is multiplicative, and hence in particular its
image lies in Autg(Lie(G)). We leave the verification that it is smooth for
now. U

We can therefore think of Ad as a representation of G on Lie(G) (it is
a representation over R) - called the adjoint representation. We can now
consider
ad := D;Ad : Lie(G) — Endg(Lie(G)).
Recall that, since Ad is a Lie gruop morphism, ad is a Lie algebra morphism,
where the Lie algebra structure on the target is that of the commutator.

Claim 4.53. We have ad(X)(Y) = [X,Y] for oll X,Y € Lie(G).
Proof. We have

o1
and so

ad(X)(Y) = lim ~(Ad(exp(tX))(Y) — V).

t—0 t

1

Let us use exp™' on some small enough neighbourhood of 1 in G as we did

before. We have

Ad(g)(Y) = (D1ey)(Y) = Di(exp™ 0¢,)(¥) = lim ~ exp™ (g exp(tY)g ™).

t—0 t

Now fix X € Lie(G) and let us consider g := exp(sX) in the formula above. We
have

exp(sX) exp(tY) exp(—sX) = exp(tY + st[X, Y]+ o(||(s,1)||?))
and so
exp ! (exp(sX) exp(tY) exp(—sX)) = tY + st[X,Y] + h(s, t)

where h(s,t) = o(||(s,t)||?). Notice that h(0,t) = 0 and h(s,0) = 0. Hence
h(s,t) = st - k(s,t) where k is also a smooth function from a neighbourhood of
(0,0) in the (s,t)-plane to Lie(G). Since

1
0= 1l ——h(s,t
(s,t)gr(lo,o) s2 + 12 (5,%)

k(s,t)

= 1.
(s,t)l—I)I(lO,O) s+ t2

we must have k(0,0) = 0 (we see this by, for example, plugging in s = t). We
now calculate

Ad(exp(sX))(Y) = lim %(tY +st[X, Y]+ h(s,t)) =Y +s[X, Y]+ tlg% %h(s7 t).

t—0
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‘We obtain:

ad(X)(Y) = lim — (Ad(eXp(sX))(Y) Y) = [X,Y]+1lim lim h(s t)) =[X,Y].

s—0 8§ s—0t—0 St
O

Claim (.53] coupled with ad being a Lie algebra morphism immediately
results in Jacobi’s identity:

(X, Y 2]] = =[[Y, Z], X] = —ad([Y, Z])(X) = —[ad(Y), ad(Z)](X) =
= —(ad(Y)(ad(2)(X)) — ad(Z)(ad(Y )( ) =—(IY;[Z, X]] - [2,[Y, X]]) =

4.8 Proof of Theorem [4.32]
Claim 4.54. Let G be a Lie group. Let X,Y € Lie(G). Then

exp(X +Y) = nhﬁrr;o (exp(£X) exp(%Y))n .
Proof. We have
exp(:X) exp(2Y) = exp(1X + 1Y + 555[X, Y] + o(;5))
as n — 00. Therefore
(exp(%X) exp(%Y)) =exp(X +Y + 5- [X Y]+ 0( ).
Taking the limit as n — oo we get what we want. O

Proof (of Theorem part 1). First, let us notice that it is enough to see
that, for some open 1 € U C (G, we have that H N U is a closed submanifold in
U. Then by applying diffeomorphisms of G of translating by elements in H, we
obtain that H is a closed submanifold also around all of its other points.

Let us denote by h C Lie(G) the subset consisting of X for which exp(tX) €
H for all t € R. Clearly this subset contains 0 and is closed under multiplication
by scalars in R. From Claim [£.:54) we also see that this subset is closed under
addition, so it is an R-linear subspace of Lie(G).

Let V' C Lie(G) be an R-linear complement to h in Lie(G). Define a smooth
map ¢ : Lie(G) — G by

X+Y—(X,Y) (X,Y)—exp(X)-exp(

Y)G

Lie(GQ) hxV

We claim now that for some open 0 € U C V we have ¢(U) N H = {1}.
Let us see first that this will finish the proof. Notice that Do¢ = Idpic(q)-
Therefore there exists an open neighbourhood of 0 in Lie(G), which we can
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assume to be of the form U’ x U where U’ is an open neighbourhood of 0
in h and U is an open neighbourhood of 0 in V' (taken small enough so that
¢(U)N H = {1}), such that ¢|yxu is a diffecomorphism onto its open image in
G. Then to show that HN¢(U’ x U) is a closed submanifold of ¢(U’ x U) is the
same as to show that (¢|y/xp) 2 (H) is a closed submanifold of U’ x U. Notice
that (¢|urxv) H(H) = U x {0}. Clearly U’ x {0} is a closed submanifold of
U’ x U, as desired.

Thus, it is left to see that there exists an open 0 € U C V such that
¢(U)N H = {1}. Let us denote C :={v € V | ¢(v) € H}. Then C is a closed
subset in V' which is also closed under multiplication by scalars in Z. We also
know that C' does not contain any non-trivial R-linear subspace of V. Then an
exercise shows that 0 is a discrete point in C', as desired. O

We have the following important result, which we don’t prove:

Theorem 4.55 (Sard’s theorem, weak version). Let M and N be non-empty
manifolds and ¢ : M — N a smooth map. There exists ¢ € N such that for
every p € ¢~ 1(q) the differential Dp¢ : T,M — T,N is surjective.

Remark 4.56. Sard’s theorem in fact says that the set of points ¢ € N for
which the property we stated holds is in fact “almost all” of N (its complement
has measure zero).

Using Sard’s theorem, we can prove:

Claim 4.57. Let G and H be Lie groups and let ¢ : G — H be a morphism
of Lie groups. If ¢ is surjective then Dy is surjective for allp € G. If ¢ is
bijective then ¢ is an isomorphism of Lie groups.

Proof. By Sard’s theorem, there exists p € G such that D,¢ is surjecitve. Then
for any other p’ € G, we can write gp = p’ for ¢ € G and then, writing
@ = Mmgy(g) 0 ¢ omy we see that D,y ¢ is surjective. If now ¢ is in fact bijective,
we want to see that its inverse is smooth. This is seen using Theorem [4.21
From it, we see that the differential of ¢ must be in fact an isomorphism at each
point, and then using the inverse function theorem (which itself is a consequence
of Theorem we deduce the desired. O

Proof (of Theorem part 2). Let us consider the map 5: G — G x H given
by g — (g,¢(g)). The image I" of ¢ is a closed subset in G x H (called the graph
of ¢). In fact, clearly in our case T is also a subgroup of G x H. Therefore,
by Theorem [£32] T is a closed Lie subgroup of G x H. Let us consider the
projections p; : I' = G and ps : I' — H, which are clearly morphisms of Lie
groups . The projection p; is bijective. By Claim we obtain that p; is an
isomorphism of Lie groups. Therefore pyo(p;)~! : G — H is a morphism of Lie
groups. But clearly ps o (p;)~! = ¢ and we are done. O
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4.9 Some of Lie’s theorems

Theorem 4.58 (Lie’s theorems). Let G and H be Lie groups.

1. Suppose that G is connected. Let ¢1,¢o : G — H be two morphisms of Lie
groups. Suppose that Lie(¢1) = Lie(¢2). Then ¢ = ¢o.

2. Suppose that G is simply connectaﬂ. Let o : Lie(G) — Lie(H) be a
morphism of R-Lie algebras. Then there exists a morphism of Lie groups
¢ : G — H such that Lie(¢) = .

Proof.

1. Since, for X € Lie(G), we have ¢;(exp(X)) = exp((Lie(¢;))(X)), we de-
duce ¢1(exp(X)) = ¢a(exp(X)) for all X € Lie(G). Since exp is a dif-
feomorphism onto the open image at a neighbourhood of 0 € Lie(G), we
obtain ¢1(g) = ¢2(g) for g € U, where 0 € U C G is some open subset.
Hence, the subset S C G consisting of g for which ¢1(g) = ¢2(g) is a closed
and open subgroup in G. Since G is connected, we must have S = G, as
desired.

2. Omitted.
O

Remark 4.59. It is easy to see why the conditions in the theorem are necessary.
To give a contraexample to item (1) when G is not connected, consider any two
different group morphisms ¢1, ¢2 : G — H where G and H are finite groups. We
can view G and H as Lie groups, and then of course Lie(H) = 0 and Lie(H) = 0,
so Lie(¢1) = Lie(¢2). To give a contra-example to item (2) when G is not simply
connected, we consider G = (Cf:|:1 and H = G. The Lie algebra Lie(G) is a
one-dimensional R-vector space, and the bracket therefore (by the alternativity
axiom) must be trivial: [X,Y] = 0 for all X,Y € Lie(G). Therefore any R-
linear map Lie(G) — Lie(G) is a morphism of Lie algebras. But the Lie group
morphisms G — G are all of the form ¢,, : z — 2" for some n € Z, and Lie(¢,,)
is the R-linear map of multiplication by n. Therefore, if we consider any R-
linear map « : Lie(G) — Lie(G) given by multiplication by some ¢ € R\ Z, it
provides a contraexample.

4.10 Representations of Lie groups versus representations
of Lie algebras

Definition 4.60. Let k be a field and let g be a Lie algebra over k.

e Let V be a k-vector space. A g-actionon Visamapa:gxV —V
which satisfies:

1. a is k-bilinear.

16For us, simply connected means connected and simply connected.
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2. o([X,Y],v) = a(X,a(Y,v))—a(Y,a(X,v)) forall X, Y e gandv € V.

As usual, we usually write Xv instead of a(X,v), so the second condition
is then written [X,Y]v = XYv — Y Xv.

e A g-representation (over k), or a g-module, is a k-vector space equipped
with a g-action.

e Let V1 and V5 be two g-representations. A morphism of g-representations

from V; to Va is a k-linear map T : Vi — V4 such that T(Xv) = XT(v)
forall X € gand v € V3.

It is important to understand the following exercise:

Exercise 4.8. Let k be a field and let g be a Lie algebra over k. Given a k-vector
space V', check that there is a bijection between the set of Lie algebra morphisms
g — gl(V) and the set of g-actions on V', given by sending a morphism p : g —
gl(V) to the action a: g xV =V given by a(X,v) := p(X)(v).

Example 4.61. Let g be a Lie algebra over a field k. An important example
of a g-module is the adjoint representation, where g acts on g by setting the
result of X acting on'Y to be [X,Y].

Since our Lie algebras are usually over R, but our representation spaces are
usually over C, we need to discuss complexification.

Definition 4.62. Let V be an R-vector space. A complexification of V is a
pair (W, ) consisting of a C-vector space W and an R-linear map ¢ : V. — W
satisfying the following universal property:

e Let U be a C-vector space and let ¢/ : V — U be an R-linear map. Then
there exists a unique C-linear map T : W — U such that T o= /.

Exercise-Definition 4.63. Let V be an R-vector space. Given two com-
plexifiactions of V., (W,i) and (W',.'), there exists a unique C-linear map
T : W — W satisfying T o = ¢/ and there exists a unique C-linear map
S W' — W satisfying S ot = 1. Show that SoT = idw and T o S = idy.
Hence T and S are isomorphisms of C-vector spaces, and W and W' are canoni-
cally isomorphic. Thus we can speak about the complexification of V.. We denote
it by Vi (and v is usually implicit, since it is injective as we will see immediately
and hence one simply identifies V' with its image in V¢ ).

Exercise 4.9. Let V be an R-vector space. We can construct Ve as follows.
As an abelian group, Vo :=V x V. We think of (vi,v2) € V¢ as v1 +ivy. Then
it is clear how to define multiplication by scalar from C: Given a,b € R and
(v1,v2) € Vi, we define

(a + ib)(v1,v9) := (avy — bvg, ave + buy).

Show that indeed (Vi, 1), where 1(v) := (v,0), is a complezification of V.
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Exercise 4.10. Let V be an R-vector space. Suppose that eq,...,e, is an R-
basis for V.. Show that eq, ..., ey, is a C-basis for V¢ (as we said, we mean that
t(er), ..., tlen) is a C-basis for Vi, but we identify V with (V') with ¢ and keep
¢ implicit).

Exercise 4.11. Let Vi and Vs be R-vector spaces and let W be a C-vector space.
Show that there is a bijection between the sets of C-bilinear maps (V1)cx (Va)c —
W and of R-bilinear maps Vi x Vo — W, given by restriction along the natural
VixVy— (V1>C X (Vé)(c

Now, we can also complexify Lie algebras. Given an R-Lie algebra g, we
define its complexification g¢ as a C-Lie algebra equipped with a morphism of
R-Lie algebras ¢ : g — gc¢ satisfying a universal property (as an exercise, fill it
in). It is constructed by taking the complexification of g as an R-vector space,
and the Lie bracket gc X gc — gc is obtained from Exercise [4.11] applied to the

R-bilinear map g X g = g < gc- The (quite trivial) details are left to the
reader.

The following proposition is basic for us, explaining that we can study Lie
algebra representations instead of Lie group representations.

Proposition 4.64. Let G be a simply connected Lie group.

1. Let V be a f.d. C-vector space. There is a natural bijection between
the set of C-linear G-actions on V and the set of Lie(G)c-actions on
V. More precisely, the bijection is given as follows. Given a morphism
of topological groups p : G — GL¢(V), we recall that it is a morphism
of Lie groups, we consider the associated morphism of R-Lie algebras,
Lie(p) : Lie(G) — glc(V), and then consider the unique morphism of C-
Lie algebras Lie(G)c — glc(V') whose restriction along Lie(G) — Lie(G)¢
is Lie(p). This last morphism of C-Lie algebras is the Lie(G)c-action on
V' we associate to p.

2. Let V and W be f.d. G-representations, so also considered as Lie(G)c-
representations by part 1 of this proposition. A C-linear map T : V — W
is a morphism of G-representations if and only if it is a morphism of
Lie(G)c-representations.

Proof.

1. The described procedure is bijective, by Lie’s theorem and by the universal
property of complexification.

2. Let us denote the morphisms corresponding to the G-actions on V and W
by my : G = Autc(V) and my : G — Autc(W). It is immediate to see
that T is a moprhism of Lie(G)c-representations (over C) if and only if T
is a moprhism of Lie(G)-representations (over R). Suppose first that T is
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a morphism of G-representations. Then we have a commutative diagram

G — 5 Aute(V)

}W =

Aute (W) —=% Home(V, W)
Taking the differential at 1 € G we obtain a commutative diagram

Lie(G) —2"™), Ende (V)

JDl(ﬂ'w) lTo—

Endc (W) —5 Home(V, W)

which precisely means that ToLie(my ) = Lie(my )oT, i.e. T is a morphism
of Lie(G)-representations. Conversely, suppose that T is a morphism of
Lie(G)-representations. Let us denote by S C G the subset consisting of
g for which T oy (g) = mw(g) o T. We want to see that S = G. Notice
that S is a closed subgroup of G. Also, notice that, for X € Lie(G),

Tomy (exp(X)) = Toexp(Lie(my )(X)) = exp(Lie(mw )(X))oT = mw (exp(X))oT

(let us leave as an exercise the the middle equality follows from T o
(Lie(my))(X) = (Lie(mw))(X) o T). Hence, the image of exp is contained
in S. Since exp is a diffeomorphism onto the open image in some neigh-
bourhood of 1 € G, we deduce that S is open in G. Since S is open and
closed in GG, and non-empty, and G is connected, we deduce S = G, as
desired.

O

4.11 The case of SU(n)

As we have seen, Lie(SU(n)) is the R-Lie subalgebra of gl,,(C) consisting of
matrices X for which X € SU(n) for all ¢ € R. In other words, the conditions
are:

° etX(etX)tr — 1.
o det(e!X) = 1.

As an exercise, check that det(e¥) = ¢*(¥). Hence the second condition is
equivalent to ¢ - tr(X) € 2miZ for all t € R, which is equivalent to tr(X) = 0.
To check what the first condition means, we will differentiate it with respect to
t. We obtain

X -t X (etX)tr 4 !X (X - etX)tr =, (4.2)
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and substituting ¢ := 0 we obtain X + X% = 0. Conversely, it is easy to check
(as an exercise) that if X + X* = 0 then holds for all ¢ € R and therefore
e!X (etX)tr = 1 (since both sides agree for ¢ := 0 and have the same derivative
for all ¢ € R).

To conclude, we see that Lie(SU(n)) is the R-Lie subalgebra of gl,,(C) con-
sisting of matrices X satisfying tr(X) =0 and X + Xt = 0.

Let us now describe the complexification Lie(SU(n))c. By the universal
property of complexification, the morphism of R-Lie algebras

Lie(SU(n)) — gl,(C)
(which is simply the embedding) induces a morphism of C-Lie algebras

Lie(SU(n))c — gln(C). (4.3)
We first claim that (4.3) is injective. Indeed, for that we need to check that if
X,Y € Lie(SU(n)) and X +4Y =0, then X =0and Y =0. But if X +iY =0
then we have (X +4Y) = 0, and since X,Y € Lie(SU(n)) the left-hand-side is
equal to —X — i(=Y) = —(X — iY), so we obtain X — iY = 0. The equalities
X +iY =0and X —¢Y =0 of course imply X =0 and Y = 0. Next, we notice
that the image of (4.3)) lies in sl,(C), which is the C-Lie subalgebra of gl,(C)
consisting of matrices with trace 0. Finally, we leave as an exercise to check
that the C-dimension of Lie(SU(n))c, which is the same as the R-dimension of

Lie(SU(n)), is the same as the C-dimension of sl,,(C). Therefore (4.3) is an
isomorphism, of C-Lie algebras.

To conclude, we have a natural isomorphism of Lie(SU(n))c with sl,(C).
We also have:

Claim 4.65. The topological group SU(n) is simply connected.
Proof. Omitted for now. O

Therefore, by Proposition [£.64] we obtain:

Corollary 4.66. On finite-dimensional complex vector spaces, SU(n)-representations
are “the same” as sl,(C)-representations, in the sense of Proposition
once we recall that we have a canonical isomorphism of the complezification of
Lie(SU(n)) C gl,,(C) with s1,,(C), induced by the inclusion Lie(SU(n)) C sl,(C).

5 Representation theory of sl

Throughout, we work over C. We set g := slp := sl3(C). We consider the
following C-basis for g:

1 0 0
me (30 me (

We have the following relations:

[H,E] =2E, [H,F] = —2F, |[E,F| = H. (5.1)

O =
~_
B
Il
7N
—= O
o O
~_
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5.1 Finite-dimensional irreducible modules

Lemma 5.1. Let V' be a g-module.

1. Letv € V and suppose that Hv = cv for c € C. Then HEv = (¢+2)- Ev
and HFv = (¢ — 2) - Fv. In other words, E and F shift us between
eigenspaces of H.

2. Suppose that V is finite-dimensional and non-zero. There exists v € V
which is both a non-zero eigenvector of H and satisfying Ev = 0.

Proof.
1. Immediate, using the relations of (5.1]).

2. There exists some non-zero eigenvector of H, say w € V satisfying Hw =
dw for some d € C. Considering (E"w)nez.,, the non-zero vectors in
this list are linearly independent, since those are eigenvectors of H with
different eigenvalues ¢ + 2n. Thus, there are only finitely many non-zero
vectors in this list, meaning that E"w = 0 for some n € Z>;. Let n
minimal with that property. Denote v := E™" 'w. Then v # 0, v is an
eigenvector of H, and Fv = 0.

O

Lemma 5.2. Let V be a g-module. Let 0 # v € V and ¢ € C be such that
Hv =cv and Ev = 0.

1. We have
EF"w=mn(c—(n—1))F" 1

for allm € Z>;.

2. Suppose that V' is finite-dimensional. Then ¢ € Z>qy, F"v # 0 for 0 <
n<cand Ftlo =0.

3. Suppose again that V is finite-dimensional. Let W C V be the subspace
spanned by {F™v}o<m<c. Then W is a g-submodule of V' which is irre-
ducible.

Proof.
1. Let us denote v,, := %F”v. We calculate
FEvy = FEFv=FFEv+ Hv = cuv,
Fus = %EFvl - %(le + Huy) = %(c—&— (c—2))vy = (c — Doy,
Guessing

Ev, =(c— (n—1))vp_1, (5.2)
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we inductively then verify:
1 1 1
Ev, = mEFvn = m(FEvn—Fan) = m((c—(n—l))Fvn_l+(c—2n)vn) =
1
= 1(n(c —(n—=1))+ (c—2n))v, = (c — n)vy,.
This is equivalent to EF"v = n(c— (n—1))F" v for all n € Z>1.

2. From (5.2)) we find

%Enan — H (C—i) R (53)

0<i<n—1

Let now ng € Z>; be such that F™v = 0 (such n exists because V is
finite-dimensional and the non-zero elements in {F"v},ecz., are linearly
independent, as eigenvectors of H with different eigenvalues). Then from
we obtain ¢ = i for some 0 < i < ng — 1, so ¢ € Zx¢ indeed.
Taking 0 < n < ¢, gives F'™v # 0. It remains to understand why
Fetly = 0. Supposing the opposite, we would obtain inductively from
that Fet™y # 0 for all n € Z>1, which would contradict V' being

finite-dimensional.

3. Clearly W is a g-submodule of V', by formulas we just seen. To see that W
is an irreducible g-module, we consider a non-zero g-submodule U C W.
Since the action of H on W is diagnolizable, so is the action of H on U.
Therefore U contains F™v for some 0 < m < ¢. Then U also contains
F*F™y for any £ € Z>¢, and also U contains E‘F™v for any ¢ € Z>0, and
from formulas we have seen this clearly shows that U contains F ™'y for
all0<m/ <e¢,s0U =W.

O

Corollary 5.3. Let V' be an irreducible f.d. g-module. There exist v € V and
m € Zxq such that v, Fuv,F2%v,...,F™v is a basis for V, we have

HF"w=(m—-2n)F"v Y0<n<m

and
EF'v=n(m—(n—-1)F"'v Y0<n<m.

Proof. This follows from the above lemmas. O

Corollary 5.4. For every m € Zx there is precisely one, up to isomorphism,
irreducible g-module of dimension m~+1, and we wrote above explicitly its “mul-
tiplication table”.
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Proof. In view of the above, the uniqueness is clear, but still need to see exis-
tence. One possible approach is simply to define a module dictated by Corollary
and check that it is well-defined. Another approach is to consider the repre-
sentation, say of SU(2), or of SLy(R), or of SL(C) on the space of homogeneous
polynomials of degree m in two variables, as we did before, and differentiate it
to obtain a module as desired. We basically already did it before, but the
“problem” with that is that it does not work if we replace C with an arbitrary
algebraically closed field of characteristic 0. But, in fact, if we do the version
with SLy(C), we can make sense of it over any such field (but we don’t do it
here). O

Recall that we saw that f.d. sl;-modules are “the same” as f.d. SU(2)-
representations. Since every f.d. SU(2)-representation, as a f.d. representation
of a compact group, is completely reducible, i.e. can be written as the direct
sum of irreducible subrepresentations, we deduce that every f.d. sls-module
is completely reducible, i.e. can be written as the direct sum of irreducible
submodules. This is a “transcendental” approach, involving analysis (another
way to say it is that this approach is not algebraic, in the sense that it does not
carry over to working over an arbitrary algebraically closed field of characteristic
0 instead of C). It is sometimes called “Weyl’s unitarﬂ trick”. We next want
to give a purely algebraic approach to this complete reducibility.

5.2 Detour 1 - tensor products
We fix a field k.

Definition 5.5. Let V and W be k-vector spaces. The tensor product of
V and W (over k) is a pair (U, B) consisting of a k-vector space U and a k-
bilinear map B : V x W — U, satisfying the following universal property:
Given a pair (U’, B’) consisting of a k-vector space U’ and a k-bilinear map
B’ 1V x W — U’, there exists a unique k-linear map T : U — U’ such that
ToB=DB.

Exercise 5.1. Let V and W be k-vector spaces. Let (Uy, By) and (Us, Bs) be
two tensor products of V. and W. By the definition, there exists a unique k-
linear map T1o : Uy — Uy such that T15 0 By = By and there exists a unique
k-linear map Toy : Uy — U; such that Tsy 0 By = By. Show that 1o 0119 = Idy,
and Ti90T5 = Idy,, so that we have a canonical isomorphism of k-vector spaces
between Uy and Us.

In view of the exercise, we can talk about the tensor product of V and W -
if a tensor product exists. The notation for the vector space is VW (or VW
k

in a more complete notation) and for the bilinear form it is (v, w) — v @ w (the
bilinear form itself is not given a name usually).

17Serre writes that Weyl used the “more theological” word “unitarian”.
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Exercise 5.2. Let V and W be k-vector spaces. Show that the tensor product
of V.and W ezists as follows. For each element (v,w) € V X W create a formal
symbol 0(,, ) and create formally the k-vector space U with basis the elements

{0(v,w) }wwyevxw. Let U denote the quotient of U by the k-linear subspace
generated by elements of the form

(1 +v2,w) ~O(v1,w) = O(va,w)s O(ev,w) —CO(v,w)s O(v,wr+ws) ~O(v,wn) ~O(v,ws)s (v cw)—CO(vw)-

Consider Ehe map B : V. xW — U given by sending (v,w) to the image of
Sw,wy € U under the quotient map U — U. Show that (U,B) is a tensor
product of V. and W.

Exercise 5.3. Let V and W be k-vector spaces. Show that the tensor product of
V and W exists as follows. Choose a k-basis {e;}icr of V and a k-basis {f;};cs
of W. For each element (i,j) € I x J create a formal symbol 6(; ;) and create
formally the k-vector space U with basis the elements {0(; j)}(i,j)erxs. Consider
the map B : V. x W — U characterized by sending (e;, f;) to 6 ;). Show that
(U, B) is a tensor product of V and W.

Exercise 5.4. Deduce from the previous exercise that given k-vector spaces V
and W and k-bases {e; }icr of V and {f;}jes of W, we have a k-basis of VW
given by {e; ® fi}ajyerxt-

5.3 Detour 2 - the Casimir element

Given a group G and an abstract G-representation V', the correct structure of
an abstract G-representation on V* is given by (g¢)(v) := ¢(9~'v). Given two
abstract G-representations V and W, the correct structure of G-representation
on Homge(V, W) is given by (¢7)(v) := gT(g~'v). The correct structure of
G-representation on V ® W is characterized by g(v ® w) = gv ® gw.

Given a Lie algebra g and a g-module V', the correct structure of a g-module
on V* is given by (X(¢)(v) := —((Xwv). Given two g-modules V and W, the
correct structure of g-module on Homg(V, W) is given by (XT)(v) := XT(v) —
T(Xwv). The correct structure of g-module on V @ W is characterized by X (v ®
w)=Xv@w+v® Xw.

Suppose now that g is a finite-dimensional Lie algebra and that we are given
a g-invariant non-degenerate symmetric bilinear form B : g x g — C. The
condition of g-invariancy conforms with the above constructions, concretely it
means that
B([X,Y],Z)+ B(Y,[X,Z]) =0

for all XY, Z € g. The form B induces an isomorphism of g-modules tp :
g — g* given by ¢5(X)(Y) := B(X,Y). We can construct the following isomor-
phisms

Endc(g) <~ g®g* < g®g.
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Here the left isomorphism is characterized by sending X ®( to the endomorphism
sending Y to ((Y)X. The right isomorphism is characterized by sending X @ Y’
to X ® tp(Y'). Let us take the image on the right of the element Id, on the left
- call it €. Since Idg is g-invariant, so is C. If we want a concrete description, let
X1,...,X, be a basis for g and let X7,..., X the basis for g which is dual to
this basis with respect to B, i.e. we have B(X;, X7) = d; ; for all 1 <4,j <n.
Then we see that €= )", .., X; ® X

Now, suppose that we are given a g-module V. Denoting the corresponding
morphism of Lie algebras 7 : g — End¢(V'), we have a morphism of g-modules
g® g — Endc(V) characterized by X @ Y — 7(X) o (Y). Calling the image of
C under this map C, we obtain an endomorphism of g-modules C' € Endy(V).
It is called the Casimir operator (corresponding to B).

A standard way to produce a g-invariant symmetric bilinear form is given
by the Killing form. It is the form B : g x g — C given by B(X,Y) :=
Tr(ad(X) o ad(Y)). It is indeed g-invariant:

B([Z,X],Y)+B(X,[2,Y]) = Tr(ad([Z, X]) cad(Y)) 4+ Tr(ad(X) cad([Z,Y])) =
= Tr([ad(Z2),ad(X)]ad(Y) + ad(X)[ad(Z),ad(Y)]) =
= Tr(ad(Z)ad(X)ad(Y)—ad(X)ad(Y)ad(Z))+Tr(—ad(X)ad(Z)ad(Y)+ad(X)ad(Z)ad(Y)) = 0.

One of the characterizations of g being semisimple is that the Killing form B
is non-degenerate.

Let us now realize this for g := sls. First, we see that the Killing form B is
non-degenerate. We work with the basis H, E, F' of g, and compute the matrices
representing in this basis:

0 0 O 0 0 1 0 -1 0
ad(H): | 0 2 0 , ad(E) : -2 0 0 ),ad(F):{ O 0 O
00 -2 0 0 0 2 0 0
and then we compute
8 0 0
B:| 0 0 4
0 4 0

Thus indeed B is non-degenerate. Next, we compute the basis dual to (H, E, F)

with respect to B:

1 1.1
(H*7E*7F*) = (7H? 7Fa 7E)
8 4 4

Hence
. . L 1 1 1
C=HQH*"+EQFE +F®F:§H®H+1E®F+ZF®E.

Therefore given a g-module V, the Casimir operator C' € Endy(V') is given by

1 1
C = g(H2 +2EF 4+ 2FE) = é(H2 +2H + AFE).
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It is interesting, I think, to notice how C can’t be seen “inside” SU(2), or even
inside sl,, one has to extend the scope of possible operators in order to discover
it.

5.4 Complete reducibility of finite-dimensional modules

Definition 5.6. Given a vector space V, an operator 7' : V — V and c € C, we
will denote by V. C V the eigenspace of T' with eigenvalue ¢ and by V(7. C V
the generalized eigenspace of T with eigenvalue c.

Lemma 5.7. Let V be a f.d. g-module.

1. If V is irreducible, of dimension m + 1, then C' acts on V by the scalar
$(m? +m).

2. The generalized eigenvalues of the action of C' on V lie in {%(m2 +
m)}mezs,, and if some £(m?+m) is indeed a generalized eigenvalue then

‘/(H7m) 7é 0.

8. If the only generalized eigenvalue of C acting on V is %(m2 + m), for
some m € Zx>q, then the generalized eigenvalues of H acting on V' lie in
{m,m—2,...,—m+2,—m}.

Proof. Let us first show that (2) and (3) follow from (1). Using dimension
reasoning, we can always find a chain of g-submodules

0=KyCK)yC...CK,=V

such that K;;1/K; is an irreducible g-module. This clearly shows that (2)
follows from (1). In the case (3), all these irreducible g-modules must be (m+1)-
dimensional, by (2), and since the generalized eigenvalues of H acting on an
(m + 1)-dimensional irreducible g-module lie in {m,m — 2,...,—m + 2, —m},
we also get (3).

Let thus V' be irreducible, of dimension m + 1, and let 0 # v € V be such
that Fv =0 and Hv = mv. We calculate:

1 1
Cv = g(H20+HU+4FEv) = g(mz +m)v.

Then CF"v = F"Cv = §(m?+m)F"v for all n € Z>( and so, since {F"}nez-,
spans V', we indeed obtain that C acts on V' by the scalar %(m2 +m). O

Lemma 5.8. Let V be a f.d. g-module. Let n € Z>qy. The operator
Fn : ‘/(H’I’L) - ‘/(fon)

18 1njective.
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Proof. Let us argue by induction on the dimension of V. If V' = 0 then the
claim is clear. so assume V # 0. By dimension reasoning there exists a maximal
proper g-submodule K C V; then V/K is necessarily an irreducible g-module.
Denote by [~] : V — V/K the quotient map. Let 0 # v € Vig,,). If v € K
then by the induction hypothesis applied to K we have F™v # 0 and we are
done. Otherwise, we have [v] # 0. If K # 0 then we can apply the induction
hypothesis to V/K and obtain [F"v] = F"[v] # 0 and so F™v # 0. So it
remains to consider the case when K = 0, i.e. V is irreducible. But then the
claim follows from direct observation, using Corollary [5.3 O

Lemma 5.9. Let V be a f.d. g-module. Suppose that the only generalized
eigenvalue of C' acting on V is %(m2 +m), for some m € Z>o. Then Vg m) =
VH,m-

Proof. As operators on V', we have
[H,F"| = [H,FIF" '+ F[H,FIF"*+ ...+ F" '[H,F] = —2n- F™.

Then
|[E,F"] = [E,F|F" ' + FIE,F]F" 2 4 ...+ F" YE,F] =

=HF" 'y FHF" 24+ .. 4+ F"lH =
= ([, "] 4 FP2UH) o (FIHF" )+ P70 o (B ) =
=@ —1)+2n -2+ ... +2+0)F" ! p P H =
=nF" Y H - (n—-1)).

Since F™*! and E act by zero on V(y,,) (by Lemma ), because F™t1
and E send V(g ) to Vig,—pm—2) and to V(g m2) respectively), we obtain that
F™(H —m) acts by zero on V(g . Since, by Lemma F™ acts injectively
on Vig,m), we obtain that H — m acts by zero on V(g ), implying V(g m) =
Vi, m.

Lemma 5.10. Let V be a f.d. g-module. Suppose that the only generalized
eigenvalue of C acting on V is %(m2 +m), for some m € Z>o. ThenV is a
direct sum of irreducible g-submodules of dimension m + 1.

Proof. We first claim that Vi ,,, generates V as a g-module. Let W C V be the g-
submodule generated by Vi ,,. Since the projection map V(g my = (V/W)(a,m)
is surjective and, by Lemma @ we have Vigm) = Vam C W, we deduce
(V/W)(#,m) = 0. Since the only generalized eigenvalue of C' acting on V/W is
L(m? +m), by Lemma 2) we see that we must have V/W =0,ie. W=V

8
as desired.

Let now e, ..., e, be abasis for Vg ,,,. Denote by L; the span of e;, Fe;, ..., F™e;.

Notice that Fe; = 0. Therefore, by Lemma we know that L; is an irreducible
g-submodule of V' of dimension m + 1. Since Vp,,, generates V' as a g-module,
we have V' =3 L;. It is left to see that {L;}; is a linearly independent family.
Indeed, {L;}; is linearly independent if {L; NV{g ) }: is linearly independent for
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every c € C. Forc ¢ {m,m—2,...,—m+2,m} this is clear, while otherwise, de-
noting n := (m — ¢)/2, this is equivalent to the linear independence of {F™e;};.
The latter linear independence would follow from the linear independence of
{E"F"¢;};. But we saw that E"F"e; = (n! [To<icpn_q(m— z)) e;, so that the
linear independence of {E™F™e;}; is equivalent to the linear independence of
{ei}i, and we are done. O

Corollary 5.11 (Complete reducibility). FEvery f.d. g-module can be written
as a direct sum of irreducible g-submodules.

Proof. Let V be a f.d. g-module. By Lemma the generalized eigenval-
ues of C acting on V lie in {%(m2 + m)}mez~,. We can decompose V =
@mezzo V(c,1(m24+m)), and this is a decomposition into g-submodules. By
Lemma , each. Vie, 1(m24m)) Can be written as a direct sum of irreducible
g-submodules of dimension m + 1. O

From the discussion we have:

Corollary 5.12. The action of H on a f.d. g-module is diagnolizable. The
etgenvalues of H acting on a f.d. g-module are in Z.

Claim 5.13. Let V be a f.d. g-module. Let n € Z>y. The linear maps
F" :Vanp—=Vu_n

and
E":Vyg,_n— Vi

are isomorphisms.

Proof. By Corollary we reduce to the case when V is an irreducible g-
module. Then the claim follows by direct observation, using Corollary 5.3} O

6 The universal enveloping algebra

In the previous section we have used C = L(H? + 2H + 4FE), as well as
calculations involving terms like [E, F"T1] = EF"T! — F*T1E and so on. We
had a formal meaning for those only after having a g-module at hand, computing
then with operators on that module. The universal enevloping algebra is a
“home” for expressions like §(H? + 2H + 4FE) which is “abstract”, in the
sense that, in order to have meaning for the expression, we do not require a
“realization” on a module.

6.1 Algebras and modules
Definition 6.1.
e A (associative and unital) k-algebra is a k-vector space A equipped with a

k-bilinear map Ax A — A (which we simply denote (a,b) — ab) satisfying:
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— (a1a2)ag = ay(azas) for all aj,as,a3 € A.

— There exists an element 1 € A such that la = a and al = a for all
a€ A

e Let A and B be k-algebras. A morphism of k-algebras from A to B is a
k-linear map ¢ : A — B satisfying ¢(araz2) = ¢(a1)d(az) for all a,a2 € A
and ¢(1) = 1.

Remark 6.2. In other words, a k-algebra is a ring which also has the structure
of a k-vector space and for which the multiplication map is k-bilinear.

Definition 6.3. Let A be a k-algebra.

e An A-module is a k-vector space M equipped with a k-bilinear map
A x M — M (which we simply denote (a, m) — am) satisfying:

— (ab)ym = a(bm) for all a,b € A and m € M.

— Im =m for all m € M.

e Let M and N be A-modules. A morphism of A-modules from M to
N is a k-linear map ¢ : M — N satisfying ¢(am) = ap(m) for all a € A
and m € M.

6.2 The universal eneveloping algebra

Exercise 6.1. Let A be a k-algebra. Show that [—,—] : Ax A — A given by
[a,b] := ab — ba is a Lie bracket. Thus A equipped with [a,b] := ab — ba is a
k-Lie algebra, which we denote A€,

The idea of the universal enveloping algebra is that given a k-Lie algebra
g, we want to find a morphism of k-Lie algebras ¢ : g — AY¢ “as efficient as
possible”. This means that we want to “artificially” manufacture a place larger
than g, where we can form expressions such as XY +2XY?2 - Y XY + X3YZ
for XY, Z € g (where here the product is associative), with the rule that XY —
Y X is equal to [X,Y]. Here, “efficient” has a “surjective” and an “injective”
meaning. As for the first, if we have some g — A"°® we can always embed
A < B into some bigger k-algebra and consider the composition g — BUYe°,
and this is wasteful, so we want A to be “as small as possible”. On the other
extreme, we can take 0 : g — A™® and this “loses information”.

An important idea is that the universal enveloping algebra is given by a
universal property:

Definition 6.4. Let g be a k-Lie algebra. The universal eneveloping alge-
bra of g is a pair (A4,:) consisting of a k-algebra A and a morphism of k-Lie
algebras ¢ : g — AY° satisfying the following property (called a universal

property):
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e Let (B, ¢€) be a pair consisting of a k-algebra B and a morphism of k-Lie
algebras € : g — B¢, Then there exists a unique morphism of k-algebras
¢ : A — B such that e = ¢ os.

Remark 6.5. To reformulate the above definition, The pair (A, ¢) is universal
if for every pair (B, €) the map

Li
Homk-algebras (A7 B) — Homk-Lie algebras (97 B 16)

is a bijection. One usually says in words “to give a Lie algebra morphism from
g is the same as to give an algebra morphism from A”.

So (¢, A) of the definition above is a “universal solution” to the problem
of finding a k-algebra with a morphism of k-Lie algebras from g, in the sense
that all other solutions factor uniquely via it. The next important part of this
pattern is to explain in which sense it is unique:

Lemma 6.6. Let g be a k-Lie algebra. Let (A1, 1) and (As, t2) be two universal
enveloping algebras of g. Then there exists a unique isomorphism of k-algebras
€12 : A1 — As satisfying €12 011 = Lo

Proof. There exists a unique morphism of k-algebras €15 : A1 — As satisfying
€120L1 = Lo by the universal property of (A1, ¢1). On the other hand, there exists
a unique morphism of k-algebras es; : Ay — A;j satisfying €1 0 1o = 11 by the
universal property of (Asg, t3). Notice that €130€21 010 = 19 but also ida, 0te = 1o
and therefore by the uniqueness part of the universal property of (As,t2) we
must have €15 0 €27 = id4,. Symmetrically, we find that €21 0 €10 = idy4,. O

Therefore, it is justifiable to speak about the universal enveloping algebra
of g, if it exists. We denote it by (U(g),:) (but one usually keeps ¢ implicit,
especially after seeing that it is injective). We have:

Proposition 6.7. Let g be a k-Lie algebra. Then the universal enveloping
algebra of g exists.

Proof. Not difficult, but omitted (one takes a quotient of the tensor algebra of
g, killing expressions XY —Y X — [X,Y]). O

Lemma 6.8. Let g be a k-Lie algebra. The k-span of elements in U(g) of the
form
U(X7) ool Xom)

for various sequences X1, ..., X, € g is the whole U(g).

Proof. Let us denote by U(g)" the k-span as in the formulation of the lemma.
It is clear that U(g)’ is a k-subalgebra of U(g) (notice that it contains 1 as the
empty product of ¢(X;)’s). Also, the image of ¢ lies in U(g)’; Let us denote by
/1 g — (U(g))™e the corestriction (it is a k-Lie algebra morphism). By the
universal property of (U(g),t), there exists a k-algebra morphism e : U(g) —
U(g)’ satisfying eor = /. Let us denote by f : U(g)" — U(g) the inclusion. Then
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we have f ot = ¢ and therefore foe: U(g) — U(g) is a k-algebra morphism
satisfying (f oe) ot = . Since also idyq) o ¢ = ¢, by the uniqueness part of the
universal property of (U(g),¢) we obtain f oe = idyg). This implies that f is
surjective, meaning U(g) = U(g)’. O

Next, assume for simplicity that g is finite-dimensional and let Y7,...,Y,, be
a k-basis for g. Then clearly Lemma shows that elements of the form

L(Y;«)L(}/lm)a ]-ézlavzmgn

k-span U(g). However, clearly those are generally not linearly independent:
Write [Y2,Y1] = >0, <, ¢iYi. Then

UY2)e(V1) = u(Y2)u(V1) = e(Y1)u(Ya) + ¢(Y1)u(Ya) = [1(Y2), e(Y1)] + 1(Y1)u(Y2) =
= u[Yo, Yi]) + e(Y1)el(Ya) = D cn(Yh) + o(Y1)u(Ya).
1<i<n
More generally, ¢(Y;)c(Y;) is expressible as a k-linear combination of ¢(Y7)’s and
t(Y;)e(Y;). Similarly, one can convince oneself that elements of the form

W(Yi) oooou(Ys,), 1<y <ig<...<ip<n

k-span U(g) - if we are given a product with a “non-correct” order, by opera-
tions as above, relying on the swapping possibility Y X = XY + [V, X]|, we can
eventually rewrite it in terms of products in the “correct” order. Those already
are linearly independent, i.e. form a k-basis for U(g), as given by the PBW
theorem:

Theorem 6.9 (PBW theorem). Let g be a k-Lie algebra, let us say finite-

dimensional for simplicity of formulation. Let Y1,...,Y, be a k-basis for g.
Then
{L(Yl)ml L(}/Z)mz et L(Y’n)m"}("Ll,.“,ﬂLn)E(ZZO)n
is a k-basis for U(g).
Proof. Omitted. O

Exercise 6.2. See that the PBW theorem in particular shows that v is injective.

Finally, let g be a k-Lie algebra and let M be a k-vector space. A g-action
on M is encoded by a k-Lie algebra morphism g — (Endy(M))%°¢. An U(g)-
action on M is encoded by a k-algebra morphism U(g) — Endg(M). But by
the universal property, those two are in bijection. In words, “to give a g-module
is the same as to give a U(g)-module”. To repeat, this can be reformulated as
saying that given a g-module M, there exists a unique U(g)-action on M, for
which ¢(X)m = Xm given X € g,m € M. The identification also applies to
morphisms - if M and N are two g-modules (and thus U(g)-modules) then a
k-linear map T : M — N is a g-morphism if and only if it is a U(g)-morphism
- this follows easily from Lemma [6.8]
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6.3 The universal enveloping algebra as a “deformation”

Definition 6.10. A grading on a k-algebra A is a linearly independent se-
quence of k-linear subspaces of A

Ap, Ay, ...
such that:
e 1€ A
o A, A, CAppp forall n,m € Z>op.
. @nezzo A, = A.

We for convenience always denote A,, := 0 for n € Z.o. A k-algebra equipped
with a grading is called a graded k-algebra. As an exercise, figure out what is
a morphism of graded k-algebras.

Example 6.11. A polynomial algebra A := klx1, ..., x,] is naturally graded, by
letting A, be the subspace of homogeneous polynomials of degree n.

The example has the following more abstract incarnation. We will work with
infinite fields for simplicity (one can formulate things so that this will not be
required).

Example 6.12. Assume that k is infinite. Let V be a finite-dimensional k-
vector space. We can consider the k-algebra k[V] of polynomial functions on V,
graded by taking k[V'],, to be the subspace of homogeneous polynomials of degree

n. When we choose coordinates, it becomes isomorphic to klx1,...,x,], where
r:=dimg V.

Exercise 6.3. Assume that k is infinite. Let x1,...,x, be a k-basis for V*.
Then a k-basis for k[V],, is given by x1** -...- 2", for (m1,...,m,) € Z5, and

mi—+...+m, =n.
We have the following:

Claim 6.13. Assume that k is infinite. Let V be a finite-dimensional k-vector
space. Note that k[V]; is equal to V*, the dual space. We have the following
universal properties:

e Let A be a commutative k-algebra. Then
Homy.-aigebras (k[V], A) = Homg_vector spaces(V™; A),
given by restricting to k[V]1 = V™, is a bijection.
e Let A be a commutative graded k-algebra. Then
Homygraded k-algebras(E[V], A) = Homy_vector spaces(V™5 A1),

given by restricting to k[V]1 = V™, is a bijection.
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Definition 6.14. A filtration on a k-algebra A is an increasing sequence of
k-linear subspaces of A
ASO C A§1 C ...

such that:
o 1ec Ac.
o Acy - A<y C A<y for all n,m € Zxo.
® Upez.,A<n = A.

We for convenience always denote A<, := 0 for n € Zg. A k-algebra equipped
with a filtration is called a filtered k-algebra. As an exercise, figure out what
is a morphism of filtered k-algebras.

Example 6.15. The universal enevioping algebra U(g) is naturally filtered.
Namely, we define U(g)<y, to be the k-span of expressions t(X1) - ... 1(Xy,) for
Xi,..., Xm€egand m < n.

Definition 6.16. Let A be a filtered k-algebra. The associated graded k-
algebra, denoted gr(A), is the graded k-algebra constructed as follows:
gr(A) = P (A<n/A<n) 1"
neZZo

where t™ is just a dummy which will prevent possible ambiguity. The product
is given as follows. Given a € A<, and b € A<y, we let

((a+A<p1) - t") (b + Acpn) - t™) := (b + Acpim—r) - "7
The grading is given by (gr(A4)), := (A<n/A<n-1) - t™.

We now ask what is the associated graded of U(g). Notice first that gr(U(g))
is commutative. Indeed, this follows from the following property

[((X1) - e(X), e(Yr) o o(Yo)] CU(8) <ntm—1-

This property follows by induction from the property [¢(X),«(Y)] € U(
which is clear since [¢(X), «(Y)] = ¢([X,Y]). Next, let us notice that U(g)<o
k- t° while U(g)<1 = (k ® «(g)) - t*, and so Ul(g )gl/U g)<o = g (via (1(X)
U(g)<o) - t' «+ X). Therefore, by Claim we obtain a morphism of grade
k-algebras

9)<

<1,
+
d

klg*] — gr(U(g)), (6.1)
the unique one whose pre-composition with the natural g — k[g*] is equal to
the map g — gr(U(g)) given by X — (1(X) + U(g)<o) - t*.

Exercise 6.4. Deduce (assuming that k is infinite) from the PBW theorem that
the map 18 an tsomorphism.

Therefore, we can think of U(g) as a “non-commutative deformation” of
klg*].
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7 Representation theory of sl,

Throughout, we work over C. We set g := sl,, := sl[,,(C). We denote by h C g
the Lie subalgebra of diagonal matrices. We denote by n C g the Lie subalgebra
of nilpotent upper-triangular matrices and by n~ C g the Lie subalgebra of
nilpotent lower-triangular matrices.

7.1 Weights

Our main tool in visualizing g-representations is by considering h-eigenspaces.
Here the common terminology is “weights” rather than “eigenvalues” etc.

Definition 7.1. Let V be a g-module.

1. Let v € V and let A € h*. We say that v is a weight vector with weight
Aif Hv = A(H)v for all H € b.

2. Let v € V. We say that v is a weight vector if for some A € h* it is a
weight vector with weight .

3. Let A € h*. We denote
Vi a := {weight vectors with weight A in V} C V.

This is a linear subspace of V, called the \-weight space.

4. We say that A € h* is a weight of V if Vj » # 0. We denote by wt(V') C h*
the subset consisting of weights of V.

Exercise 7.1. Let V be a g-module. The family of subspaces {Vy r}rep- is
linearly independent.

Definition 7.2. A g-module is said to be a weight module if it is spanned
by weight vectors.

Exercise 7.2. Let V be a g-module. Then V is a weight module if and only if
V = @aep-Vi,a (and of course we can then also write V- = @ cwi(v)Vo2)-

7.2 Roots

Definition 7.3. Considering g as a g-module via the adjoint representation,
the set of non-zero weights wt(g) is called the set of roots of g. Let us denote
it by R.

Let us see more precisely what are the roots of g. For 1 < 4,7 < n with
i # j, denote by F; ; € g the matrix whose (4, j)-entry is 1 and all other entries
are 0. Then one calculates:

Exercise 7.3. We have

[diag(hl, ey hn), Ei,j] = (hz — ]’Lj)EiJ‘.
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Thus, denoting by «; ; € b* the functional given by sending diag(hi, ..., hn)
to h; — hj, we see that a; ; € R. Notice that

gzb@®C'Ei,j-
i#]
Since clearly b C gp,0, we deduce by linear independence of weight spaces that
b = gp,0, R = {ai;}iz; and gy o, = C- E; ;. Given a € R, let us also denote
E, := E; ; for the pair (4, j) such that o = «; ;.

Using root vectors and weight spaces, we can imagine “geometrically” how
g acts on weight modules:

Exercise 7.4. Given a g-modules V and o, A € h* we have

gba - Vor C Voata-

Given a, 5 € h* we have
(86,0, 85,8 C G.ats-

Using the previous exercise, we can do the following exercise:

Exercise 7.5. Let V be a g-module. Let S C V be a subset consisting of weight
vectors, and suppose that S generates V as a g-module. Then V is a weight
module.

Definition 7.4. The roots a; ; with 7 < j are called the positive roots. We
denote By RT C R the subset of positive roots. Similarly, the roots «; ; with
1 > j are called the negative roots and we denote by R~ C R the subset of
negative roots. We have R~ = —R™". The roots «; ; with j =i + 1 are called
the simple roots. We denote by R® C R™ the subset of simple roots.

Exercise 7.6. We have R = RT[[R™~. The subset R® C b* is a basis. The
coefficients in an expression of an element of RT as a linear combination of
elements in R® are non-negative integers.

n= @ 9h,a

a€RT

n = @ gp.a-

a€ER™

Notice that

and

Let us also write, for « € RY, F, :== E_,,.

Definition 7.5. Let o € R™ be a positive root, write o = ajjforl <i<j<n.
The corresponding co-root H, € b is defined as having the entry 1 at the i-
place, the entry —1 at the j-place and entries 0 at all other places.

Exercise 7.7. Let o € RT. Check that we have

[HomEa] = 2Ea7 [HouFa] = _2Fa7 [EouFa] = Ha-
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Definition 7.6. Let o € RT. Let us denote by g, C g the Lie subalgebra
spanned by H,, E,, F,. Notice that, by Exercise[7.7] g, is indeed a Lie sublage-
bra, and it is isomorphic to sly by sending H,, E,, F, to H, E, F respectively.

We can now show:
Proposition 7.7. Let V be a f.d. g-module. Then V is a h-weight module.

Proof. One possible proof is again via Weyl’s “unitary trick”, considering on
V the SU(n)-action corresponding to the g-action, and noticing that, denoting
by T C SU(n) the subgroup of diagonal matrices as before, the eigenspaces of
T are eigenspaces of b, since b is the complexification of the Lie algebra of T.
Again, this proof is not algebraic.

An algebraic proof is given as follows. For a € R®, consider V as a gq-
module. Then we have already seen (Corollary that the action of H, on
V is diagnolizable. Since the H,’s, for « € R?, span bh (and b is abelian) this
implies that h acts on V' diagonlizably as well. O

We again consider the Weyl group W := S,, acting (linearly) on h by
permuting the entries:

o(diag(z1,...,2n)) == (To-1(1), -+ +» To=1(n))-
We get an induced (linear) action of W on h*.

Definition 7.8. Let a € R. Write a = a;; for 1 < 4,5 < n with ¢ # j. We
define s, € W to be the permutation sending ¢ to j and j to ¢ and fixing all
other elements.

Exercise 7.8. Recall that the group W is generated by {sq tachs-
We have the following formula for the action of s,:
Lemma 7.9. Let « € R. Then
Sa(A) = A= MHy)
for all X € b*.

Proof. Notice that a(H,) = 2 and both sides are seen to send o to —a. If
A € b* is such that A(H,) = 0 then it is easy to see that both sides send A to
itself. O

7.3 Highest weights
Definition 7.10. Let V be a g-module.

1. A vector v € V is called a extremal if v is a weight vector and nv = 0.
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2. A € b* is called an extremal weight of V if there exists a non-zero
extremal vector in V' with weight \. We denote by ext(V) C h* the set of
extremal weights of V.

3. A vector v € V is called a highest weight vector if v is an extremal
vector and v generates V as a g-module.

4. V is called a highest weight module if it is non-zero and it has a highest
weight vector.

5. If V is a highest weight module then the weight of a highest weight vector
in V is called a highest weight of V.

Lemma 7.11. Let V be a g-module. A weight vector v € V is extremal if and
only if Eqv =10 for all a € R®.

Proof. Since n is spanned by vectors E,, for o € RT, it is enough to see that if
E,v =0 for all @ € R® then also E,v = 0 for all « € R*. A calculation gives
that, given 1 <1 < j < k < n, we have

[Ea'i,j ) Eaj,k] = Eai,k .
Thus we obtain

Ea,, = |E E E

ai,i+17[

E a1 g) el

Notice that if Xv = 0 and Yv = 0 for some X,Y € g then also [X,Y]v = 0,
since [X,Y]v = XYv — Y Xv, and hence the claim is clear. O

Qig1,i427 [ B Qj_2,5-1

Definition 7.12. We define a partial order on h* as follows. We set A < p if
,LL*)\ S Za6R+ ZZO Q.

Lemma 7.13. Let V be a highest weight g-module, with highest weight \ € h*.
1. 'V is a weight g-module, and all weight spaces of V' are finite-dimensional.
2. We have wt(V) C {N € b* | X < A}.

3. X is the unique highest weight of V' (so that we can speak of the highest
weight of a highest weight module).

4. We have dimc Vi = 1.
Proof. By the PBW theorem V' is spanned by vectors of the form
Fg, -...-Fg -Hy-...-Hi-Ey, -...- Ey, -v.
Those are scalar multiples of
Fg ... -Fgw.
Those vectors have weight A—3_, ;. Bi, which sits in {z € h* | p < A}. Only

one of them has weight A\, namely v. O
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Claim 7.14. FEvery irreducible f.d. g-module is a highest weight module.

Proof. Let E be an irreducible f.d. g-module. The set wt(E) is finite and non-
empty and hence contains maximal elements with respect to the partial order
<. Let A € wt(E) be such a maximal element. Let 0 # v € Ey x. As E is
irreducible, v generates E as a g-module. We claim that v is extremal. Indeed,
we want to see that E,v = 0 for « € RT. But E,v € Ey yt+o and by the
maximality of A we have A+ o ¢ wt(E), i.e. By 1o =0and so Eqv=0. O

7.4 Irreducible highest weight modules

Lemma 7.15. The highest weights of non-isomorphic irreducible highest weight
g-modules are non-equal.

Proof. Let E and F' be irreducible highest weight g-modules, both with highest
weight A € h*. We want to see that £ and F' are isomorphic.

Let v € E and vy € F be non-zero highest weight vectors (with weight \).
Let us consider the g-module E & F' and the vector (v1,v2) € E @ F. Let us
consider the g-submodule M C E @ F generated by (vi,v2). We claim that
(0,v2) ¢ M (and analogously (v1,0) ¢ M). Indeed, M is generated by the
highest weight vector (vy,vs) with highest weight A and therefore by Lemma
[7.13|we have dim My » = 1 (so My, is spanned by (v, v2)). Since (0,v2) € E&F
is also a highest weight vector with highest weight A, would it lie in M it would
be a scalar multiple of (v1, vs), which is of course not correct. Thus (0,v2) ¢ M.

Let us now consider the projection ¢ : M — E@F — E. We have Im(¢) # 0
since v1 = ¢(v1,v9) and therefore, since E is irreducible, we have Im(¢) = E.
We also have Ker(¢) = M N F (where we identify F 20¢ F C E® F). Since
(0,v2) ¢ M, we have Ker(¢) # F and therefore, since F' is irreducible, we have
Ker(¢) = 0. Thus, we have obtained that ¢ is an isomorphism from M to
E. Completely analogously we obtain that ¢ is an isomorphism from M to F,
deducing that F and F are isomorphic. O

We therefore see that irreducible highest weight g-modules are classified by
their highest weights. We still don’t know whether, given A € h*, there exists
an irreducible highest weight g-module with highest weight A - we will see later
that the answer is indeed positive. We also don’t know yet for which A € h* an
irreducible highest weight g-module with highest weight A is finite-dimensional
- we will see later the answer to that also.

7.5 Verma modules

To exhibit the existence of highest weight modules with a given highest weight,
we exhibit a univeral one. Let A € h*. The Verma g-module M), is charac-
terized by a universal property:

73



Definition 7.16. Let A € h*. A pair (M,v) consisting of a g-module M and
an extreme vector v € My  is a Verma module corresponding to A if the
following universal property holds:

e For every g-module N the map
Homgy(M,N) = {w € Ny » | nw = 0}
given by ¢ — ¢(v) is a bijection.

Remark 7.17. In words, “to give a morphism from the Verma module corre-
sponding to A is the same as to specify an extremal vector with weight \”.

Exercise-Definition 7.18. Show that given two Verma modules (M,v) and
(M',v") corresponding to A, there exists a unique isomorphism of g-modules
€: M — M satisfying e(v) = v'. In this sense, we can speak of the Verma
module corresponding to A, if it exists. We always denote it by (My,vy).

Exercise 7.9. Given a Verma module (My,vy), show that vy generates My as
a g-module (by abstract reasoning using the universal property). However, we
don’t know at the moment (but will know in a moment) whether vy # 0 - this is
equivalent to the existence of some module admitting a non-zero extreme vector
with weight A. Once we will know that (M) exists and) vy # 0, we will know
that M)y is a highest weight module with highest weight .

Lemma 7.19.

1. For every A € b* there exists the Verma module corresponding to A - we
denote it always by (My,vy).

2. The map
Un™) = M,
given by d — dvy is an isomorphism of n~ -modules. Equivalently, choos-
ing an ordering av, ..., o, of RY,
{ngl Caa F;TZ:" . 'U)\}(’rnh,__,nzr)ezgo

s a basis for M.

3. The vector vy is non-zero and it generates My as a g-module, i.e. it is
a highest weight vector. Thus M) is a highest weight module with highest
weight .

Proof. Consider the left ideal Iy in U(g) generated by elements X for X € n and
by elements H — A(H) for H € h. Consider the U(g)-module M)y := U(g)/I,
and the element vy € M) given as [1] where [—] : U(g) — U(g)/In = M, is
the canonical projection. We leave the reader the tautological verification that
(M, vy) is indeed a Verma module corresponding to A.
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Let us leave the following as an exercise (in invertible triangular changes of

basis): Choose an ordering ay, ..., a, of RT and choose a basis Hy, ..., Hy, for
h. Then
" Y L r
{ngl e Fgﬁ - (Hy — )\(Hl)) e (Hk — )\(Hk)) k EZ; . EZT»}(ml ____ me) €25,

is a basis for U(g) (when A = 0 this is just given by the PBW theorem, and
otherwise we need to relate to that case by an invertible triangular change of
basis).

Now, in fact, I is the span of basis elements in (7.1]) for which (¢4, ..., 0k, n1,...,n,) #

0 (we leave this as an exercise). We thus have U(g) = U(n™) @ I. The rest of
the claims of the Lemma follow from this.
O

Example 7.20. Let us consider g = sly. Let us identify C with h*, be sending
c € C to the functional in b* which maps H to c. The Verma module M. has
a vector v., and ve, Fu,, F?v,,... forms a basis for M.. We have HF™v, =
(¢ — 2n)F™v,.. We have Ev. = 0, and using Lemma we obtain EF™v, =
n(c—(n—1))F" v, for alln € Z>;.

Exercise 7.10. Let us continue with Example . Show that if ¢ ¢ Zxq
then M, is an irreducible g-module. If ¢ € Z>, notice that, defining N. C M,
as the span of the vectors F™v. for n € Z>cy1, Ne is a g-submodule of M.,
(N, Fetv.) is a Verma module with highest weight —c — 2, and M./N.. is an
wrreducible g-module of dimension ¢+ 1.

7.6 Irreducible highest weight modules - existence

Claim 7.21. Let M be a highest weight g-module. Then M admits a unique
irreducible quotient g-module. In other words, M admits a unique mazximal
proper g-submodule. The image in this irreducible quotient of a highest weight
vector in M is again a highest weight vector.

Proof. In general, given a ring R and a non-zero R-module M, let us notice that
M admits a unique maximal proper R-submodule if and only if the sum of all
proper R-submodules in M is not equal to M.

Given a highest weight g-module M with highest weight A € h*, let us denote

M= @  MyncCM
Newt(M)~{\}

Then M° is a C-linear subspace of M, and even a b~ -submodule (where we
denote b~ := h @ n~, this is a Lie subalgebra of g), but not a g-submodule in
general. We have clearly M° # M.
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Now it is straight-forward that in order to prove the claim it is enough to
see that every proper g-submodule of M is contained in M°.

Thus, let N C M be a proper g-submodule. Notice that A ¢ wt(N), because
otherwise we would have My x C N then M = N (as any non-zero vector in
My, » generates M as a g-module). Thus (recall that a g-submodule of a weight
module is a weight module),

N= @ NyxcM.
Newt(M)~{A}
O

Definition 7.22. Let A € h*. We denote by L) the unique irreducible quotient
g-module of M.

Corollary 7.23. Let A\ € h*. There exists an irreducible highest weight g-
module with highest weight \. It is unique up to an isomorphism. Our concrete
model for it is L.

7.7 When is L, finite-dimensional?
Definition 7.24. Let A € b*.
1. We say that A is integral if A\(H,,) € Z for all « € R®.
2. We say that A is dominant if Re(A(H,)) € R>p for all a € R®.

Remark 7.25. Thus, A € h* is integral and dominant if \(H,) € Z>¢ for all
a € R°.

Remark 7.26. Sometimes a different condition in the definition of dominant
A € b* is more appropriate. Namely, the condition that A(H,) ¢ Z<o for all
o € R?. But we will not use it.

Exercise 7.11. Let \ € h*. Let us write
Adiag(z1,...,xn)) =11 + ... + ey

forci,...,c, € C. Denote d; := ¢; — c;41. Then X is integral if and only if
di,...,dn_1 € Z. Also, X is dominant if and only if Re(dy),...,Re(d,—1) €
R>o. Given X € b*, there exists a unique dominant A € WA.

We want to prove the following proposition:

Proposition 7.27. Let A € b*. Then Ly is finite-dimensional if and only if A
18 integral and dominant.

Proof (of “only if” part of Proposition . Let A € b* and suppose that Ly
is finite-dimensional. Fix a € R® and consider L) as a finite-dimensional g-
module. Taking 0 # v € (Ly)p,, we have Hyv = A\(H,)v and E,v = 0. Hence,
by Lemma we obtain A\(Hy,) € Z>o. O
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Definition 7.28. Let ¢ be a Lie algebra and M an £-module. We say that
a vector v € M is t-finite if the ¢-submodule of M generated by v is finite-
dimensional. We say that M is a locally finite t-module if every v € M is
t-finite.

Lemma 7.29. Let b be a finite-dimensional Lie algebra and € C § a Lie subal-
gebra. Let M be a h-module. The subset of M consisting of £-finite vectors is a
h-submodule of M.

Proof. Let us denote the subset of M consisting of ¢-finite vectors by N. Clearly
N is a linear subspace of M. We want to see that given X € h and v € N we
have Xv € N. Let L C M be the £-submodule generated by v. By assumption
L is finite-dimensional. Consider L' := hL (the linear span in M of the subset
of element of the form Zw where Z € b and w € L). Then clearly L’ is finite-
dimensional and Xv € L’. So it is left to check that L’ is a £-submodule of
M. Given Y € tand Z € h and w € L, we have YZw = [Y, Z]Jw + ZYw €
bL+bHeL ChL+HhL =L . O

Lemma 7.30. Given o € R®, let M be a locally finite go-module. Then the
action of H, on M is diagnolizable, with eigenvalues lying in Z. Let n € Z>y.
Then F} : My, n — My, —n and E : My, —n — My, » are isomorphisms of
vector spaces.

Proof. The statements hold when M is finite-dimensional by Corollary and
Claim It is easy to see that this implies the statements in general. O

Lemma 7.31. Let M be a g-module. If M is locally finite as a go-module, then
Sa(Wt(M)) = wt(M).

Proof. Let A € wt(M). Let 0 # v € My ». Denote n := A(H,). Thenn € Z
by Lemma [7.30] Suppose that n > 0. Consider w := FZv. By Lemma [7.30
we have w # 0. Also, w € My x—na. But so(A) = A — A(Hy)ao = A — na and
so My s.n) # 0 i.e. s4(\) € wt(M). Suppose now that n < 0. Then similarly
w = Ejv satisfies w # 0 and w € My 5 (x), 50 8a(A) € wt(M). O

Lemma 7.32. Let A € h* and let o € R® be such that n := A(Hy) € Z>o. Then
Frtlyy € My is a non-zero extremal vector with weight X — (n + 1)a.

Proof. Clearly, F"t1v, is a weight vector with weight A — (n +1)a. By Lemma
it is non-zero. To see that it is extreme, by Lemma it is enough to
check that EgF"lvy = 0 for all 8 € R*. Let us first consider 8 # «. Since
in that case § — a ¢ R, we have [Eg, F,] € gy p-a = 0 le. [Eg, F,] = 0.
Working inside U(g) this means that EgF, = F,Eg. Iterating, this gives also
EgF]' = F['Eg for every m € Z>q. Thus

EgF vy = FI By = 0.
Now, we consider 8 = . We have

[EomFa] = Ha
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i.e. (working in U(g))
Assuming

for some ¢, € C we find
Eo(F) ™"y = FyEo(Fo) ™ x+Huo(Fo)™ vy = Falcm-(Fa)™ ua)+(A—ma) (Hy)-(Fa) vy =

= (cm + A(Ha) — 2m)(Fa)™ vy

Thus we get the recursive relation
Cm+1 = AMHy) + ¢ — 2m,

where ¢y = 0. One deduces

—1
em =m - A(Hay) - 2% =m(A(Ha) — (m — 1)) = m(n — (m — 1))
for all m € Z>¢. Thus, ¢,4+1 = 0 and therefore we have EoFntlyy = 0. O

Corollary 7.33. Let A € b* and let « € R® be such that n := A(H,) € Z>o.
Then, denoting by [—] : My — Ly the canonical projection, we have F1[v,] =
0.

Proof. Denote by N C M), the g-submodule generated by F"lvy. Then N is
a highest weight g-module, with highest weight A — (n 4+ 1)a. By Lemma
we have wt(N) C {p € b* | u < A — (n+ 1)a} and in particular A ¢ wt(N).
Therefore vy ¢ N and so N # M. Thus, since the kernel of the projection
[-] : Mx — Ly is the unique maximal proper g-submodule of M), we must
have N sitting in this kernel. Since F7™lvy € N, we obtain 0 = [Ftv,] =
F(ZZ‘JFI[U)\]. O

Definition 7.34. Let us call a subset S C h* conical if there exists a finite

subset So C b* such that S C So — 3 - Z>0 - .

Exercise 7.12. Let V be a highest weight g-module. Then wt(V) C b* is
conical.

Lemma 7.35. A conical W-invariant subset of b* is finite.

Proof. We will show that given a conical subset S C h*, the subset So C S
consisting of dominant elements is finite. Then, if S is W-invariant, we have
S = WS, (by Exercise and therefore S is finite as well. It is enough to fix
A € b* and show that the subset of A — ) . Z>0 - a consisting of dominant
elements is finite. Denote H := 1 > acrt Ha. Notice that if 4 € b* is dominant
we have Re(u(H)) € R>¢. Also, notice that, given o € R®, we have o(H) = 1.
Therefore, considering collections (mq)aecrs of elements in Zxg, only for finitely
many of them we have Re((A — > cps Ma - @)(H)) € R>o and therefore only
for finitely many of them can A — 3 . m, - @ be dominant. O
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Proof (of “if” part of Proposition . Let A € h* and suppose that A is inte-
gral and dominant. We would like to see that, given a € R®, L) is a locally finite
go-module. Given that, by Lemma we obtain that wt(V) is s,-invariant,
and since {s, }acrs generates W, we deduce that wt(V') is W-invariant. Then
Lemma shows that wt(V) is finite, and hence V is finite-dimensional, as
desired.

By Lemma [7.29] it is enough to check that vy is a go-finite vector. Since
we have E, vy = 0 and Hyvy = A(Hy)vy, by what we have learned about
highest weight modules, applied to g, the g,-submodule of L) generated by
vy coincides with the span of {F;”v,\}mezzu. But, by Corollary we have
F™ly, =0 and therefore the g,-submodule of Ly generated by vy is spanned
by {F"vx}o<m<n, and so is finite-dimensional. So vy is a go-finite vector. [

8 Formal character

8.1 Convolution

We denote by Fun(h*) the vector space of functions on h*. Given ¢ € Fun(h*)
we denote by supp(¢) C h* the support, i.e. the subset consisting of A for which
@(A) # 0. Given u € h* let us define e € Fun(h*) by e#(u) =1 and e#(A) =0
if A # p.

Given ¢, 1) € Fun(h*), let us say that ¢ and ¢ are convolutionable if for
every A € b* there exists finitely many p € h* for which ¢(A + p) # 0 and
Y(—p) # 0. Given two convolutionable ¢, € Fun(h*) define the convolution
¢ * ¢ € Fun(h*) by

(G*)(N) =D o\ + mv(—p).
neDh*

For example, e/ and every other function are convolutionable, and we have

(e* % @) (A) = ¢(A — p), i.e. convolution by e* shifts functions by p. We have
eMl x eH2 = eH1tH2

We denote by Fung;,(h*) C Fune,(h*) C Fun(h*) the linear subspaces
consisting of functions ¢ for which supp(¢) is, respectively, finite or conical.

Exercise 8.1.

1. Check that the convolution of two convolutionable functions in Fun(h*) is
well-defined.

2. Check that convolution is C-bilinear, associative and commutative when-
ever defined, and that €® is a neutral element with respect to convolution.

3. Check that every two functions in Funee,(h*) are convolutionable. De-
duce that Funge,(h*) is a commutative unital C-algebra with respect to
convolution.
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8.2 Formal character

Definition 8.1. Let us say that a g-module M is conical if M is a weight
module, wt(M) C h* is conical, and My » is finite-dimensional for all A € h*.

Example 8.2. Finite-dimensional g-modules are conical, as well as highest
weight g-modules.

Definition 8.3. Let M be a conical g-module. We define its formal character
fchps € Funeon(h*)

by
fChM(/\) = dim(c M‘L)\'

Our goal, Weyl’s character formula, is a formula for fchy,, for a f.d. Ly. We
have a linear W-action on h, which induces a linear W-action on h*, which in
its turn induces a W-action on Fun(h*). Notice that this W-action preserves
Fun;,, (h*), but does not preserve Func,, (h*).

Claim 8.4. Let M be a finite-dimensional g-module. Then fchys € Fung;,(h*)
is W-invariant.

Proof. Using the SU(n)-action on M corresponding to the g-action, the claim is
clear by what we saw about finite-dimensional SU(n)-representations. However,
we can also give an algebraic proof. Namely, fixing o € R?, it is enough to check
that fchys is se-invariant. In other words, we want to check that dim My ) =
dim My, 5 » for all A € h*. By symmetry, it is enough to check that dim My <
dim My ¢ » for all A € h*. Fix A € h*. If X\ ¢ wt(M) the claim is clear, so we
assume A € wt(M). We again consider the g,-action on M. If Since A(H,)
is an eigenvalue of H, acting on M, by what we saw on finite-dimensional sl,-
modules, we have A\(H,) € Z. We assume A(H,) > 0, as the other case is
analogous. Denote n := A(H,). We have A —na = s,()\) and thus the action of
F3 on M sends My, y into My, (x)- Recall that we saw that the action of F} on
M, restricted to My, x(m.), 1s injective. Since My » is contained in My, x(m.,)s
we obtain that the action of F} on M, restricted to My », is injective. Hence
dim My » < dim My s » as desired. O

Now, let us study fchyy, .
Definition 8.5. Define the Kostant function K € Fun.,,(h*) by

K()\):‘{m:R+—>Z>0|)\:— Z m(oz)a}‘

a€RT

In other words, K () is the number of ways that A can be written as a Z>o-linear
combination of negative roots. We can also write:

K = Z e~ Zacrt M@)o

m:Rt —}ZZO
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Exercise 8.2. We have
K= H (eo+e_o‘+e_20‘+...)
acRt

(an expression similar to the Euler product one encounters when studying L-

functions) where the product is the convolution product x. Here (eo fe ¥ 4e 24 .

has the obvious meaning - it is the function which is equal to 1 on one of the
elements 0, —a, —2a, . .. and to 0 elsewhere.

Claim 8.6. Let A € h*. We have
fchy, = e x K.
Proof. Recall that a basis for M, is given by
{F™ . UA}m:R*HZEOa

where the notation F™ is as follows. We choose an ordering of R*, and then

define F™ to be [],cp+ F;n(a), where the product is taken in the order we chose
(this depends on the order, but we fix it). Therefore

fchpy, = Z N Xaent mla)a — Ay Z e~ Laert ™M) = Ay K
m:Rt—7Z>¢ m:Rt—=7>¢
O
Definition 8.7. We define

D= H (e*/? —e=/%) ¢ Fun;, (h*),
acRt
where the product is the convolution product .
Definition 8.8. We define
1 .
pi=5 Z a€eh’.
acRt
Claim 8.9. Let A € h*. We have
KxD=¢",
and so
fCh]uA * (D * 67(/\+p)) =0,

In other words, fchyy, , which lies in Funeo,(h*), is the inverse with respect to
the convolution product x of an element in Funy,, (h*), namely of D e~ (Atn),

Proof. Notice that
(" +e e 4. )% (ea/2 — e_o‘/2) =e/2,

Therefore
KxD= [] e =e¢".

a€RT
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8.3 Expressing the formal character of an irreducible mod-
ule in terms of formal characters of Verma modules,
given a fact

Definition 8.10 (Dot action). We define a new action of W on h* by we X :=
w(A+ p) — p. Thus, it is no more linear.

Definition 8.11. A subquotient of a module is a quotient module of a sub-
module or, which is the same, a submodule of a quotient module.

The following fact we will explain later.

Fact 8.12. Let M be a highest weight g-module with highest weight A € bh*.
Then ext(N) C W e \ for any subquotient g-module N of M.

We will prove Weyl’s character formula, granted this fact.

Exercise 8.3. A non-empty conical subset in h* has mazximal elements w.r.t.
our partial order <. As a corollary, given a mon-zero conical g-module M we
have ext(M) # ().

Claim 8.13. Let S C h* be a finite subset. Let M be a conical g-module such
that ext(N) C S for any subquotient g-module N of M. Then there exists a
collection (ny),cg C Z>o such that

fchp =Y " my, - fehy,.
neS

Proof. The proof will be by induction on

n(M) =Y dimc M, .
nes

If n(M) = 0 then we obtain ext(M) = () and hence by Exercise we obtain
M = 0, and the claim is clear. Assume now n(M) > 0, and so M # 0 and
hence ext(M) # (. If M is irreducible, then take p € ext(M) and take an
extremal vector 0 # v € My, Then v generates M as a g-module (since M
is irreducible) and therefore we see that M is a highest weight module with
highest weight pu, i.e. M is isomorphic to L,, and hence the claim is clear in
this case. If M is not irreducible, let N C M be a submodule with N # 0 and
N # M. Then n(M) = n(N)+n(M/N) and we deduce that n(N) < n(M) and
n(M/N) < n(M), and therefore we can write fch(N) and fch(M/N) as desired,
by induction. Since
fch(M) = fch(N) + fch(M/N),

the claim is clear. O

Claim 8.14. The elements
(fchr,, ) uen-

in Fung,, (h*) are linearly independent.

82



Proof. Suppose given a finite subset S C h* and scalars (c,)ues such that
>opesCufehp, = 0. Let us order S = {u1,..., s} in such a way so that
pi < pj implies 2 > j. Fix 1 <4 < n and suppose that we have already showed
that ¢;,;, = 0 for j < - we want to show that ¢, = 0 as well. Plugging in y; in
our relation, we obtain then

Z Cpy 'dimC(L,uj)haMi =0.
1<j<n

However, wt(L,,) C {# € b* | p < p;} and therefore p; ¢ wt(L,,) for

j
j > i. Therefore the equality becomes just ¢, - dimc(Ly, )p,u, = 0, and since
dimg(Ly, )y, = 1 we obtain ¢,, = 0. O

Claim 8.15. Let A € h*.

1. We can write
fchpr, = - fehy,
pnEW o)

formn, € Z>q. We have n, =0 unless p < X\ and ny = 1.

2. There exist integers m,, € Z for p € W e X\ such that

fchy, = Z my, - fchyy, .
pneEWel

We have my, = 0 unless it < X and my = 1.

Proof.
1. Let us denote by K C M) the kernel of the canonical projection My — L.
Then
fChM/\ = fchy + fChL/\.
Let us set

S:=WeX)n{ueh™ | p<At.
Clearly, taking Fact into consideration, we have ext(N) C S for any
subquotient g-module N on K. Therefore Claim shows that
fchg € Y Zso-fchy,
neSs

and the claim is clear.

2. This part follows from the previous part, by inverting a triangular matrix
with 1’s on the diagonal (as an exercise, formulate the precise claim and
proof).

O
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8.4 Proof of Weyl’s character formula (given the fact)

We are now ready to prove Weyl’s character formula (conditional on Fact [8.12]).
Let A € h* be integral and dominant, so that L) is finite-dimensional.

Lemma 8.16. Let A\ € b* be integral and dominant. Then
{weW |we=\}={1},
or in other words
{weW | wA+p) =+ p} ={1}.

Proof. Let us write A(diag(x1,...,2n)) = c121 + ... + ¢pxy. That A is integral
and dominant means that ¢; — ¢;41 € Z> for all 1 <7 < n. We have

. n—1 n—3 —(n—1
p(dlag(m17~"7x’n)) — 2 m1+ 2 x2+...+%xn.

Therefore, writing (A + p)(diag(x1,...,2,)) = diz1 + ... + dpx, we have d; —
di+1 = (Ci — Ci+1) +1 for all 1 S i < n and thus d7 — di+1 S Zzl for all
1 < i < n. Thus, we have dy > dy > ... > d,. Clearly, any non-trivial re-
ordering of (di,...,d,) does not satisfy this monotonicity property, and thus
can’t be defining the same functional on h* as (dy,...,d,). O

From this lemma we have a bijection W — W e X given by w — w e A\. By
Claim [8.15] we have m : W — Z so that

fchy, = Z m(w) - fchay,., -
weWw

By [8.6] we get

fchy, = (Z m(w) - ew'/\> * K.

weW
By Claim [3.9 we get

fchy, x D = ( Z m(w) ~ew°A> *xef = Z m(w) - e+, (8.1)
weW weW

We will use now the following lemma:

Lemma 8.17. For every w € W we have wD = sgn(w) - D.

Proof. Since {sq }acrs generate the group W, it is enough to show the equality
for w being s, for some « € R*, i.e. to show that s, D = —D. We have

saD =50 | T] (72— P2 | = [] (=2 — e=se(8)/2) =
BERT BERT
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= (@2 _mra@)/2). T (e%@)/2 - emsal)2) =

a#BERT

= (e7%/2 —¢/2). H (P2 — e BI%) = — H (€2 — =P/ = _D.
a#BERT BERT
O

We continue. Note that we should be careful that the W-action on Fun(h*)
does not preserve Fung,,(h*). However, it is straightforward that if ¢,¢ €
Fun(h*) are convolutionable, then w¢, wi are also convolutionable, and we have
w(d*) = (we)*(w)). We now see what we get when we apply some w € W to
both sides of (8.1). The left side satisfies w(LEFT) = sgn(w) - (LEFT). Hence
also for the right side we have w(RIGHT) = sgn(w) - (RIGHT). This gives:

Z m(w') - eww' (Ap) sgn(w) - Z m(w') - o' (A+p)

w' eW w' eW

Comparing coeflicients we obtain m(ww’) = sgn(w)m(w’) for all w,w’ € W.
Recall that m(1) = 1 and therefore we deduce m(w) = sgn(w) for all w € W.
We have obtained:

Theorem 8.18 (Weyl’s character formula). Let A € h* be integral and domi-
nant. Then

fCh(L)\) * H (ea/2 _ 6_04/2) — Z Sgn(w) . ew()\-&-p)’

aERT wew

Exercise 8.4. Understand how all what we saw regarding L)y ’s recovers the
classification of irreducible finite-dimensional SU(n)-representations and their
Weyl character formula.

8.5 The center of the universal enveloping algebra

Definition 8.19. We denote by Z(g) the center of U(g). It is a commutative
C-algebra.

Remark 8.20. It will turn out that Z(g) is not too small, and useful. We could
not quite grasp it when looking “inside” g itself, and had to consider U(g).

Definition 8.21. Let A be a commutative C-algebra. We denote by Sp(A) the
set of morphisms of C-algebras from A to C, and call it the spectrum of A.
We also refer to elements of Sp(A4) as characters of A.

Exercise-Definition 8.22. Let ( € Sp(A). Let M be a g-module. We say
that M has infinitesimal character ¢ if for all D € Z(g) and v € M we have
Dv =(¢(D)-v. If M # 0 then clearly M has at most one infinitesimal character,
and if it has an infinitesimal character we denote it by Cpr.

Exercise 8.5. Let M be a g-module. If every D € Z(g) acts on M by a scalar
then M has infinitesimal character.
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Lemma 8.23. A highest weight g-module has infinitesimal character.

Proof. Let M be a highest weight g-module, and let v € M be a highest weight
vector, with weight A € h*. Let D € Z(g). Then, since DX = XD for all X € g,
Dv is also a vector of weight A. Since My, » is one-dimensional, we must have
Dv = cv for some ¢ € C. Now, if we consider the subspace N C M consisting
of w for which Dw = cw, notice that N is a g-submodule of M, and it contains
v. Since v generates M as a g-module, we obtain N = M. ThusD acts on M
by a scalar. By Exercise [8.5] we obtain that M has infinitesimal character. O

Let us denote by Fun(h*) the C-algebra of C-valued functions on h* (with
multiplication being pointwise). We define a map

8 :Z(g) — Fun(h*)
by
D — Cur, (D).

It is clearly a C-algebra morphism. Let us denote by Pol(h*) C Fun(h*) the
C-subalgebra consisting of polynomial functions.

Lemma 8.24. The image of 8 lies in Pol(h*).

Proof. Notice that from the PBW theorem we see that, inside U(g), we can
write

U(g) = U(h) + U(g)n +n~ U(g)-

Let us also choose a basis Hy, ..., H, for h. Given D € Z(g) we can write

m? m7
DEZCi~H1 P Hyt +U(gn 4+ n"U(g)

where ¢; € C and mf € Z>o. Next, recall that we have a decomposition
My=C-vya® My

where

M= > (M),

pewt(Mxy)N{A}

and notice that
n~U(g)vn C My.
Also, notice that U(g)nvy = 0. Hence we obtain

Doy =3¢, H" ... H" vy = (Z ¢; - A(Hy)™ -A(Hr)mf> vy

In other words, we obtain

r

S(DYXN) = 3o ACH)™ - A(H,)™,

and this is indeed polynomial in A. O
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Recall that W acts linearly on §, and therefore acts linearly on h*. Recall in
addition that we defined the dot action of W on h* by w e A := w(A + p) — p.
It is no more linear (just affine). We obtain an induced dot action on Fun(h*)
and on its subalgebra Pol(h*). This is an action by algebra automorphisms. We
denote by Pol(h*)"'* C Pol(h*) the subalgebra of W-invariants with respect to
this dot action.

Claim 8.25. The image of 8 lies in Pol(h*)"®.

Proof (of Claim . Since {sq tacrs generates W, it is enough to check that,
fixing D € Z(g) and o € R®, we have s, ® §(D) = 8§(D), i.e. §(X)(sa @A) =
S$(X)(A) for all A € h*. Let us first assume that A is such that A(H,) € Z>o. In
Lemma, that, denoting n := A\(H,), we have that F"*lv, € M), is a non-
zero extremal vector with weight A — (n 4 1)a. Therefore we obtain a non-zero
morphism of g-modules My _(,,11)o — M. Denoting by N the (non-zero) image
of this morphism, it is both a quotient module of the source and a submodule
of the target. Therefore Z(g) acts on it both by (ar, .., and by (ar,. Thus
we must have (ur, (... = Cmy, and so S(D)(A — (n + 1)a) = 8(D)()). Now,
notice that

sa @ A= ((A4p) = A+ p)(Ha)a) = p=A— (n+1)a

(where we have used p(H,) = 1 - check this). Hence the required.

Thus, we have obtained 8§(D)(s, e A) = 8(D)()\) for all A € h* satisfying
A Hy) € Zsg. Since 8§(D) is a polynomial on h*, this implies the equality for
all A € h* - by an easy lemma: Let V be a f.d. C-vector space and let f be
a polynomial on V. Let 0 # ¢ € V*. If f(v) = 0 for all v € V satisfying
l(v) € Z>g, then f =0. O

The following is a fundamental theorem:
Theorem 8.26 (Harish-Chandra). The C-algebra morphism
S+ 2(g) > Pol(h")"*
18 an isomorphism.
Proof. Omitted. O

Let us now see how this material establishes Fact Let A € h* and let
N be a non-zero subquotient of My. We want to see that ext(N) C W e A.
Let o € ext(NN). We obtain a non-zero morphism of g-modules M, — N.
Now, since N is a subquotient of My, Z(g) acts on N by (pr,. Since we have
a non-zero morphism of g-modules M, — N, reasoning as above we see that
the operators in Z(g) act on M, by the same scalars with which they act on
N, and hence ¢y, = (v = (- In other words, for any D € Z(g) we have
8(D)(A) = 8(D)(p). By Theorem we see that all the polynomials on h*
which are invariant under the dot-action of W have the same values on A and on
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. It is left to see that this implies that © € W e A. Indeed, let us suppose that
p ¢ W e X and show that then there exists a polynomial f € Pol(h*) which is
invariant under the dot-action of W and such that f(u) # f(A). Clearly, for any
disjoint finite subsets S, T C h* we can find a polynomial f; € Pol(h*) such that
fo(v) =0forallv € S and fo(v) # 0 for all v € T. We apply this to S := W e
and T := W e v and then define f € Pol(h*) by f(v) := [[,ew fo(w e v) for
v € h*. Then clearly f is invariant under the dot-action of W, and we have

f(A) =0and f(u) #0, so that f(u) # f(X), as desired.

Example 8.27. Let us see what Harish-Chandra’s theorem says for g := sls.
We identify b* with C by sending \ to AN(H). This gives an identification of
Pol(h*) with the algebra of polynomials C[z]. The dot-action of the non-trivial
element s € W is given by s e c = —2 — c¢. Then Pol(h*)"V* C Pol(h*) gets
identified with C[(z + 1)?] C C[z]. Recall the Casimir element

1
C= é(H2 +2H +4FFE) € Z(g).

We have .
Cuy = (8(A(H)2 + 2)\(H))) - vy

Therefore, under our identification,

8(C) = %(22 +2z2) = %((z—k 12 —1).

Thus we see that
1,C,C% ...

is a basis for Z(g).
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